Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

228 lines
8.4 KiB

/*
* Copyright (c) 2024 Renesas Electronics Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/spinlock.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/irq.h>
#include <zephyr/sys_clock.h>
#include <zephyr/logging/log.h>
#include <instances/rzg/r_gtm.h>
LOG_MODULE_REGISTER(renesas_rz_gtm_timer);
#define DT_DRV_COMPAT renesas_rz_gtm_os_timer
#define TIMER_NODE DT_INST_PARENT(0)
#define cycle_diff_t uint32_t
#define CYCLE_DIFF_MAX (~(cycle_diff_t)0)
/*
* We have two constraints on the maximum number of cycles we can wait for.
*
* 1) sys_clock_announce() accepts at most INT32_MAX ticks.
*
* 2) The number of cycles between two reports must fit in a cycle_diff_t
* variable before converting it to ticks.
*
* Then:
*
* 3) Pick the smallest between (1) and (2).
*
* 4) Take into account some room for the unavoidable IRQ servicing latency.
* Let's use 3/4 of the max range.
*
* Finally let's add the LSB value to the result so to clear out a bunch of
* consecutive set bits coming from the original max values to produce a
* nicer literal for assembly generation.
*/
#define CYCLES_MAX_1 ((uint64_t)INT32_MAX * (uint64_t)CYC_PER_TICK)
#define CYCLES_MAX_2 ((uint64_t)CYCLE_DIFF_MAX)
#define CYCLES_MAX_3 MIN(CYCLES_MAX_1, CYCLES_MAX_2)
#define CYCLES_MAX_4 (CYCLES_MAX_3 / 2 + CYCLES_MAX_3 / 4)
#define CYCLES_MAX_5 (CYCLES_MAX_4 + LSB_GET(CYCLES_MAX_4))
/* precompute CYCLES_MAX and CYC_PER_TICK at driver init to avoid runtime double divisions */
static uint64_t cycles_max;
static uint32_t cyc_per_tick;
#define CYCLES_MAX cycles_max
#define CYC_PER_TICK cyc_per_tick
static void ostm_irq_handler(timer_callback_args_t *arg);
void gtm_int_isr(void);
const struct device *g_os_timer_dev = DEVICE_DT_INST_GET(0);
extern unsigned int z_clock_hw_cycles_per_sec;
struct rz_os_timer_config {
timer_cfg_t *fsp_cfg;
const timer_api_t *fsp_api;
};
struct rz_os_timer_data {
timer_ctrl_t *fsp_ctrl;
struct k_spinlock lock;
uint32_t last_cycle;
uint32_t last_tick;
uint32_t last_elapsed;
};
static void ostm_irq_handler(timer_callback_args_t *arg)
{
ARG_UNUSED(arg);
struct rz_os_timer_data *data = (struct rz_os_timer_data *)g_os_timer_dev->data;
uint32_t delta_cycles = sys_clock_cycle_get_32() - data->last_cycle;
uint32_t delta_ticks = delta_cycles / CYC_PER_TICK;
data->last_cycle += delta_ticks * CYC_PER_TICK;
data->last_tick += delta_ticks;
data->last_elapsed = 0;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
struct rz_os_timer_config *config =
(struct rz_os_timer_config *)g_os_timer_dev->config;
uint32_t next_cycle = data->last_cycle + CYC_PER_TICK;
config->fsp_api->periodSet(data->fsp_ctrl, next_cycle);
} else {
irq_disable(DT_IRQN(TIMER_NODE));
}
/* Announce to the kernel */
sys_clock_announce(delta_ticks);
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
if (idle && ticks == K_TICKS_FOREVER) {
return;
}
struct rz_os_timer_config *config = (struct rz_os_timer_config *)g_os_timer_dev->config;
struct rz_os_timer_data *data = (struct rz_os_timer_data *)g_os_timer_dev->data;
uint32_t next_cycle;
k_spinlock_key_t key = k_spin_lock(&data->lock);
if (ticks == K_TICKS_FOREVER) {
next_cycle = data->last_cycle + CYCLES_MAX;
} else {
next_cycle = (data->last_tick + data->last_elapsed + ticks) * CYC_PER_TICK;
if ((next_cycle - data->last_cycle) > CYCLES_MAX) {
next_cycle = data->last_cycle + CYCLES_MAX;
}
}
config->fsp_api->periodSet(data->fsp_ctrl, next_cycle);
irq_enable(DT_IRQN(TIMER_NODE));
k_spin_unlock(&data->lock, key);
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
struct rz_os_timer_data *data = (struct rz_os_timer_data *)g_os_timer_dev->data;
uint32_t delta_cycles = sys_clock_cycle_get_32() - data->last_cycle;
uint32_t delta_ticks = delta_cycles / CYC_PER_TICK;
data->last_elapsed = delta_ticks;
return delta_ticks;
}
void sys_clock_disable(void)
{
struct rz_os_timer_config *config = (struct rz_os_timer_config *)g_os_timer_dev->config;
struct rz_os_timer_data *data = (struct rz_os_timer_data *)g_os_timer_dev->data;
config->fsp_api->close(data->fsp_ctrl);
}
uint32_t sys_clock_cycle_get_32(void)
{
struct rz_os_timer_config *config = (struct rz_os_timer_config *)g_os_timer_dev->config;
struct rz_os_timer_data *data = (struct rz_os_timer_data *)g_os_timer_dev->data;
timer_status_t timer_status;
k_spinlock_key_t key = k_spin_lock(&data->lock);
config->fsp_api->statusGet(data->fsp_ctrl, &timer_status);
k_spin_unlock(&data->lock, key);
return timer_status.counter;
}
static int sys_clock_driver_init(void)
{
fsp_err_t ret;
struct rz_os_timer_config *config = (struct rz_os_timer_config *)g_os_timer_dev->config;
struct rz_os_timer_data *data = (struct rz_os_timer_data *)g_os_timer_dev->data;
IRQ_CONNECT(DT_IRQN(TIMER_NODE), DT_IRQ(TIMER_NODE, priority), gtm_int_isr,
DEVICE_DT_INST_GET(0), 0);
data->last_tick = 0;
data->last_cycle = 0;
z_clock_hw_cycles_per_sec = R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_P0CLK);
cyc_per_tick = sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
cycles_max = CYCLES_MAX_5;
config->fsp_cfg->period_counts = CYC_PER_TICK;
ret = config->fsp_api->open(data->fsp_ctrl, config->fsp_cfg);
if (ret != FSP_SUCCESS) {
LOG_ERR("timer initialize failed");
return -EIO;
}
ret = config->fsp_api->start(data->fsp_ctrl);
if (ret != FSP_SUCCESS) {
LOG_ERR("timer start failed");
return -EIO;
}
return 0;
}
#define OS_TIMER_RZG_GTM_INIT() \
const gtm_extended_cfg_t g_timer0_extend = { \
.generate_interrupt_when_starts = GTM_GIWS_TYPE_DISABLED, \
.gtm_mode = GTM_TIMER_MODE_FREERUN, \
}; \
\
static timer_cfg_t g_timer0_cfg = { \
.mode = TIMER_MODE_PERIODIC, \
.period_counts = 0, \
.channel = DT_PROP(TIMER_NODE, channel), \
.p_callback = ostm_irq_handler, \
.p_context = DEVICE_DT_INST_GET(0), \
.p_extend = &g_timer0_extend, \
.cycle_end_ipl = DT_IRQ(TIMER_NODE, priority), \
.cycle_end_irq = DT_IRQN(TIMER_NODE), \
}; \
\
static gtm_instance_ctrl_t g_timer0_ctrl; \
\
static struct rz_os_timer_data g_rz_os_timer_data = { \
.fsp_ctrl = (timer_ctrl_t *)&g_timer0_ctrl, \
}; \
\
struct rz_os_timer_config g_rz_os_timer_config = { \
.fsp_cfg = &g_timer0_cfg, \
.fsp_api = &g_timer_on_gtm, \
}; \
\
DEVICE_DT_INST_DEFINE(0, NULL, NULL, &g_rz_os_timer_data, &g_rz_os_timer_config, \
PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY, NULL); \
\
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
OS_TIMER_RZG_GTM_INIT();