You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
579 lines
18 KiB
579 lines
18 KiB
/* |
|
* Copyright (c) 2024 Ambiq Micro Inc. |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#define DT_DRV_COMPAT ambiq_adc |
|
|
|
#include <zephyr/drivers/adc.h> |
|
#include <zephyr/drivers/pinctrl.h> |
|
#include <zephyr/pm/device.h> |
|
#include <zephyr/pm/device_runtime.h> |
|
#include <zephyr/kernel.h> |
|
#include <zephyr/cache.h> |
|
|
|
#define ADC_CONTEXT_USES_KERNEL_TIMER |
|
#include "adc_context.h" |
|
|
|
/* ambiq-sdk includes */ |
|
#include <soc.h> |
|
|
|
#include <zephyr/logging/log.h> |
|
LOG_MODULE_REGISTER(adc_ambiq, CONFIG_ADC_LOG_LEVEL); |
|
|
|
/* Number of slots available. */ |
|
#define AMBIQ_ADC_SLOT_NUMBER AM_HAL_ADC_MAX_SLOTS |
|
#define ADC_TRANSFER_TIMEOUT_MSEC 500 |
|
|
|
#if defined(CONFIG_SOC_SERIES_APOLLO3X) |
|
#define AMBIQ_ADC_DMA_INT (AM_HAL_ADC_INT_DERR | AM_HAL_ADC_INT_DCMP) |
|
#else |
|
#define AMBIQ_ADC_DMA_INT (AM_HAL_ADC_INT_DERR | AM_HAL_ADC_INT_DCMP | AM_HAL_ADC_INT_FIFOOVR1) |
|
#endif |
|
|
|
struct adc_ambiq_config { |
|
uint32_t base; |
|
int size; |
|
uint8_t num_channels; |
|
void (*irq_config_func)(void); |
|
const struct pinctrl_dev_config *pin_cfg; |
|
}; |
|
|
|
struct adc_ambiq_data { |
|
struct adc_context ctx; |
|
void *adcHandle; |
|
uint32_t *buffer; |
|
uint32_t *repeat_buffer; |
|
uint8_t active_channels; |
|
struct k_sem dma_done_sem; |
|
am_hal_adc_dma_config_t dma_cfg; |
|
am_hal_adc_sample_t *sample_buf; |
|
bool dma_mode; |
|
}; |
|
|
|
static int adc_ambiq_set_resolution(am_hal_adc_slot_prec_e *prec, uint8_t adc_resolution) |
|
{ |
|
switch (adc_resolution) { |
|
case 8: |
|
*prec = AM_HAL_ADC_SLOT_8BIT; |
|
break; |
|
case 10: |
|
*prec = AM_HAL_ADC_SLOT_10BIT; |
|
break; |
|
case 12: |
|
*prec = AM_HAL_ADC_SLOT_12BIT; |
|
break; |
|
#if defined(CONFIG_SOC_SERIES_APOLLO3X) |
|
case 14: |
|
*prec = AM_HAL_ADC_SLOT_14BIT; |
|
break; |
|
#endif |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int adc_ambiq_config(const struct device *dev) |
|
{ |
|
struct adc_ambiq_data *data = dev->data; |
|
am_hal_adc_config_t ADCConfig; |
|
|
|
/* Set up the ADC configuration parameters. These settings are reasonable |
|
* for accurate measurements at a low sample rate. |
|
*/ |
|
#if defined(CONFIG_SOC_SERIES_APOLLO3X) |
|
ADCConfig.eClock = AM_HAL_ADC_CLKSEL_HFRC; |
|
ADCConfig.eReference = AM_HAL_ADC_REFSEL_INT_1P5; |
|
#else |
|
ADCConfig.eClock = AM_HAL_ADC_CLKSEL_HFRC_24MHZ; |
|
ADCConfig.eRepeatTrigger = AM_HAL_ADC_RPTTRIGSEL_INT; |
|
#endif |
|
ADCConfig.ePolarity = AM_HAL_ADC_TRIGPOL_RISING; |
|
ADCConfig.eTrigger = AM_HAL_ADC_TRIGSEL_SOFTWARE; |
|
ADCConfig.eClockMode = AM_HAL_ADC_CLKMODE_LOW_LATENCY; |
|
ADCConfig.ePowerMode = AM_HAL_ADC_LPMODE0; |
|
if (data->dma_mode) { |
|
ADCConfig.eRepeat = AM_HAL_ADC_REPEATING_SCAN; |
|
} else { |
|
ADCConfig.eRepeat = AM_HAL_ADC_SINGLE_SCAN; |
|
} |
|
|
|
if (AM_HAL_STATUS_SUCCESS != am_hal_adc_configure(data->adcHandle, &ADCConfig)) { |
|
LOG_ERR("configuring ADC failed.\n"); |
|
return -ENODEV; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int adc_ambiq_slot_config(const struct device *dev, const struct adc_sequence *sequence, |
|
am_hal_adc_slot_chan_e channel, uint32_t ui32SlotNumber) |
|
{ |
|
struct adc_ambiq_data *data = dev->data; |
|
am_hal_adc_slot_config_t ADCSlotConfig; |
|
|
|
if (adc_ambiq_set_resolution(&ADCSlotConfig.ePrecisionMode, sequence->resolution) != 0) { |
|
LOG_ERR("unsupported resolution %d", sequence->resolution); |
|
return -ENOTSUP; |
|
} |
|
|
|
/* Set up an ADC slot */ |
|
ADCSlotConfig.eMeasToAvg = AM_HAL_ADC_SLOT_AVG_1; |
|
ADCSlotConfig.eChannel = channel; |
|
ADCSlotConfig.bWindowCompare = false; |
|
ADCSlotConfig.bEnabled = true; |
|
#if !defined(CONFIG_SOC_SERIES_APOLLO3X) |
|
ADCSlotConfig.ui32TrkCyc = AM_HAL_ADC_MIN_TRKCYC; |
|
#endif |
|
if (AM_HAL_STATUS_SUCCESS != |
|
am_hal_adc_configure_slot(data->adcHandle, ui32SlotNumber, &ADCSlotConfig)) { |
|
LOG_ERR("configuring ADC Slot 0 failed.\n"); |
|
return -ENODEV; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void adc_ambiq_disable(const struct device *dev) |
|
{ |
|
struct adc_ambiq_data *data = dev->data; |
|
am_hal_adc_slot_config_t ADCSlotConfig; |
|
|
|
am_hal_adc_interrupt_disable(data->adcHandle, 0xFF); |
|
ADCSlotConfig.bEnabled = false; |
|
for (uint8_t slotNum = 0; slotNum < AM_HAL_ADC_MAX_SLOTS; slotNum++) { |
|
am_hal_adc_configure_slot(data->adcHandle, slotNum, &ADCSlotConfig); |
|
} |
|
if (data->dma_mode) { |
|
ADCn(0)->DMACFG_b.DMAEN = 0; |
|
} |
|
am_hal_adc_disable(data->adcHandle); |
|
} |
|
|
|
static void adc_ambiq_isr(const struct device *dev) |
|
{ |
|
struct adc_ambiq_data *data = dev->data; |
|
uint32_t ui32IntMask; |
|
uint32_t ui32NumSamples; |
|
am_hal_adc_sample_t Sample; |
|
|
|
/* Read the interrupt status. */ |
|
am_hal_adc_interrupt_status(data->adcHandle, &ui32IntMask, true); |
|
|
|
/* |
|
* If we got a conversion completion interrupt (which should be our only |
|
* ADC interrupt), go ahead and read the data. |
|
*/ |
|
if (ui32IntMask & AM_HAL_ADC_INT_CNVCMP) { |
|
for (uint32_t i = 0; i < data->active_channels; i++) { |
|
/* Read the value from the FIFO. */ |
|
ui32NumSamples = 1; |
|
am_hal_adc_samples_read(data->adcHandle, false, NULL, &ui32NumSamples, |
|
&Sample); |
|
*data->buffer++ = Sample.ui32Sample; |
|
} |
|
adc_ambiq_disable(dev); |
|
adc_context_on_sampling_done(&data->ctx, dev); |
|
} |
|
|
|
if (data->dma_mode) { |
|
#if defined(CONFIG_SOC_SERIES_APOLLO3X) |
|
if (ui32IntMask & AM_HAL_ADC_INT_DCMP) { |
|
#else |
|
if (((ui32IntMask & AM_HAL_ADC_INT_FIFOOVR1) && (ADCn(0)->DMASTAT_b.DMACPL)) || |
|
(ui32IntMask & AM_HAL_ADC_INT_DCMP)) { |
|
#endif |
|
k_sem_give(&data->dma_done_sem); |
|
} |
|
} |
|
|
|
/* Clear the ADC interrupt.*/ |
|
am_hal_adc_interrupt_clear(data->adcHandle, ui32IntMask); |
|
} |
|
|
|
static int adc_ambiq_check_buffer_size(const struct adc_sequence *sequence, uint8_t active_channels) |
|
{ |
|
size_t needed_buffer_size; |
|
|
|
needed_buffer_size = active_channels * sizeof(uint16_t); |
|
|
|
if (sequence->options) { |
|
needed_buffer_size *= (1 + sequence->options->extra_samplings); |
|
} |
|
|
|
if (sequence->buffer_size < needed_buffer_size) { |
|
LOG_DBG("Provided buffer is too small (%u/%u)", sequence->buffer_size, |
|
needed_buffer_size); |
|
return -ENOMEM; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int adc_ambiq_start_read(const struct device *dev, const struct adc_sequence *sequence) |
|
{ |
|
struct adc_ambiq_data *data = dev->data; |
|
const struct adc_ambiq_config *cfg = dev->config; |
|
uint8_t channel_id = 0; |
|
uint32_t channels = 0; |
|
uint8_t active_channels = 0; |
|
uint8_t slot_index; |
|
|
|
int error = 0; |
|
|
|
if (sequence->channels & ~BIT_MASK(cfg->num_channels)) { |
|
LOG_ERR("Incorrect channels, bitmask 0x%x", sequence->channels); |
|
return -EINVAL; |
|
} |
|
|
|
if (sequence->channels == 0UL) { |
|
LOG_ERR("No channel selected"); |
|
return -EINVAL; |
|
} |
|
|
|
error = adc_ambiq_check_buffer_size(sequence, active_channels); |
|
if (error < 0) { |
|
return error; |
|
} |
|
|
|
active_channels = POPCOUNT(sequence->channels); |
|
if (active_channels > AMBIQ_ADC_SLOT_NUMBER) { |
|
LOG_ERR("Too many channels for sequencer. Max: %d", AMBIQ_ADC_SLOT_NUMBER); |
|
return -ENOTSUP; |
|
} |
|
|
|
error = adc_ambiq_config(dev); |
|
if (error < 0) { |
|
return error; |
|
} |
|
|
|
channels = sequence->channels; |
|
for (slot_index = 0; slot_index < active_channels; slot_index++) { |
|
channel_id = find_lsb_set(channels) - 1; |
|
error = adc_ambiq_slot_config(dev, sequence, channel_id, slot_index); |
|
if (error < 0) { |
|
return error; |
|
} |
|
channels &= ~BIT(channel_id); |
|
} |
|
__ASSERT_NO_MSG(channels == 0); |
|
|
|
if (data->dma_mode) { |
|
am_hal_adc_dma_config_t ADCDmaConfig = data->dma_cfg; |
|
|
|
if (data->dma_cfg.ui32SampleCount < active_channels) { |
|
LOG_ERR("Not enough DMA buffer.\n"); |
|
return -EOVERFLOW; |
|
} |
|
ADCDmaConfig.ui32SampleCount = active_channels; |
|
#if defined(CONFIG_SOC_SERIES_APOLLO3X) |
|
/* Start a timer to trigger the ADC periodically. */ |
|
am_hal_ctimer_config_single(3, AM_HAL_CTIMER_TIMERA, |
|
AM_HAL_CTIMER_HFRC_3MHZ | AM_HAL_CTIMER_FN_REPEAT); |
|
am_hal_ctimer_int_enable(AM_HAL_CTIMER_INT_TIMERA3); |
|
am_hal_ctimer_period_set(3, AM_HAL_CTIMER_TIMERA, 10, 5); |
|
/* Enable the timer A3 to trigger the ADC directly */ |
|
am_hal_ctimer_adc_trigger_enable(); |
|
#else |
|
am_hal_adc_irtt_config_t ADCIrttConfig; |
|
|
|
/* Set up internal repeat trigger timer */ |
|
ADCIrttConfig.bIrttEnable = true; |
|
ADCIrttConfig.eClkDiv = AM_HAL_ADC_RPTT_CLK_DIV16; /* 24MHz / 16 = 1.5MHz */ |
|
ADCIrttConfig.ui32IrttCountMax = 750; /* 1.5MHz / 750 = 2kHz */ |
|
am_hal_adc_configure_irtt(data->adcHandle, &ADCIrttConfig); |
|
#endif |
|
/* Configure DMA.*/ |
|
if (AM_HAL_STATUS_SUCCESS != |
|
am_hal_adc_configure_dma(data->adcHandle, &ADCDmaConfig)) { |
|
LOG_ERR("Error - configuring DMA failed.\n"); |
|
return -EINVAL; |
|
} |
|
|
|
am_hal_adc_interrupt_clear(data->adcHandle, AMBIQ_ADC_DMA_INT); |
|
am_hal_adc_interrupt_enable(data->adcHandle, AMBIQ_ADC_DMA_INT); |
|
} else { |
|
am_hal_adc_interrupt_enable(data->adcHandle, AM_HAL_ADC_INT_CNVCMP); |
|
} |
|
|
|
data->active_channels = active_channels; |
|
data->buffer = sequence->buffer; |
|
/* Start ADC conversion */ |
|
adc_context_start_read(&data->ctx, sequence); |
|
|
|
if (data->dma_mode) { |
|
if (k_sem_take(&data->dma_done_sem, K_MSEC(ADC_TRANSFER_TIMEOUT_MSEC))) { |
|
LOG_ERR("Timeout waiting for transfer complete"); |
|
/* cancel timed out transaction */ |
|
adc_ambiq_disable(dev); |
|
/* clean up for next xfer */ |
|
k_sem_reset(&data->dma_done_sem); |
|
return -ETIMEDOUT; |
|
} |
|
#if CONFIG_ADC_AMBIQ_HANDLE_CACHE |
|
if (!buf_in_nocache((uintptr_t)data->dma_cfg.ui32TargetAddress, |
|
data->active_channels * sizeof(uint32_t))) { |
|
/* Invalidate Dcache after DMA read */ |
|
sys_cache_data_invd_range((void *)data->dma_cfg.ui32TargetAddress, |
|
data->active_channels * sizeof(uint32_t)); |
|
} |
|
#endif /* CONFIG_ADC_AMBIQ_HANDLE_CACHE */ |
|
/* Read the value from the FIFO. */ |
|
am_hal_adc_samples_read(data->adcHandle, false, |
|
(uint32_t *)data->dma_cfg.ui32TargetAddress, |
|
(uint32_t *)&data->active_channels, data->sample_buf); |
|
for (uint32_t i = 0; i < data->active_channels; i++) { |
|
*data->buffer++ = data->sample_buf[i].ui32Sample; |
|
} |
|
adc_ambiq_disable(dev); |
|
adc_context_on_sampling_done(&data->ctx, dev); |
|
} else { |
|
error = adc_context_wait_for_completion(&data->ctx); |
|
} |
|
pm_device_runtime_put(dev); |
|
|
|
return error; |
|
} |
|
|
|
static int adc_ambiq_read(const struct device *dev, const struct adc_sequence *sequence) |
|
{ |
|
struct adc_ambiq_data *data = dev->data; |
|
int error = 0; |
|
|
|
adc_context_lock(&data->ctx, false, NULL); |
|
|
|
error = pm_device_runtime_get(dev); |
|
if (error < 0) { |
|
LOG_ERR("Failed to get device runtime PM state"); |
|
adc_context_release(&data->ctx, error); |
|
return error; |
|
} |
|
|
|
error = adc_ambiq_start_read(dev, sequence); |
|
|
|
adc_context_release(&data->ctx, error); |
|
|
|
return error; |
|
} |
|
|
|
static int adc_ambiq_channel_setup(const struct device *dev, const struct adc_channel_cfg *chan_cfg) |
|
{ |
|
const struct adc_ambiq_config *cfg = dev->config; |
|
|
|
if (chan_cfg->channel_id >= cfg->num_channels) { |
|
LOG_ERR("unsupported channel id '%d'", chan_cfg->channel_id); |
|
return -ENOTSUP; |
|
} |
|
|
|
if (chan_cfg->gain != ADC_GAIN_1) { |
|
LOG_ERR("Gain is not valid"); |
|
return -ENOTSUP; |
|
} |
|
|
|
if (chan_cfg->reference != ADC_REF_INTERNAL) { |
|
LOG_ERR("Reference is not valid"); |
|
return -ENOTSUP; |
|
} |
|
|
|
if (chan_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) { |
|
LOG_ERR("unsupported acquisition_time '%d'", chan_cfg->acquisition_time); |
|
return -ENOTSUP; |
|
} |
|
|
|
if (chan_cfg->differential) { |
|
LOG_ERR("Differential sampling not supported"); |
|
return -ENOTSUP; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling) |
|
{ |
|
struct adc_ambiq_data *data = CONTAINER_OF(ctx, struct adc_ambiq_data, ctx); |
|
|
|
if (repeat_sampling) { |
|
data->buffer = data->repeat_buffer; |
|
} |
|
} |
|
|
|
static void adc_context_start_sampling(struct adc_context *ctx) |
|
{ |
|
struct adc_ambiq_data *data = CONTAINER_OF(ctx, struct adc_ambiq_data, ctx); |
|
|
|
data->repeat_buffer = data->buffer; |
|
/* Enable the ADC. */ |
|
am_hal_adc_enable(data->adcHandle); |
|
if (data->dma_mode) { |
|
#if defined(CONFIG_SOC_SERIES_APOLLO3X) |
|
/* Start the ADC repetitive sample timer A3 */ |
|
am_hal_ctimer_start(3, AM_HAL_CTIMER_TIMERA); |
|
#else |
|
/* Enable internal repeat trigger timer */ |
|
am_hal_adc_irtt_enable(data->adcHandle); |
|
#endif |
|
} |
|
/*Trigger the ADC*/ |
|
am_hal_adc_sw_trigger(data->adcHandle); |
|
} |
|
|
|
static int adc_ambiq_init(const struct device *dev) |
|
{ |
|
struct adc_ambiq_data *data = dev->data; |
|
const struct adc_ambiq_config *cfg = dev->config; |
|
|
|
int ret; |
|
|
|
/* Initialize the ADC and get the handle*/ |
|
if (AM_HAL_STATUS_SUCCESS != am_hal_adc_initialize(0, &data->adcHandle)) { |
|
ret = -ENODEV; |
|
LOG_ERR("Failed to initialize ADC, code:%d", ret); |
|
return ret; |
|
} |
|
|
|
/* power on ADC*/ |
|
ret = am_hal_adc_power_control(data->adcHandle, AM_HAL_SYSCTRL_WAKE, false); |
|
|
|
ret = pinctrl_apply_state(cfg->pin_cfg, PINCTRL_STATE_DEFAULT); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
/* Enable the ADC interrupts in the ADC. */ |
|
cfg->irq_config_func(); |
|
adc_context_unlock_unconditionally(&data->ctx); |
|
|
|
return 0; |
|
} |
|
|
|
#ifdef CONFIG_ADC_ASYNC |
|
static int adc_ambiq_read_async(const struct device *dev, const struct adc_sequence *sequence, |
|
struct k_poll_signal *async) |
|
{ |
|
struct adc_ambiq_data *data = dev->data; |
|
int error = 0; |
|
|
|
adc_context_lock(&data->ctx, true, async); |
|
|
|
error = pm_device_runtime_get(dev); |
|
if (error < 0) { |
|
adc_context_release(&data->ctx, error); |
|
return error; |
|
} |
|
|
|
error = adc_ambiq_start_read(dev, sequence); |
|
|
|
adc_context_release(&data->ctx, error); |
|
|
|
return error; |
|
} |
|
#endif |
|
|
|
#ifdef CONFIG_PM_DEVICE |
|
static int adc_ambiq_pm_action(const struct device *dev, enum pm_device_action action) |
|
{ |
|
struct adc_ambiq_data *data = dev->data; |
|
uint32_t ret = 0; |
|
am_hal_sysctrl_power_state_e status; |
|
|
|
switch (action) { |
|
case PM_DEVICE_ACTION_RESUME: |
|
status = AM_HAL_SYSCTRL_WAKE; |
|
break; |
|
case PM_DEVICE_ACTION_SUSPEND: |
|
status = AM_HAL_SYSCTRL_DEEPSLEEP; |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
ret = am_hal_adc_power_control(data->adcHandle, status, true); |
|
|
|
if (ret != AM_HAL_STATUS_SUCCESS) { |
|
return -EPERM; |
|
} else { |
|
return 0; |
|
} |
|
} |
|
#endif /* CONFIG_PM_DEVICE */ |
|
|
|
#ifdef CONFIG_ADC_ASYNC |
|
#define ADC_AMBIQ_DRIVER_API(n) \ |
|
static DEVICE_API(adc, adc_ambiq_driver_api_##n) = { \ |
|
.channel_setup = adc_ambiq_channel_setup, \ |
|
.read = adc_ambiq_read, \ |
|
.read_async = adc_ambiq_read_async, \ |
|
.ref_internal = DT_INST_PROP(n, internal_vref_mv), \ |
|
}; |
|
#else |
|
#define ADC_AMBIQ_DRIVER_API(n) \ |
|
static DEVICE_API(adc, adc_ambiq_driver_api_##n) = { \ |
|
.channel_setup = adc_ambiq_channel_setup, \ |
|
.read = adc_ambiq_read, \ |
|
.ref_internal = DT_INST_PROP(n, internal_vref_mv), \ |
|
}; |
|
#endif |
|
|
|
#define ADC_DMA_CFG(n, buf, size) \ |
|
{ \ |
|
.bDynamicPriority = true, \ |
|
.ePriority = AM_HAL_ADC_PRIOR_SERVICE_IMMED, \ |
|
.bDMAEnable = true, \ |
|
.ui32SampleCount = size, \ |
|
.ui32TargetAddress = (uint32_t)buf, \ |
|
} |
|
|
|
#if CONFIG_ADC_AMBIQ_HANDLE_CACHE |
|
#define __ADC_NOCACHE(n) \ |
|
__attribute__((section(DT_INST_PROP_OR(n, dma_buffer_location, ".nocache")))) |
|
#else |
|
#define __ADC_NOCACHE(n) |
|
#endif /* CONFIG_ADC_AMBIQ_HANDLE_CACHE */ |
|
|
|
#define ADC_AMBIQ_INIT(n) \ |
|
PINCTRL_DT_INST_DEFINE(n); \ |
|
ADC_AMBIQ_DRIVER_API(n); \ |
|
static void adc_irq_config_func_##n(void) \ |
|
{ \ |
|
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), adc_ambiq_isr, \ |
|
DEVICE_DT_INST_GET(n), 0); \ |
|
irq_enable(DT_INST_IRQN(n)); \ |
|
}; \ |
|
IF_ENABLED(DT_INST_PROP(n, dma_mode), \ |
|
(static uint32_t adc_ambiq_dma_buf##n[DT_INST_PROP_OR(n, dma_buffer_size, 128)] \ |
|
__ADC_NOCACHE(n);) \ |
|
) \ |
|
IF_ENABLED(DT_INST_PROP(n, dma_mode), \ |
|
(static am_hal_adc_sample_t adc_sample_buf##n[DT_INST_PROP_OR(n, dma_buffer_size, 128)];)) \ |
|
static struct adc_ambiq_data adc_ambiq_data_##n = { \ |
|
ADC_CONTEXT_INIT_TIMER(adc_ambiq_data_##n, ctx), \ |
|
ADC_CONTEXT_INIT_LOCK(adc_ambiq_data_##n, ctx), \ |
|
ADC_CONTEXT_INIT_SYNC(adc_ambiq_data_##n, ctx), \ |
|
.dma_cfg = ADC_DMA_CFG( \ |
|
n, COND_CODE_1(DT_INST_PROP(n, dma_mode), (adc_ambiq_dma_buf##n), \ |
|
(NULL)), \ |
|
COND_CODE_1(DT_INST_PROP(n, dma_mode), \ |
|
(DT_INST_PROP_OR(n, dma_buffer_size, 128)), (0))), \ |
|
.dma_mode = DT_INST_PROP(n, dma_mode), \ |
|
.dma_done_sem = Z_SEM_INITIALIZER( \ |
|
adc_ambiq_data_##n.dma_done_sem, 0, 1), \ |
|
.sample_buf = COND_CODE_1( \ |
|
DT_INST_PROP(n, dma_mode), \ |
|
(adc_sample_buf##n), (NULL)), \ |
|
}; \ |
|
const static struct adc_ambiq_config adc_ambiq_config_##n = { \ |
|
.base = DT_INST_REG_ADDR(n), \ |
|
.size = DT_INST_REG_SIZE(n), \ |
|
.num_channels = DT_INST_PROP(n, channel_count), \ |
|
.irq_config_func = adc_irq_config_func_##n, \ |
|
.pin_cfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ |
|
}; \ |
|
PM_DEVICE_DT_INST_DEFINE(n, adc_ambiq_pm_action); \ |
|
DEVICE_DT_INST_DEFINE(n, &adc_ambiq_init, PM_DEVICE_DT_INST_GET(n), &adc_ambiq_data_##n, \ |
|
&adc_ambiq_config_##n, POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \ |
|
&adc_ambiq_driver_api_##n); |
|
|
|
DT_INST_FOREACH_STATUS_OKAY(ADC_AMBIQ_INIT)
|
|
|