You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
350 lines
11 KiB
350 lines
11 KiB
/* |
|
* Copyright (c) 2016-2017 Wind River Systems, Inc. |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#ifndef ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ |
|
#define ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ |
|
|
|
#include <zephyr/kernel_structs.h> |
|
#include <kernel_internal.h> |
|
#include <timeout_q.h> |
|
#include <kthread.h> |
|
#include <zephyr/tracing/tracing.h> |
|
#include <stdbool.h> |
|
#include <priority_q.h> |
|
|
|
BUILD_ASSERT(K_LOWEST_APPLICATION_THREAD_PRIO |
|
>= K_HIGHEST_APPLICATION_THREAD_PRIO); |
|
|
|
#ifdef CONFIG_MULTITHREADING |
|
#define Z_VALID_PRIO(prio, entry_point) \ |
|
(((prio) == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) || \ |
|
((K_LOWEST_APPLICATION_THREAD_PRIO \ |
|
>= K_HIGHEST_APPLICATION_THREAD_PRIO) \ |
|
&& (prio) >= K_HIGHEST_APPLICATION_THREAD_PRIO \ |
|
&& (prio) <= K_LOWEST_APPLICATION_THREAD_PRIO)) |
|
|
|
#define Z_ASSERT_VALID_PRIO(prio, entry_point) do { \ |
|
__ASSERT(Z_VALID_PRIO((prio), (entry_point)), \ |
|
"invalid priority (%d); allowed range: %d to %d", \ |
|
(prio), \ |
|
K_LOWEST_APPLICATION_THREAD_PRIO, \ |
|
K_HIGHEST_APPLICATION_THREAD_PRIO); \ |
|
} while (false) |
|
#else |
|
#define Z_VALID_PRIO(prio, entry_point) ((prio) == -1) |
|
#define Z_ASSERT_VALID_PRIO(prio, entry_point) __ASSERT((prio) == -1, "") |
|
#endif /* CONFIG_MULTITHREADING */ |
|
|
|
#if (CONFIG_MP_MAX_NUM_CPUS == 1) |
|
#define LOCK_SCHED_SPINLOCK |
|
#else |
|
#define LOCK_SCHED_SPINLOCK K_SPINLOCK(&_sched_spinlock) |
|
#endif |
|
|
|
extern struct k_spinlock _sched_spinlock; |
|
|
|
extern struct k_thread _thread_dummy; |
|
|
|
void z_sched_init(void); |
|
void z_move_thread_to_end_of_prio_q(struct k_thread *thread); |
|
void z_unpend_thread_no_timeout(struct k_thread *thread); |
|
struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q); |
|
int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key, |
|
_wait_q_t *wait_q, k_timeout_t timeout); |
|
void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q, |
|
k_timeout_t timeout); |
|
void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key); |
|
void z_reschedule_irqlock(uint32_t key); |
|
void z_unpend_thread(struct k_thread *thread); |
|
int z_unpend_all(_wait_q_t *wait_q); |
|
bool z_thread_prio_set(struct k_thread *thread, int prio); |
|
void *z_get_next_switch_handle(void *interrupted); |
|
|
|
void z_time_slice(void); |
|
void z_reset_time_slice(struct k_thread *curr); |
|
void z_sched_ipi(void); |
|
void z_sched_start(struct k_thread *thread); |
|
void z_ready_thread(struct k_thread *thread); |
|
void z_requeue_current(struct k_thread *curr); |
|
struct k_thread *z_swap_next_thread(void); |
|
void z_thread_abort(struct k_thread *thread); |
|
void move_thread_to_end_of_prio_q(struct k_thread *thread); |
|
bool thread_is_sliceable(struct k_thread *thread); |
|
|
|
static inline void z_reschedule_unlocked(void) |
|
{ |
|
(void) z_reschedule_irqlock(arch_irq_lock()); |
|
} |
|
|
|
static inline bool z_is_under_prio_ceiling(int prio) |
|
{ |
|
return prio >= CONFIG_PRIORITY_CEILING; |
|
} |
|
|
|
static inline int z_get_new_prio_with_ceiling(int prio) |
|
{ |
|
return z_is_under_prio_ceiling(prio) ? prio : CONFIG_PRIORITY_CEILING; |
|
} |
|
|
|
static inline bool z_is_prio1_higher_than_or_equal_to_prio2(int prio1, int prio2) |
|
{ |
|
return prio1 <= prio2; |
|
} |
|
|
|
static inline bool z_is_prio_higher_or_equal(int prio1, int prio2) |
|
{ |
|
return z_is_prio1_higher_than_or_equal_to_prio2(prio1, prio2); |
|
} |
|
|
|
static inline bool z_is_prio1_lower_than_or_equal_to_prio2(int prio1, int prio2) |
|
{ |
|
return prio1 >= prio2; |
|
} |
|
|
|
static inline bool z_is_prio1_higher_than_prio2(int prio1, int prio2) |
|
{ |
|
return prio1 < prio2; |
|
} |
|
|
|
static inline bool z_is_prio_higher(int prio, int test_prio) |
|
{ |
|
return z_is_prio1_higher_than_prio2(prio, test_prio); |
|
} |
|
|
|
static inline bool z_is_prio_lower_or_equal(int prio1, int prio2) |
|
{ |
|
return z_is_prio1_lower_than_or_equal_to_prio2(prio1, prio2); |
|
} |
|
|
|
static inline bool _is_valid_prio(int prio, k_thread_entry_t entry_point) |
|
{ |
|
if ((prio == K_IDLE_PRIO) && z_is_idle_thread_entry(entry_point)) { |
|
return true; |
|
} |
|
|
|
if (!z_is_prio_higher_or_equal(prio, |
|
K_LOWEST_APPLICATION_THREAD_PRIO)) { |
|
return false; |
|
} |
|
|
|
if (!z_is_prio_lower_or_equal(prio, |
|
K_HIGHEST_APPLICATION_THREAD_PRIO)) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static inline void z_sched_lock(void) |
|
{ |
|
__ASSERT(!arch_is_in_isr(), ""); |
|
__ASSERT(_current->base.sched_locked != 1U, ""); |
|
|
|
--_current->base.sched_locked; |
|
|
|
compiler_barrier(); |
|
} |
|
|
|
static ALWAYS_INLINE _wait_q_t *pended_on_thread(struct k_thread *thread) |
|
{ |
|
__ASSERT_NO_MSG(thread->base.pended_on); |
|
|
|
return thread->base.pended_on; |
|
} |
|
|
|
|
|
static inline void unpend_thread_no_timeout(struct k_thread *thread) |
|
{ |
|
_priq_wait_remove(&pended_on_thread(thread)->waitq, thread); |
|
z_mark_thread_as_not_pending(thread); |
|
thread->base.pended_on = NULL; |
|
} |
|
|
|
/* |
|
* In a multiprocessor system, z_unpend_first_thread() must lock the scheduler |
|
* spinlock _sched_spinlock. However, in a uniprocessor system, that is not |
|
* necessary as the caller has already taken precautions (in the form of |
|
* locking interrupts). |
|
*/ |
|
static ALWAYS_INLINE struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q) |
|
{ |
|
struct k_thread *thread = NULL; |
|
|
|
__ASSERT_EVAL(, int key = arch_irq_lock(); arch_irq_unlock(key), |
|
!arch_irq_unlocked(key), ""); |
|
|
|
LOCK_SCHED_SPINLOCK { |
|
thread = _priq_wait_best(&wait_q->waitq); |
|
if (unlikely(thread != NULL)) { |
|
unpend_thread_no_timeout(thread); |
|
z_abort_thread_timeout(thread); |
|
} |
|
} |
|
|
|
return thread; |
|
} |
|
|
|
/* |
|
* APIs for working with the Zephyr kernel scheduler. Intended for use in |
|
* management of IPC objects, either in the core kernel or other IPC |
|
* implemented by OS compatibility layers, providing basic wait/wake operations |
|
* with spinlocks used for synchronization. |
|
* |
|
* These APIs are public and will be treated as contract, even if the |
|
* underlying scheduler implementation changes. |
|
*/ |
|
|
|
/** |
|
* Wake up a thread pending on the provided wait queue |
|
* |
|
* Given a wait_q, wake up the highest priority thread on the queue. If the |
|
* queue was empty just return false. |
|
* |
|
* Otherwise, do the following, in order, holding _sched_spinlock the entire |
|
* time so that the thread state is guaranteed not to change: |
|
* - Set the thread's swap return values to swap_retval and swap_data |
|
* - un-pend and ready the thread, but do not invoke the scheduler. |
|
* |
|
* Repeated calls to this function until it returns false is a suitable |
|
* way to wake all threads on the queue. |
|
* |
|
* It is up to the caller to implement locking such that the return value of |
|
* this function (whether a thread was woken up or not) does not immediately |
|
* become stale. Calls to wait and wake on the same wait_q object must have |
|
* synchronization. Calling this without holding any spinlock is a sign that |
|
* this API is not being used properly. |
|
* |
|
* @param wait_q Wait queue to wake up the highest prio thread |
|
* @param swap_retval Swap return value for woken thread |
|
* @param swap_data Data return value to supplement swap_retval. May be NULL. |
|
* @retval true If a thread was woken up |
|
* @retval false If the wait_q was empty |
|
*/ |
|
bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data); |
|
|
|
/** |
|
* Wakes the specified thread. |
|
* |
|
* Given a specific thread, wake it up. This routine assumes that the given |
|
* thread is not on the timeout queue. |
|
* |
|
* @param thread Given thread to wake up. |
|
* @param is_timeout True if called from the timer ISR; false otherwise. |
|
* |
|
*/ |
|
void z_sched_wake_thread(struct k_thread *thread, bool is_timeout); |
|
|
|
/** |
|
* Wake up all threads pending on the provided wait queue |
|
* |
|
* Convenience function to invoke z_sched_wake() on all threads in the queue |
|
* until there are no more to wake up. |
|
* |
|
* @param wait_q Wait queue to wake up the highest prio thread |
|
* @param swap_retval Swap return value for woken thread |
|
* @param swap_data Data return value to supplement swap_retval. May be NULL. |
|
* @retval true If any threads were woken up |
|
* @retval false If the wait_q was empty |
|
*/ |
|
static inline bool z_sched_wake_all(_wait_q_t *wait_q, int swap_retval, |
|
void *swap_data) |
|
{ |
|
bool woken = false; |
|
|
|
while (z_sched_wake(wait_q, swap_retval, swap_data)) { |
|
woken = true; |
|
} |
|
|
|
/* True if we woke at least one thread up */ |
|
return woken; |
|
} |
|
|
|
/** |
|
* Atomically put the current thread to sleep on a wait queue, with timeout |
|
* |
|
* The thread will be added to the provided waitqueue. The lock, which should |
|
* be held by the caller with the provided key, will be released once this is |
|
* completely done and we have swapped out. |
|
* |
|
* The return value and data pointer is set by whoever woke us up via |
|
* z_sched_wake. |
|
* |
|
* @param lock Address of spinlock to release when we swap out |
|
* @param key Key to the provided spinlock when it was locked |
|
* @param wait_q Wait queue to go to sleep on |
|
* @param timeout Waiting period to be woken up, or K_FOREVER to wait |
|
* indefinitely. |
|
* @param data Storage location for data pointer set when thread was woken up. |
|
* May be NULL if not used. |
|
* @retval Return value set by whatever woke us up, or -EAGAIN if the timeout |
|
* expired without being woken up. |
|
*/ |
|
int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key, |
|
_wait_q_t *wait_q, k_timeout_t timeout, void **data); |
|
|
|
/** |
|
* @brief Walks the wait queue invoking the callback on each waiting thread |
|
* |
|
* This function walks the wait queue invoking the callback function on each |
|
* waiting thread while holding _sched_spinlock. This can be useful for routines |
|
* that need to operate on multiple waiting threads. |
|
* |
|
* CAUTION! As a wait queue is of indeterminate length, the scheduler will be |
|
* locked for an indeterminate amount of time. This may impact system |
|
* performance. As such, care must be taken when using both this function and |
|
* the specified callback. |
|
* |
|
* @param wait_q Identifies the wait queue to walk |
|
* @param func Callback to invoke on each waiting thread |
|
* @param data Custom data passed to the callback |
|
* |
|
* @retval non-zero if walk is terminated by the callback; otherwise 0 |
|
*/ |
|
int z_sched_waitq_walk(_wait_q_t *wait_q, |
|
int (*func)(struct k_thread *, void *), void *data); |
|
|
|
/** @brief Halt thread cycle usage accounting. |
|
* |
|
* Halts the accumulation of thread cycle usage and adds the current |
|
* total to the thread's counter. Called on context switch. |
|
* |
|
* Note that this function is idempotent. The core kernel code calls |
|
* it at the end of interrupt handlers (because that is where we have |
|
* a portable hook) where we are context switching, which will include |
|
* any cycles spent in the ISR in the per-thread accounting. But |
|
* architecture code can also call it earlier out of interrupt entry |
|
* to improve measurement fidelity. |
|
* |
|
* This function assumes local interrupts are masked (so that the |
|
* current CPU pointer and current thread are safe to modify), but |
|
* requires no other synchronization. Architecture layers don't need |
|
* to do anything more. |
|
*/ |
|
void z_sched_usage_stop(void); |
|
|
|
void z_sched_usage_start(struct k_thread *thread); |
|
|
|
/** |
|
* @brief Retrieves CPU cycle usage data for specified core |
|
*/ |
|
void z_sched_cpu_usage(uint8_t core_id, struct k_thread_runtime_stats *stats); |
|
|
|
/** |
|
* @brief Retrieves thread cycle usage data for specified thread |
|
*/ |
|
void z_sched_thread_usage(struct k_thread *thread, |
|
struct k_thread_runtime_stats *stats); |
|
|
|
static inline void z_sched_usage_switch(struct k_thread *thread) |
|
{ |
|
ARG_UNUSED(thread); |
|
#ifdef CONFIG_SCHED_THREAD_USAGE |
|
z_sched_usage_stop(); |
|
z_sched_usage_start(thread); |
|
#endif /* CONFIG_SCHED_THREAD_USAGE */ |
|
} |
|
|
|
#endif /* ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ */
|
|
|