You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
419 lines
11 KiB
419 lines
11 KiB
/* |
|
* Copyright (c) 2023 Nordic Semiconductor ASA |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
/* |
|
* USB device controller (UDC) driver skeleton |
|
* |
|
* This is a skeleton for a device controller driver using the UDC API. |
|
* Please use it as a starting point for a driver implementation for your |
|
* USB device controller. Maintaining a common style, terminology and |
|
* abbreviations will allow us to speed up reviews and reduce maintenance. |
|
* Copy UDC driver skeleton, remove all unrelated comments and replace the |
|
* copyright notice with your own. |
|
* |
|
* Typically, a driver implementation contains only a single source file, |
|
* but the large list of e.g. register definitions should be in a separate |
|
* .h file. |
|
* |
|
* If you want to define a helper macro, check if there is something similar |
|
* in include/zephyr/sys/util.h or include/zephyr/usb/usb_ch9.h that you can use. |
|
* Please keep all identifiers and logging messages concise and clear. |
|
*/ |
|
|
|
#include "udc_common.h" |
|
|
|
#include <string.h> |
|
#include <stdio.h> |
|
|
|
#include <zephyr/kernel.h> |
|
#include <zephyr/drivers/usb/udc.h> |
|
|
|
#include <zephyr/logging/log.h> |
|
LOG_MODULE_REGISTER(udc_skeleton, CONFIG_UDC_DRIVER_LOG_LEVEL); |
|
|
|
/* |
|
* Structure for holding controller configuration items that can remain in |
|
* non-volatile memory. This is usually accessed as |
|
* const struct udc_skeleton_config *config = dev->config; |
|
*/ |
|
struct udc_skeleton_config { |
|
size_t num_of_eps; |
|
struct udc_ep_config *ep_cfg_in; |
|
struct udc_ep_config *ep_cfg_out; |
|
void (*make_thread)(const struct device *dev); |
|
int speed_idx; |
|
}; |
|
|
|
/* |
|
* Structure to hold driver private data. |
|
* Note that this is not accessible via dev->data, but as |
|
* struct udc_skeleton_data *priv = udc_get_private(dev); |
|
*/ |
|
struct udc_skeleton_data { |
|
struct k_thread thread_data; |
|
}; |
|
|
|
/* |
|
* You can use one thread per driver instance model or UDC driver workqueue, |
|
* whichever model suits your needs best. If you decide to use the UDC workqueue, |
|
* enable Kconfig option UDC_WORKQUEUE and remove the handler below and |
|
* caller from the UDC_SKELETON_DEVICE_DEFINE macro. |
|
*/ |
|
static ALWAYS_INLINE void skeleton_thread_handler(void *const arg) |
|
{ |
|
const struct device *dev = (const struct device *)arg; |
|
|
|
LOG_DBG("Driver %p thread started", dev); |
|
while (true) { |
|
k_msleep(1000); |
|
} |
|
} |
|
|
|
/* |
|
* This is called in the context of udc_ep_enqueue() and must |
|
* not block. The driver can immediately claim the buffer if the queue is empty, |
|
* but usually it is offloaded to a thread or workqueue to handle transfers |
|
* in a single location. Please refer to existing driver implementations |
|
* for examples. |
|
*/ |
|
static int udc_skeleton_ep_enqueue(const struct device *dev, |
|
struct udc_ep_config *const cfg, |
|
struct net_buf *buf) |
|
{ |
|
LOG_DBG("%p enqueue %p", dev, buf); |
|
udc_buf_put(cfg, buf); |
|
|
|
if (cfg->stat.halted) { |
|
/* |
|
* It is fine to enqueue a transfer for a halted endpoint, |
|
* you need to make sure that transfers are retriggered when |
|
* the halt is cleared. |
|
* |
|
* Always use the abbreviation 'ep' for the endpoint address |
|
* and 'ep_idx' or 'ep_num' for the endpoint number identifiers. |
|
* Although struct udc_ep_config uses address to be unambiguous |
|
* in its context. |
|
*/ |
|
LOG_DBG("ep 0x%02x halted", cfg->addr); |
|
return 0; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* This is called in the context of udc_ep_dequeue() |
|
* and must remove all requests from an endpoint queue |
|
* Successful removal should be reported to the higher level with |
|
* ECONNABORTED as the request result. |
|
* It is up to the request owner to clean up or reuse the buffer. |
|
*/ |
|
static int udc_skeleton_ep_dequeue(const struct device *dev, |
|
struct udc_ep_config *const cfg) |
|
{ |
|
unsigned int lock_key; |
|
struct net_buf *buf; |
|
|
|
lock_key = irq_lock(); |
|
|
|
buf = udc_buf_get_all(cfg); |
|
if (buf) { |
|
udc_submit_ep_event(dev, buf, -ECONNABORTED); |
|
} |
|
|
|
irq_unlock(lock_key); |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* Configure and make an endpoint ready for use. |
|
* This is called in the context of udc_ep_enable() or udc_ep_enable_internal(), |
|
* the latter of which may be used by the driver to enable control endpoints. |
|
*/ |
|
static int udc_skeleton_ep_enable(const struct device *dev, |
|
struct udc_ep_config *const cfg) |
|
{ |
|
LOG_DBG("Enable ep 0x%02x", cfg->addr); |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* Opposite function to udc_skeleton_ep_enable(). udc_ep_disable_internal() |
|
* may be used by the driver to disable control endpoints. |
|
*/ |
|
static int udc_skeleton_ep_disable(const struct device *dev, |
|
struct udc_ep_config *const cfg) |
|
{ |
|
LOG_DBG("Disable ep 0x%02x", cfg->addr); |
|
|
|
return 0; |
|
} |
|
|
|
/* Halt endpoint. Halted endpoint should respond with a STALL handshake. */ |
|
static int udc_skeleton_ep_set_halt(const struct device *dev, |
|
struct udc_ep_config *const cfg) |
|
{ |
|
LOG_DBG("Set halt ep 0x%02x", cfg->addr); |
|
|
|
cfg->stat.halted = true; |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* Opposite to halt endpoint. If there are requests in the endpoint queue, |
|
* the next transfer should be prepared. |
|
*/ |
|
static int udc_skeleton_ep_clear_halt(const struct device *dev, |
|
struct udc_ep_config *const cfg) |
|
{ |
|
LOG_DBG("Clear halt ep 0x%02x", cfg->addr); |
|
cfg->stat.halted = false; |
|
|
|
return 0; |
|
} |
|
|
|
static int udc_skeleton_set_address(const struct device *dev, const uint8_t addr) |
|
{ |
|
LOG_DBG("Set new address %u for %p", addr, dev); |
|
|
|
return 0; |
|
} |
|
|
|
static int udc_skeleton_host_wakeup(const struct device *dev) |
|
{ |
|
LOG_DBG("Remote wakeup from %p", dev); |
|
|
|
return 0; |
|
} |
|
|
|
/* Return actual USB device speed */ |
|
static enum udc_bus_speed udc_skeleton_device_speed(const struct device *dev) |
|
{ |
|
struct udc_data *data = dev->data; |
|
|
|
return data->caps.hs ? UDC_BUS_SPEED_HS : UDC_BUS_SPEED_FS; |
|
} |
|
|
|
static int udc_skeleton_enable(const struct device *dev) |
|
{ |
|
LOG_DBG("Enable device %p", dev); |
|
|
|
return 0; |
|
} |
|
|
|
static int udc_skeleton_disable(const struct device *dev) |
|
{ |
|
LOG_DBG("Disable device %p", dev); |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* Prepare and configure most of the parts, if the controller has a way |
|
* of detecting VBUS activity it should be enabled here. |
|
* Only udc_skeleton_enable() makes device visible to the host. |
|
*/ |
|
static int udc_skeleton_init(const struct device *dev) |
|
{ |
|
if (udc_ep_enable_internal(dev, USB_CONTROL_EP_OUT, |
|
USB_EP_TYPE_CONTROL, 64, 0)) { |
|
LOG_ERR("Failed to enable control endpoint"); |
|
return -EIO; |
|
} |
|
|
|
if (udc_ep_enable_internal(dev, USB_CONTROL_EP_IN, |
|
USB_EP_TYPE_CONTROL, 64, 0)) { |
|
LOG_ERR("Failed to enable control endpoint"); |
|
return -EIO; |
|
} |
|
|
|
if (IS_ENABLED(CONFIG_UDC_ENABLE_SOF)) { |
|
LOG_INF("Enable SOF interrupt"); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* Shut down the controller completely */ |
|
static int udc_skeleton_shutdown(const struct device *dev) |
|
{ |
|
if (udc_ep_disable_internal(dev, USB_CONTROL_EP_OUT)) { |
|
LOG_ERR("Failed to disable control endpoint"); |
|
return -EIO; |
|
} |
|
|
|
if (udc_ep_disable_internal(dev, USB_CONTROL_EP_IN)) { |
|
LOG_ERR("Failed to disable control endpoint"); |
|
return -EIO; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* This is called once to initialize the controller and endpoints |
|
* capabilities, and register endpoint structures. |
|
*/ |
|
static int udc_skeleton_driver_preinit(const struct device *dev) |
|
{ |
|
const struct udc_skeleton_config *config = dev->config; |
|
struct udc_data *data = dev->data; |
|
uint16_t mps = 1023; |
|
int err; |
|
|
|
/* |
|
* You do not need to initialize it if your driver does not use |
|
* udc_lock_internal() / udc_unlock_internal(), but implements its |
|
* own mechanism. |
|
*/ |
|
k_mutex_init(&data->mutex); |
|
|
|
data->caps.rwup = true; |
|
data->caps.mps0 = UDC_MPS0_64; |
|
if (config->speed_idx == 2) { |
|
data->caps.hs = true; |
|
mps = 1024; |
|
} |
|
|
|
for (int i = 0; i < config->num_of_eps; i++) { |
|
config->ep_cfg_out[i].caps.out = 1; |
|
if (i == 0) { |
|
config->ep_cfg_out[i].caps.control = 1; |
|
config->ep_cfg_out[i].caps.mps = 64; |
|
} else { |
|
config->ep_cfg_out[i].caps.bulk = 1; |
|
config->ep_cfg_out[i].caps.interrupt = 1; |
|
config->ep_cfg_out[i].caps.iso = 1; |
|
config->ep_cfg_out[i].caps.mps = mps; |
|
} |
|
|
|
config->ep_cfg_out[i].addr = USB_EP_DIR_OUT | i; |
|
err = udc_register_ep(dev, &config->ep_cfg_out[i]); |
|
if (err != 0) { |
|
LOG_ERR("Failed to register endpoint"); |
|
return err; |
|
} |
|
} |
|
|
|
for (int i = 0; i < config->num_of_eps; i++) { |
|
config->ep_cfg_in[i].caps.in = 1; |
|
if (i == 0) { |
|
config->ep_cfg_in[i].caps.control = 1; |
|
config->ep_cfg_in[i].caps.mps = 64; |
|
} else { |
|
config->ep_cfg_in[i].caps.bulk = 1; |
|
config->ep_cfg_in[i].caps.interrupt = 1; |
|
config->ep_cfg_in[i].caps.iso = 1; |
|
config->ep_cfg_in[i].caps.mps = mps; |
|
} |
|
|
|
config->ep_cfg_in[i].addr = USB_EP_DIR_IN | i; |
|
err = udc_register_ep(dev, &config->ep_cfg_in[i]); |
|
if (err != 0) { |
|
LOG_ERR("Failed to register endpoint"); |
|
return err; |
|
} |
|
} |
|
|
|
config->make_thread(dev); |
|
LOG_INF("Device %p (max. speed %d)", dev, config->speed_idx); |
|
|
|
return 0; |
|
} |
|
|
|
static void udc_skeleton_lock(const struct device *dev) |
|
{ |
|
udc_lock_internal(dev, K_FOREVER); |
|
} |
|
|
|
static void udc_skeleton_unlock(const struct device *dev) |
|
{ |
|
udc_unlock_internal(dev); |
|
} |
|
|
|
/* |
|
* UDC API structure. |
|
* Note, you do not need to implement basic checks, these are done by |
|
* the UDC common layer udc_common.c |
|
*/ |
|
static const struct udc_api udc_skeleton_api = { |
|
.lock = udc_skeleton_lock, |
|
.unlock = udc_skeleton_unlock, |
|
.device_speed = udc_skeleton_device_speed, |
|
.init = udc_skeleton_init, |
|
.enable = udc_skeleton_enable, |
|
.disable = udc_skeleton_disable, |
|
.shutdown = udc_skeleton_shutdown, |
|
.set_address = udc_skeleton_set_address, |
|
.host_wakeup = udc_skeleton_host_wakeup, |
|
.ep_enable = udc_skeleton_ep_enable, |
|
.ep_disable = udc_skeleton_ep_disable, |
|
.ep_set_halt = udc_skeleton_ep_set_halt, |
|
.ep_clear_halt = udc_skeleton_ep_clear_halt, |
|
.ep_enqueue = udc_skeleton_ep_enqueue, |
|
.ep_dequeue = udc_skeleton_ep_dequeue, |
|
}; |
|
|
|
#define DT_DRV_COMPAT zephyr_udc_skeleton |
|
|
|
/* |
|
* A UDC driver should always be implemented as a multi-instance |
|
* driver, even if your platform does not require it. |
|
*/ |
|
#define UDC_SKELETON_DEVICE_DEFINE(n) \ |
|
K_THREAD_STACK_DEFINE(udc_skeleton_stack_##n, \ |
|
CONFIG_UDC_SKELETON_STACK_SIZE); \ |
|
\ |
|
static void udc_skeleton_thread_##n(void *dev, void *arg1, void *arg2) \ |
|
{ \ |
|
skeleton_thread_handler(dev); \ |
|
} \ |
|
\ |
|
static void udc_skeleton_make_thread_##n(const struct device *dev) \ |
|
{ \ |
|
struct udc_skeleton_data *priv = udc_get_private(dev); \ |
|
\ |
|
k_thread_create(&priv->thread_data, \ |
|
udc_skeleton_stack_##n, \ |
|
K_THREAD_STACK_SIZEOF(udc_skeleton_stack_##n), \ |
|
udc_skeleton_thread_##n, \ |
|
(void *)dev, NULL, NULL, \ |
|
K_PRIO_COOP(CONFIG_UDC_SKELETON_THREAD_PRIORITY),\ |
|
K_ESSENTIAL, \ |
|
K_NO_WAIT); \ |
|
k_thread_name_set(&priv->thread_data, dev->name); \ |
|
} \ |
|
\ |
|
static struct udc_ep_config \ |
|
ep_cfg_out[DT_INST_PROP(n, num_bidir_endpoints)]; \ |
|
static struct udc_ep_config \ |
|
ep_cfg_in[DT_INST_PROP(n, num_bidir_endpoints)]; \ |
|
\ |
|
static const struct udc_skeleton_config udc_skeleton_config_##n = { \ |
|
.num_of_eps = DT_INST_PROP(n, num_bidir_endpoints), \ |
|
.ep_cfg_in = ep_cfg_out, \ |
|
.ep_cfg_out = ep_cfg_in, \ |
|
.make_thread = udc_skeleton_make_thread_##n, \ |
|
.speed_idx = DT_ENUM_IDX(DT_DRV_INST(n), maximum_speed), \ |
|
}; \ |
|
\ |
|
static struct udc_skeleton_data udc_priv_##n = { \ |
|
}; \ |
|
\ |
|
static struct udc_data udc_data_##n = { \ |
|
.mutex = Z_MUTEX_INITIALIZER(udc_data_##n.mutex), \ |
|
.priv = &udc_priv_##n, \ |
|
}; \ |
|
\ |
|
DEVICE_DT_INST_DEFINE(n, udc_skeleton_driver_preinit, NULL, \ |
|
&udc_data_##n, &udc_skeleton_config_##n, \ |
|
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \ |
|
&udc_skeleton_api); |
|
|
|
DT_INST_FOREACH_STATUS_OKAY(UDC_SKELETON_DEVICE_DEFINE)
|
|
|