Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

175 lines
6.5 KiB

/*
* Copyright (c) 2024 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief System/hardware module for Nordic Semiconductor nRF54L family processor
*
* This module provides routines to initialize and support board-level hardware
* for the Nordic Semiconductor nRF54L family processor.
*/
/* Include autoconf for cases when this file is used in special build (e.g. TFM) */
#include <zephyr/autoconf.h>
#include <zephyr/devicetree.h>
#include <zephyr/kernel.h>
#include <zephyr/init.h>
#include <zephyr/logging/log.h>
#include <zephyr/cache.h>
#include <soc/nrfx_coredep.h>
#include <system_nrf54l.h>
#include <soc.h>
LOG_MODULE_REGISTER(soc, CONFIG_SOC_LOG_LEVEL);
#if (defined(NRF_APPLICATION) && !defined(CONFIG_TRUSTED_EXECUTION_NONSECURE)) || \
!defined(__ZEPHYR__)
#include <nrf_erratas.h>
#include <hal/nrf_glitchdet.h>
#include <hal/nrf_oscillators.h>
#include <hal/nrf_power.h>
#include <hal/nrf_regulators.h>
#include <zephyr/dt-bindings/regulator/nrf5x.h>
#define LFXO_NODE DT_NODELABEL(lfxo)
#define HFXO_NODE DT_NODELABEL(hfxo)
static inline void power_and_clock_configuration(void)
{
/* NRF_REGULATORS and NRF_OSCILLATORS are configured to be secure
* as NRF_REGULATORS.POFCON is needed by the secure image to
* prevent glitches when the power supply is attacked.
*
* NRF_OSCILLATORS is also configured as secure because of a HW limitation
* that requires them to be configured with the same security property.
*/
#if DT_ENUM_HAS_VALUE(LFXO_NODE, load_capacitors, internal)
uint32_t xosc32ktrim = NRF_FICR->XOSC32KTRIM;
/* The SLOPE field is in the two's complement form, hence this special
* handling. Ideally, it would result in just one SBFX instruction for
* extracting the slope value, at least gcc is capable of producing such
* output, but since the compiler apparently tries first to optimize
* additions and subtractions, it generates slightly less than optimal
* code.
*/
uint32_t slope_field_k =
(xosc32ktrim & FICR_XOSC32KTRIM_SLOPE_Msk) >> FICR_XOSC32KTRIM_SLOPE_Pos;
uint32_t slope_mask_k = FICR_XOSC32KTRIM_SLOPE_Msk >> FICR_XOSC32KTRIM_SLOPE_Pos;
uint32_t slope_sign_k = (slope_mask_k - (slope_mask_k >> 1));
int32_t slope_k = (int32_t)(slope_field_k ^ slope_sign_k) - (int32_t)slope_sign_k;
uint32_t offset_k =
(xosc32ktrim & FICR_XOSC32KTRIM_OFFSET_Msk) >> FICR_XOSC32KTRIM_OFFSET_Pos;
/* As specified in the nRF54L15 PS:
* CAPVALUE = round( (2*CAPACITANCE - 12) * (FICR->XOSC32KTRIM.SLOPE + 0.765625 * 2^9)/(2^9)
* + FICR->XOSC32KTRIM.OFFSET/(2^6) );
* where CAPACITANCE is the desired capacitor value in pF, holding any
* value between 4 pF and 18 pF in 0.5 pF steps.
*/
uint32_t lfxo_intcap_femto_f = DT_PROP(LFXO_NODE, load_capacitance_femtofarad);
/* Calculation of INTCAP code before rounding. Min that calculations here are done on
* values multiplied by 2^9, e.g. 0.765625 * 2^9 = 392.
* offset_k should be divided by 2^6, but to add it to value shifted by 2^9 we have to
* multiply it be 2^3. Capacitance value passed to the formula is in femto Farads to
* avoid floating point data type. Hence, offset_k needs to be multiplied by 1000.
*/
uint32_t lfxo_intcap_mid_val = (2UL * lfxo_intcap_femto_f - 12000UL)
* (uint32_t)(slope_k + 392UL) + (offset_k << 3UL) * 1000UL;
/* Get integer part of the INTCAP by dividing by 2^9 and convert to pico Farads. */
uint32_t lfxo_intcap = lfxo_intcap_mid_val / 512000UL;
/* Round based on fractional part. */
if (lfxo_intcap_mid_val % 512000UL >= 256000UL) {
lfxo_intcap++;
}
nrf_oscillators_lfxo_cap_set(NRF_OSCILLATORS, lfxo_intcap);
#elif DT_ENUM_HAS_VALUE(LFXO_NODE, load_capacitors, external)
nrf_oscillators_lfxo_cap_set(NRF_OSCILLATORS, (nrf_oscillators_lfxo_cap_t)0);
#endif
#if DT_ENUM_HAS_VALUE(HFXO_NODE, load_capacitors, internal)
uint32_t xosc32mtrim = NRF_FICR->XOSC32MTRIM;
/* The SLOPE field is in the two's complement form, hence this special
* handling. Ideally, it would result in just one SBFX instruction for
* extracting the slope value, at least gcc is capable of producing such
* output, but since the compiler apparently tries first to optimize
* additions and subtractions, it generates slightly less than optimal
* code.
*/
uint32_t slope_field_m =
(xosc32mtrim & FICR_XOSC32MTRIM_SLOPE_Msk) >> FICR_XOSC32MTRIM_SLOPE_Pos;
uint32_t slope_mask_m = FICR_XOSC32MTRIM_SLOPE_Msk >> FICR_XOSC32MTRIM_SLOPE_Pos;
uint32_t slope_sign_m = (slope_mask_m - (slope_mask_m >> 1));
int32_t slope_m = (int32_t)(slope_field_m ^ slope_sign_m) - (int32_t)slope_sign_m;
uint32_t offset_m =
(xosc32mtrim & FICR_XOSC32MTRIM_OFFSET_Msk) >> FICR_XOSC32MTRIM_OFFSET_Pos;
/* As specified in the nRF54L15 PS:
* CAPVALUE = (((CAPACITANCE-5.5)*(FICR->XOSC32MTRIM.SLOPE+791)) +
* FICR->XOSC32MTRIM.OFFSET<<2)>>8;
* where CAPACITANCE is the desired total load capacitance value in pF,
* holding any value between 4.0 pF and 17.0 pF in 0.25 pF steps.
*/
uint32_t hfxo_intcap_femto_f = DT_PROP(HFXO_NODE, load_capacitance_femtofarad);
/* Capacitance value passed to the formula is in femto Farads to
* avoid floating point data type. Hence, offset_m needs to be multiplied by 1000.
*/
uint32_t hfxo_intcap_mid_val = (((hfxo_intcap_femto_f - 5500UL)
* (uint32_t)(slope_m + 791UL)) + (offset_m << 2UL) * 1000UL) >> 8UL;
/* Convert the calculated value to piko Farads. */
uint32_t hfxo_intcap = hfxo_intcap_mid_val / 1000;
/* Round based on fractional part. */
if (hfxo_intcap_mid_val % 1000 >= 500) {
hfxo_intcap++;
}
nrf_oscillators_hfxo_cap_set(NRF_OSCILLATORS, true, hfxo_intcap);
#elif DT_ENUM_HAS_VALUE(HFXO_NODE, load_capacitors, external)
nrf_oscillators_hfxo_cap_set(NRF_OSCILLATORS, false, 0);
#endif
if (IS_ENABLED(CONFIG_SOC_NRF_FORCE_CONSTLAT)) {
nrf_power_task_trigger(NRF_POWER, NRF_POWER_TASK_CONSTLAT);
}
#if (DT_PROP(DT_NODELABEL(vregmain), regulator_initial_mode) == NRF5X_REG_MODE_DCDC)
nrf_regulators_vreg_enable_set(NRF_REGULATORS, NRF_REGULATORS_VREG_MAIN, true);
#endif
}
#endif /* NRF_APPLICATION && !CONFIG_TRUSTED_EXECUTION_NONSECURE */
int nordicsemi_nrf54l_init(void)
{
/* Update the SystemCoreClock global variable with current core clock
* retrieved from the DT.
*/
SystemCoreClock = NRF_PERIPH_GET_FREQUENCY(DT_NODELABEL(cpu));
sys_cache_instr_enable();
#if (defined(NRF_APPLICATION) && !defined(CONFIG_TRUSTED_EXECUTION_NONSECURE)) || \
!defined(__ZEPHYR__)
power_and_clock_configuration();
#endif
return 0;
}
void arch_busy_wait(uint32_t time_us)
{
nrfx_coredep_delay_us(time_us);
}
SYS_INIT(nordicsemi_nrf54l_init, PRE_KERNEL_1, 0);