Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

596 lines
14 KiB

/*
* Copyright (c) 2016 BayLibre, SAS
* Copyright (c) 2017 Linaro Ltd
* Copyright (c) 2024 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <soc.h>
#include <stm32_ll_i2c.h>
#include <stm32_ll_rcc.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/i2c/rtio.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/kernel.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/sys/util.h>
#define LOG_LEVEL CONFIG_I2C_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(i2c_ll_stm32_v2_rtio);
#include "i2c_ll_stm32.h"
#include "i2c-priv.h"
static void i2c_stm32_disable_transfer_interrupts(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
LL_I2C_DisableIT_TX(i2c);
LL_I2C_DisableIT_RX(i2c);
LL_I2C_DisableIT_STOP(i2c);
LL_I2C_DisableIT_NACK(i2c);
LL_I2C_DisableIT_TC(i2c);
LL_I2C_DisableIT_ERR(i2c);
}
static void i2c_stm32_enable_transfer_interrupts(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
LL_I2C_EnableIT_STOP(i2c);
LL_I2C_EnableIT_NACK(i2c);
LL_I2C_EnableIT_TC(i2c);
LL_I2C_EnableIT_ERR(i2c);
}
static void i2c_stm32_master_mode_end(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
i2c_stm32_disable_transfer_interrupts(dev);
if (LL_I2C_IsEnabledReloadMode(i2c)) {
LL_I2C_DisableReloadMode(i2c);
}
#if defined(CONFIG_I2C_TARGET)
struct i2c_stm32_data *data = dev->data;
data->master_active = false;
if (!data->slave_attached) {
LL_I2C_Disable(i2c);
}
#else
LL_I2C_Disable(i2c);
#endif
}
#if defined(CONFIG_I2C_TARGET)
static void i2c_stm32_target_event(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
const struct i2c_target_callbacks *target_cb;
struct i2c_target_config *target_cfg;
if (data->slave_cfg->flags != I2C_TARGET_FLAGS_ADDR_10_BITS) {
uint8_t target_address;
/* Choose the right target from the address match code */
target_address = LL_I2C_GetAddressMatchCode(i2c) >> 1;
if (data->slave_cfg != NULL &&
target_address == data->slave_cfg->address) {
target_cfg = data->slave_cfg;
} else if (data->slave2_cfg != NULL &&
target_address == data->slave2_cfg->address) {
target_cfg = data->slave2_cfg;
} else {
__ASSERT_NO_MSG(0);
return;
}
} else {
/* On STM32 the LL_I2C_GetAddressMatchCode & (ISR register) returns
* only 7bits of address match so 10 bit dual addressing is broken.
* Revert to assuming single address match.
*/
if (data->slave_cfg != NULL) {
target_cfg = data->slave_cfg;
} else {
__ASSERT_NO_MSG(0);
return;
}
}
target_cb = target_cfg->callbacks;
if (LL_I2C_IsActiveFlag_TXIS(i2c)) {
uint8_t val;
if (target_cb->read_processed(target_cfg, &val) < 0) {
LOG_ERR("Error continuing reading");
} else {
LL_I2C_TransmitData8(i2c, val);
}
return;
}
if (LL_I2C_IsActiveFlag_RXNE(i2c)) {
uint8_t val = LL_I2C_ReceiveData8(i2c);
if (target_cb->write_received(target_cfg, val)) {
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK);
}
return;
}
if (LL_I2C_IsActiveFlag_NACK(i2c)) {
LL_I2C_ClearFlag_NACK(i2c);
}
if (LL_I2C_IsActiveFlag_STOP(i2c)) {
i2c_stm32_disable_transfer_interrupts(dev);
/* Flush remaining TX byte before clearing Stop Flag */
LL_I2C_ClearFlag_TXE(i2c);
LL_I2C_ClearFlag_STOP(i2c);
target_cb->stop(target_cfg);
/* Prepare to ACK next transmissions address byte */
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_ACK);
}
if (LL_I2C_IsActiveFlag_ADDR(i2c)) {
uint32_t dir;
LL_I2C_ClearFlag_ADDR(i2c);
dir = LL_I2C_GetTransferDirection(i2c);
if (dir == LL_I2C_DIRECTION_WRITE) {
if (target_cb->write_requested(target_cfg) < 0) {
LOG_ERR("Error initiating writing");
} else {
LL_I2C_EnableIT_RX(i2c);
}
} else {
uint8_t val;
if (target_cb->read_requested(target_cfg, &val) < 0) {
LOG_ERR("Error initiating reading");
} else {
LL_I2C_TransmitData8(i2c, val);
LL_I2C_EnableIT_TX(i2c);
}
}
i2c_stm32_enable_transfer_interrupts(dev);
}
}
/* Attach and start I2C as target */
int i2c_stm32_target_register(const struct device *dev,
struct i2c_target_config *config)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
uint32_t bitrate_cfg;
int ret;
if (config == NULL) {
return -EINVAL;
}
if (data->slave_cfg && data->slave2_cfg) {
return -EBUSY;
}
if (data->master_active) {
return -EBUSY;
}
bitrate_cfg = i2c_map_dt_bitrate(cfg->bitrate);
ret = i2c_stm32_runtime_configure(dev, bitrate_cfg);
if (ret < 0) {
LOG_ERR("i2c: failure initializing");
return ret;
}
#if defined(CONFIG_PM_DEVICE_RUNTIME)
if (pm_device_wakeup_is_capable(dev)) {
/* Mark device as active */
(void)pm_device_runtime_get(dev);
/* Enable wake-up from stop */
LOG_DBG("i2c: enabling wakeup from stop");
LL_I2C_EnableWakeUpFromStop(cfg->i2c);
}
#endif /* defined(CONFIG_PM_DEVICE_RUNTIME) */
LL_I2C_Enable(i2c);
if (!data->slave_cfg) {
data->slave_cfg = config;
if (data->slave_cfg->flags == I2C_TARGET_FLAGS_ADDR_10_BITS) {
LL_I2C_SetOwnAddress1(i2c, config->address, LL_I2C_OWNADDRESS1_10BIT);
LOG_DBG("i2c: target #1 registered with 10-bit address");
} else {
LL_I2C_SetOwnAddress1(i2c, config->address << 1U, LL_I2C_OWNADDRESS1_7BIT);
LOG_DBG("i2c: target #1 registered with 7-bit address");
}
LL_I2C_EnableOwnAddress1(i2c);
LOG_DBG("i2c: target #1 registered");
} else {
data->slave2_cfg = config;
if (data->slave2_cfg->flags == I2C_TARGET_FLAGS_ADDR_10_BITS) {
return -EINVAL;
}
LL_I2C_SetOwnAddress2(i2c, config->address << 1U,
LL_I2C_OWNADDRESS2_NOMASK);
LL_I2C_EnableOwnAddress2(i2c);
LOG_DBG("i2c: target #2 registered");
}
data->slave_attached = true;
LL_I2C_EnableIT_ADDR(i2c);
return 0;
}
int i2c_stm32_target_unregister(const struct device *dev,
struct i2c_target_config *config)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
if (!data->slave_attached) {
return -EINVAL;
}
if (data->master_active) {
return -EBUSY;
}
if (config == data->slave_cfg) {
LL_I2C_DisableOwnAddress1(i2c);
data->slave_cfg = NULL;
LOG_DBG("i2c: target #1 unregistered");
} else if (config == data->slave2_cfg) {
LL_I2C_DisableOwnAddress2(i2c);
data->slave2_cfg = NULL;
LOG_DBG("i2c: target #2 unregistered");
} else {
return -EINVAL;
}
/* Return if there is a target remaining */
if (data->slave_cfg || data->slave2_cfg) {
LOG_DBG("i2c: target#%c still registered", data->slave_cfg?'1':'2');
return 0;
}
/* Otherwise disable I2C */
LL_I2C_DisableIT_ADDR(i2c);
i2c_stm32_disable_transfer_interrupts(dev);
LL_I2C_ClearFlag_NACK(i2c);
LL_I2C_ClearFlag_STOP(i2c);
LL_I2C_ClearFlag_ADDR(i2c);
LL_I2C_Disable(i2c);
#if defined(CONFIG_PM_DEVICE_RUNTIME)
if (pm_device_wakeup_is_capable(dev)) {
/* Disable wake-up from STOP */
LOG_DBG("i2c: disabling wakeup from stop");
LL_I2C_DisableWakeUpFromStop(i2c);
/* Release the device */
(void)pm_device_runtime_put(dev);
}
#endif /* defined(CONFIG_PM_DEVICE_RUNTIME) */
data->slave_attached = false;
return 0;
}
#endif /* defined(CONFIG_I2C_TARGET) */
static void i2c_stm32_reload_burst(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
__ASSERT_NO_MSG(LL_I2C_IsEnabledReloadMode(i2c));
if (data->xfer_len > UINT8_MAX) {
/* Not the last burst for this message, don't consider STOP and RESTART flags */
data->burst_len = UINT8_MAX;
data->burst_flags = data->xfer_flags & ~(I2C_MSG_STOP | I2C_MSG_RESTART);
} else {
/* Preserve possible STOP flag */
data->burst_len = data->xfer_len;
data->burst_flags = data->xfer_flags;
}
LL_I2C_SetTransferSize(i2c, data->burst_len);
/* If last burst in reload mode, disable the mode now that transfer size is loaded */
if ((data->burst_len == data->xfer_len) &&
(data->burst_flags & I2C_MSG_STM32_USE_RELOAD_MODE) == 0) {
LL_I2C_DisableReloadMode(i2c);
}
}
void i2c_stm32_event(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
struct i2c_rtio *ctx = data->ctx;
I2C_TypeDef *i2c = cfg->i2c;
int ret = 0;
#if defined(CONFIG_I2C_TARGET)
if (data->slave_attached && !data->master_active) {
i2c_stm32_target_event(dev);
return;
}
#endif
if (data->burst_len != 0U) {
/* Send next byte */
if (LL_I2C_IsActiveFlag_TXIS(i2c)) {
LL_I2C_TransmitData8(i2c, *data->xfer_buf);
}
/* Receive next byte */
if (LL_I2C_IsActiveFlag_RXNE(i2c)) {
*data->xfer_buf = LL_I2C_ReceiveData8(i2c);
}
data->xfer_buf++;
data->xfer_len--;
data->burst_len--;
}
/* NACK received */
if (LL_I2C_IsActiveFlag_NACK(i2c)) {
LL_I2C_ClearFlag_NACK(i2c);
/*
* AutoEndMode is always disabled in master mode,
* so send a stop condition manually
*/
LL_I2C_GenerateStopCondition(i2c);
ret = -EIO;
}
/* STOP received */
if (LL_I2C_IsActiveFlag_STOP(i2c)) {
LL_I2C_ClearFlag_STOP(i2c);
LL_I2C_DisableReloadMode(i2c);
i2c_stm32_master_mode_end(dev);
if (i2c_rtio_complete(ctx, ret)) {
i2c_stm32_start(dev);
return;
}
}
if (LL_I2C_IsActiveFlag_TC(i2c) ||
LL_I2C_IsActiveFlag_TCR(i2c)) {
__ASSERT_NO_MSG(data->burst_len == 0U);
if (data->xfer_len != 0U) {
i2c_stm32_reload_burst(dev);
return;
}
/* Issue stop condition if necessary */
if ((data->burst_flags & I2C_MSG_STOP) != 0) {
LL_I2C_GenerateStopCondition(i2c);
} else {
i2c_stm32_disable_transfer_interrupts(dev);
if (i2c_rtio_complete(ctx, ret)) {
i2c_stm32_start(dev);
}
}
}
}
int i2c_stm32_error(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
struct i2c_rtio *ctx = data->ctx;
I2C_TypeDef *i2c = cfg->i2c;
int ret = 0;
#if defined(CONFIG_I2C_TARGET)
if (data->slave_attached && !data->master_active) {
/* No need for a target error function right now. */
return 0;
}
#endif
if (LL_I2C_IsActiveFlag_ARLO(i2c)) {
LL_I2C_ClearFlag_ARLO(i2c);
ret = -EIO;
}
if (ret) {
i2c_stm32_master_mode_end(dev);
if (i2c_rtio_complete(ctx, ret)) {
i2c_stm32_start(dev);
}
}
return ret;
}
int i2c_stm32_msg_start(const struct device *dev, uint8_t flags,
uint8_t *buf, size_t buf_len, uint16_t i2c_addr)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
uint32_t transfer;
data->xfer_buf = buf;
data->xfer_len = buf_len;
data->xfer_flags = flags;
if (LL_I2C_IsEnabledReloadMode(i2c)) {
__ASSERT_NO_MSG((flags & I2C_MSG_RESTART) == 0U);
i2c_stm32_reload_burst(dev);
goto out;
}
if ((flags & I2C_MSG_READ) != 0) {
transfer = LL_I2C_REQUEST_READ;
} else {
transfer = LL_I2C_REQUEST_WRITE;
}
if ((I2C_MSG_ADDR_10_BITS & flags) != 0) {
LL_I2C_SetMasterAddressingMode(i2c,
LL_I2C_ADDRESSING_MODE_10BIT);
LL_I2C_SetSlaveAddr(i2c, (uint32_t) i2c_addr);
} else {
LL_I2C_SetMasterAddressingMode(i2c,
LL_I2C_ADDRESSING_MODE_7BIT);
LL_I2C_SetSlaveAddr(i2c, (uint32_t) i2c_addr << 1);
}
if (buf_len > UINT8_MAX) {
data->burst_flags = flags & ~I2C_MSG_STOP;
data->burst_len = UINT8_MAX;
LL_I2C_EnableReloadMode(i2c);
} else {
data->burst_flags = flags;
data->burst_len = buf_len;
if ((flags & I2C_MSG_STM32_USE_RELOAD_MODE) != 0) {
LL_I2C_EnableReloadMode(i2c);
} else {
LL_I2C_DisableReloadMode(i2c);
}
}
LL_I2C_DisableAutoEndMode(i2c);
LL_I2C_SetTransferRequest(i2c, transfer);
LL_I2C_SetTransferSize(i2c, data->burst_len);
#if defined(CONFIG_I2C_TARGET)
data->master_active = true;
#endif
LL_I2C_Enable(i2c);
LL_I2C_GenerateStartCondition(i2c);
out:
i2c_stm32_enable_transfer_interrupts(dev);
if ((flags & I2C_MSG_READ) != 0) {
LL_I2C_EnableIT_RX(i2c);
} else {
LL_I2C_EnableIT_TX(i2c);
}
return 0;
}
int i2c_stm32_configure_timing(const struct device *dev, uint32_t clock)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
uint32_t i2c_hold_time_min, i2c_setup_time_min;
uint32_t i2c_h_min_time, i2c_l_min_time;
uint32_t presc = 1U;
uint32_t timing = 0U;
/* Look for an adequate preset timing value */
for (uint32_t i = 0; i < cfg->n_timings; i++) {
const struct i2c_config_timing *preset = &cfg->timings[i];
uint32_t speed = i2c_map_dt_bitrate(preset->i2c_speed);
if ((I2C_SPEED_GET(speed) == I2C_SPEED_GET(data->dev_config))
&& (preset->periph_clock == clock)) {
/* Found a matching periph clock and i2c speed */
LL_I2C_SetTiming(i2c, preset->timing_setting);
return 0;
}
}
/* No preset timing was provided, let's dynamically configure */
switch (I2C_SPEED_GET(data->dev_config)) {
case I2C_SPEED_STANDARD:
i2c_h_min_time = 4000U;
i2c_l_min_time = 4700U;
i2c_hold_time_min = 500U;
i2c_setup_time_min = 1250U;
break;
case I2C_SPEED_FAST:
i2c_h_min_time = 600U;
i2c_l_min_time = 1300U;
i2c_hold_time_min = 375U;
i2c_setup_time_min = 500U;
break;
default:
LOG_ERR("i2c: speed above \"fast\" requires manual timing configuration, "
"see \"timings\" property of st,stm32-i2c-v2 devicetree binding");
return -EINVAL;
}
/* Calculate period until prescaler matches */
do {
uint32_t t_presc = clock / presc;
uint32_t ns_presc = NSEC_PER_SEC / t_presc;
uint32_t sclh = i2c_h_min_time / ns_presc;
uint32_t scll = i2c_l_min_time / ns_presc;
uint32_t sdadel = i2c_hold_time_min / ns_presc;
uint32_t scldel = i2c_setup_time_min / ns_presc;
if ((sclh - 1) > 255 || (scll - 1) > 255) {
++presc;
continue;
}
if (sdadel > 15 || (scldel - 1) > 15) {
++presc;
continue;
}
timing = __LL_I2C_CONVERT_TIMINGS(presc - 1,
scldel - 1, sdadel, sclh - 1, scll - 1);
break;
} while (presc < 16);
if (presc >= 16U) {
LOG_DBG("I2C:failed to find prescaler value");
return -EINVAL;
}
LL_I2C_SetTiming(i2c, timing);
return 0;
}