You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
450 lines
11 KiB
450 lines
11 KiB
/* |
|
* Copyright (c) 2014-2015 Wind River Systems, Inc. |
|
* Copyright (c) 2018 Synopsys Inc, Inc. |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
#include <zephyr/init.h> |
|
#include <zephyr/drivers/timer/system_timer.h> |
|
#include <zephyr/sys_clock.h> |
|
#include <zephyr/spinlock.h> |
|
#include <zephyr/arch/arc/v2/aux_regs.h> |
|
#include <zephyr/irq.h> |
|
/* |
|
* note: This implementation assumes Timer0 is present. Be sure |
|
* to build the ARC CPU with Timer0. |
|
* |
|
* If secureshield is present and secure firmware is configured, |
|
* use secure Timer 0 |
|
*/ |
|
|
|
#ifdef CONFIG_ARC_SECURE_FIRMWARE |
|
|
|
#undef _ARC_V2_TMR0_COUNT |
|
#undef _ARC_V2_TMR0_CONTROL |
|
#undef _ARC_V2_TMR0_LIMIT |
|
|
|
#define _ARC_V2_TMR0_COUNT _ARC_V2_S_TMR0_COUNT |
|
#define _ARC_V2_TMR0_CONTROL _ARC_V2_S_TMR0_CONTROL |
|
#define _ARC_V2_TMR0_LIMIT _ARC_V2_S_TMR0_LIMIT |
|
#define IRQ_TIMER0 DT_IRQN(DT_NODELABEL(sectimer0)) |
|
|
|
#else |
|
#define IRQ_TIMER0 DT_IRQN(DT_NODELABEL(timer0)) |
|
#endif |
|
|
|
#define _ARC_V2_TMR_CTRL_IE 0x1 /* interrupt enable */ |
|
#define _ARC_V2_TMR_CTRL_NH 0x2 /* count only while not halted */ |
|
#define _ARC_V2_TMR_CTRL_W 0x4 /* watchdog mode enable */ |
|
#define _ARC_V2_TMR_CTRL_IP 0x8 /* interrupt pending flag */ |
|
|
|
/* Minimum cycles in the future to try to program. */ |
|
#define MIN_DELAY 1024 |
|
/* arc timer has 32 bit, here use 31 bit to avoid the possible |
|
* overflow,e.g, 0xffffffff + any value will cause overflow |
|
*/ |
|
#define COUNTER_MAX 0x7fffffff |
|
#define TIMER_STOPPED 0x0 |
|
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \ |
|
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
|
|
|
#define MAX_TICKS ((COUNTER_MAX / CYC_PER_TICK) - 1) |
|
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK) |
|
|
|
#define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) |
|
|
|
#define SMP_TIMER_DRIVER (CONFIG_SMP && CONFIG_MP_MAX_NUM_CPUS > 1) |
|
|
|
#if defined(CONFIG_TEST) |
|
const int32_t z_sys_timer_irq_for_test = IRQ_TIMER0; |
|
#endif |
|
static struct k_spinlock lock; |
|
|
|
|
|
#if SMP_TIMER_DRIVER |
|
volatile static uint64_t last_time; |
|
volatile static uint64_t start_time; |
|
|
|
#else |
|
static uint32_t last_load; |
|
|
|
|
|
/* |
|
* This local variable holds the amount of timer cycles elapsed |
|
* and it is updated in timer_int_handler and sys_clock_set_timeout(). |
|
* |
|
* Note: |
|
* At an arbitrary point in time the "current" value of the |
|
* HW timer is calculated as: |
|
* |
|
* t = cycle_counter + elapsed(); |
|
*/ |
|
static uint32_t cycle_count; |
|
|
|
/* |
|
* This local variable holds the amount of elapsed HW cycles |
|
* that have been announced to the kernel. |
|
*/ |
|
static uint32_t announced_cycles; |
|
|
|
|
|
/* |
|
* This local variable holds the amount of elapsed HW cycles due to |
|
* timer wraps ('overflows') and is used in the calculation |
|
* in elapsed() function, as well as in the updates to cycle_count. |
|
* |
|
* Note: |
|
* Each time cycle_count is updated with the value from overflow_cycles, |
|
* the overflow_cycles must be reset to zero. |
|
*/ |
|
static volatile uint32_t overflow_cycles; |
|
#endif |
|
|
|
/** |
|
* @brief Get contents of Timer0 count register |
|
* |
|
* @return Current Timer0 count |
|
*/ |
|
static ALWAYS_INLINE uint32_t timer0_count_register_get(void) |
|
{ |
|
return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_COUNT); |
|
} |
|
|
|
/** |
|
* @brief Set Timer0 count register to the specified value |
|
*/ |
|
static ALWAYS_INLINE void timer0_count_register_set(uint32_t value) |
|
{ |
|
z_arc_v2_aux_reg_write(_ARC_V2_TMR0_COUNT, value); |
|
} |
|
|
|
/** |
|
* @brief Get contents of Timer0 control register |
|
* |
|
* @return Contents of Timer0 control register. |
|
*/ |
|
static ALWAYS_INLINE uint32_t timer0_control_register_get(void) |
|
{ |
|
return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_CONTROL); |
|
} |
|
|
|
/** |
|
* @brief Set Timer0 control register to the specified value |
|
*/ |
|
static ALWAYS_INLINE void timer0_control_register_set(uint32_t value) |
|
{ |
|
z_arc_v2_aux_reg_write(_ARC_V2_TMR0_CONTROL, value); |
|
} |
|
|
|
/** |
|
* @brief Get contents of Timer0 limit register |
|
* |
|
* @return Contents of Timer0 limit register. |
|
*/ |
|
static ALWAYS_INLINE uint32_t timer0_limit_register_get(void) |
|
{ |
|
return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_LIMIT); |
|
} |
|
|
|
/** |
|
* @brief Set Timer0 limit register to the specified value |
|
*/ |
|
static ALWAYS_INLINE void timer0_limit_register_set(uint32_t count) |
|
{ |
|
z_arc_v2_aux_reg_write(_ARC_V2_TMR0_LIMIT, count); |
|
} |
|
|
|
#if !SMP_TIMER_DRIVER |
|
/* This internal function calculates the amount of HW cycles that have |
|
* elapsed since the last time the absolute HW cycles counter has been |
|
* updated. 'cycle_count' may be updated either by the ISR, or |
|
* in sys_clock_set_timeout(). |
|
* |
|
* Additionally, the function updates the 'overflow_cycles' counter, that |
|
* holds the amount of elapsed HW cycles due to (possibly) multiple |
|
* timer wraps (overflows). |
|
* |
|
* Prerequisites: |
|
* - reprogramming of LIMIT must be clearing the COUNT |
|
* - ISR must be clearing the 'overflow_cycles' counter. |
|
* - no more than one counter-wrap has occurred between |
|
* - the timer reset or the last time the function was called |
|
* - and until the current call of the function is completed. |
|
* - the function is invoked with interrupts disabled. |
|
*/ |
|
static uint32_t elapsed(void) |
|
{ |
|
uint32_t val, ctrl; |
|
|
|
do { |
|
val = timer0_count_register_get(); |
|
ctrl = timer0_control_register_get(); |
|
} while (timer0_count_register_get() < val); |
|
|
|
if (ctrl & _ARC_V2_TMR_CTRL_IP) { |
|
overflow_cycles += last_load; |
|
/* clear the IP bit of the control register */ |
|
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | |
|
_ARC_V2_TMR_CTRL_IE); |
|
/* use sw triggered irq to remember the timer irq request |
|
* which may be cleared by the above operation. when elapsed () |
|
* is called in timer_int_handler, no need to do this. |
|
*/ |
|
if (!z_arc_v2_irq_unit_is_in_isr() || |
|
z_arc_v2_aux_reg_read(_ARC_V2_ICAUSE) != IRQ_TIMER0) { |
|
z_arc_v2_aux_reg_write(_ARC_V2_AUX_IRQ_HINT, |
|
IRQ_TIMER0); |
|
} |
|
} |
|
|
|
return val + overflow_cycles; |
|
} |
|
#endif |
|
|
|
/** |
|
* @brief System clock periodic tick handler |
|
* |
|
* This routine handles the system clock tick interrupt. It always |
|
* announces one tick when TICKLESS is not enabled, or multiple ticks |
|
* when TICKLESS is enabled. |
|
*/ |
|
static void timer_int_handler(const void *unused) |
|
{ |
|
ARG_UNUSED(unused); |
|
uint32_t dticks; |
|
|
|
#if defined(CONFIG_SMP) && CONFIG_MP_MAX_NUM_CPUS > 1 |
|
uint64_t curr_time; |
|
k_spinlock_key_t key; |
|
|
|
/* clear the IP bit of the control register */ |
|
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | |
|
_ARC_V2_TMR_CTRL_IE); |
|
key = k_spin_lock(&lock); |
|
/* gfrc is the wall clock */ |
|
curr_time = z_arc_connect_gfrc_read(); |
|
|
|
dticks = (curr_time - last_time) / CYC_PER_TICK; |
|
/* last_time should be aligned to ticks */ |
|
last_time += dticks * CYC_PER_TICK; |
|
|
|
k_spin_unlock(&lock, key); |
|
|
|
sys_clock_announce(dticks); |
|
#else |
|
/* timer_int_handler may be triggered by timer irq or |
|
* software helper irq |
|
*/ |
|
|
|
/* irq with higher priority may call sys_clock_set_timeout |
|
* so need a lock here |
|
*/ |
|
uint32_t key; |
|
|
|
key = arch_irq_lock(); |
|
|
|
elapsed(); |
|
cycle_count += overflow_cycles; |
|
overflow_cycles = 0; |
|
|
|
arch_irq_unlock(key); |
|
|
|
dticks = (cycle_count - announced_cycles) / CYC_PER_TICK; |
|
announced_cycles += dticks * CYC_PER_TICK; |
|
sys_clock_announce(TICKLESS ? dticks : 1); |
|
#endif |
|
|
|
} |
|
|
|
void sys_clock_set_timeout(int32_t ticks, bool idle) |
|
{ |
|
/* If the kernel allows us to miss tick announcements in idle, |
|
* then shut off the counter. (Note: we can assume if idle==true |
|
* that interrupts are already disabled) |
|
*/ |
|
#if SMP_TIMER_DRIVER |
|
/* as 64-bits GFRC is used as wall clock, it's ok to ignore idle |
|
* systick will not be missed. |
|
* However for single core using 32-bits arc timer, idle cannot |
|
* be ignored, as 32-bits timer will overflow in a not-long time. |
|
*/ |
|
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && ticks == K_TICKS_FOREVER) { |
|
timer0_control_register_set(0); |
|
timer0_count_register_set(0); |
|
timer0_limit_register_set(0); |
|
return; |
|
} |
|
|
|
#if defined(CONFIG_TICKLESS_KERNEL) |
|
uint32_t delay; |
|
uint32_t key; |
|
|
|
ticks = MIN(MAX_TICKS, ticks); |
|
|
|
/* Desired delay in the future |
|
* use MIN_DEALY here can trigger the timer |
|
* irq more soon, no need to go to CYC_PER_TICK |
|
* later. |
|
*/ |
|
delay = MAX(ticks * CYC_PER_TICK, MIN_DELAY); |
|
|
|
key = arch_irq_lock(); |
|
|
|
timer0_limit_register_set(delay - 1); |
|
timer0_count_register_set(0); |
|
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | |
|
_ARC_V2_TMR_CTRL_IE); |
|
|
|
arch_irq_unlock(key); |
|
#endif |
|
#else |
|
if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && idle && ticks == K_TICKS_FOREVER) { |
|
timer0_control_register_set(0); |
|
timer0_count_register_set(0); |
|
timer0_limit_register_set(0); |
|
last_load = TIMER_STOPPED; |
|
return; |
|
} |
|
|
|
#if defined(CONFIG_TICKLESS_KERNEL) |
|
uint32_t delay; |
|
uint32_t unannounced; |
|
|
|
ticks = MIN(MAX_TICKS, (uint32_t)(MAX((int32_t)(ticks - 1), 0))); |
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
|
|
|
|
cycle_count += elapsed(); |
|
/* clear counter early to avoid cycle loss as few as possible, |
|
* between cycle_count and clearing 0, few cycles are possible |
|
* to loss |
|
*/ |
|
timer0_count_register_set(0); |
|
overflow_cycles = 0U; |
|
|
|
|
|
/* normal case */ |
|
unannounced = cycle_count - announced_cycles; |
|
|
|
if ((int32_t)unannounced < 0) { |
|
/* We haven't announced for more than half the 32-bit |
|
* wrap duration, because new timeouts keep being set |
|
* before the existing one fires. Force an announce |
|
* to avoid loss of a wrap event, making sure the |
|
* delay is at least the minimum delay possible. |
|
*/ |
|
last_load = MIN_DELAY; |
|
} else { |
|
/* Desired delay in the future */ |
|
delay = ticks * CYC_PER_TICK; |
|
|
|
/* Round delay up to next tick boundary */ |
|
delay += unannounced; |
|
delay = DIV_ROUND_UP(delay, CYC_PER_TICK) * CYC_PER_TICK; |
|
|
|
delay -= unannounced; |
|
delay = MAX(delay, MIN_DELAY); |
|
|
|
last_load = MIN(delay, MAX_CYCLES); |
|
} |
|
|
|
timer0_limit_register_set(last_load - 1); |
|
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); |
|
|
|
k_spin_unlock(&lock, key); |
|
#endif |
|
#endif |
|
} |
|
|
|
uint32_t sys_clock_elapsed(void) |
|
{ |
|
if (!TICKLESS) { |
|
return 0; |
|
} |
|
|
|
uint32_t cyc; |
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
|
|
#if SMP_TIMER_DRIVER |
|
cyc = (z_arc_connect_gfrc_read() - last_time); |
|
#else |
|
cyc = elapsed() + cycle_count - announced_cycles; |
|
#endif |
|
|
|
k_spin_unlock(&lock, key); |
|
|
|
return cyc / CYC_PER_TICK; |
|
} |
|
|
|
uint32_t sys_clock_cycle_get_32(void) |
|
{ |
|
#if SMP_TIMER_DRIVER |
|
return z_arc_connect_gfrc_read() - start_time; |
|
#else |
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
uint32_t ret = elapsed() + cycle_count; |
|
|
|
k_spin_unlock(&lock, key); |
|
return ret; |
|
#endif |
|
} |
|
|
|
#if SMP_TIMER_DRIVER |
|
void smp_timer_init(void) |
|
{ |
|
/* set the initial status of timer0 of each slave core |
|
*/ |
|
timer0_control_register_set(0); |
|
timer0_count_register_set(0); |
|
timer0_limit_register_set(0); |
|
|
|
z_irq_priority_set(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, 0); |
|
irq_enable(IRQ_TIMER0); |
|
} |
|
#endif |
|
|
|
/** |
|
* |
|
* @brief Initialize and enable the system clock |
|
* |
|
* This routine is used to program the ARCv2 timer to deliver interrupts at the |
|
* rate specified via the CYC_PER_TICK. |
|
* |
|
* @return 0 |
|
*/ |
|
static int sys_clock_driver_init(void) |
|
{ |
|
|
|
/* ensure that the timer will not generate interrupts */ |
|
timer0_control_register_set(0); |
|
|
|
#if SMP_TIMER_DRIVER |
|
IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, |
|
timer_int_handler, NULL, 0); |
|
|
|
timer0_limit_register_set(CYC_PER_TICK - 1); |
|
last_time = z_arc_connect_gfrc_read(); |
|
start_time = last_time; |
|
#else |
|
last_load = CYC_PER_TICK; |
|
overflow_cycles = 0; |
|
announced_cycles = 0; |
|
|
|
IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, |
|
timer_int_handler, NULL, 0); |
|
|
|
timer0_limit_register_set(last_load - 1); |
|
#endif |
|
timer0_count_register_set(0); |
|
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); |
|
|
|
/* everything has been configured: safe to enable the interrupt */ |
|
|
|
irq_enable(IRQ_TIMER0); |
|
|
|
return 0; |
|
} |
|
|
|
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, |
|
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
|
|
|