You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
322 lines
9.2 KiB
322 lines
9.2 KiB
/* |
|
* Copyright (c) 2021 Intel Corporation |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#include <cpuid.h> /* Header provided by the toolchain. */ |
|
|
|
#include <zephyr/init.h> |
|
#include <zephyr/arch/x86/cpuid.h> |
|
#include <zephyr/drivers/timer/system_timer.h> |
|
#include <zephyr/sys_clock.h> |
|
#include <zephyr/spinlock.h> |
|
#include <zephyr/drivers/interrupt_controller/loapic.h> |
|
#include <zephyr/irq.h> |
|
|
|
/* |
|
* This driver is selected when either CONFIG_APIC_TIMER_TSC or |
|
* CONFIG_APIC_TSC_DEADLINE_TIMER is selected. The later is preferred over |
|
* the former when the TSC deadline comparator is available. |
|
*/ |
|
BUILD_ASSERT((!IS_ENABLED(CONFIG_APIC_TIMER_TSC) && |
|
IS_ENABLED(CONFIG_APIC_TSC_DEADLINE_TIMER)) || |
|
(!IS_ENABLED(CONFIG_APIC_TSC_DEADLINE_TIMER) && |
|
IS_ENABLED(CONFIG_APIC_TIMER_TSC)), |
|
"one of CONFIG_APIC_TIMER_TSC or CONFIG_APIC_TSC_DEADLINE_TIMER must be set"); |
|
|
|
/* |
|
* If the TSC deadline comparator is not supported then the ICR in one-shot |
|
* mode is used as a fallback method to trigger the next timeout interrupt. |
|
* Those config symbols must then be defined: |
|
* |
|
* CONFIG_APIC_TIMER_TSC_N=<n> |
|
* CONFIG_APIC_TIMER_TSC_M=<m> |
|
* |
|
* These are set to indicate the ratio of the TSC frequency to the local |
|
* APIC timer frequency. This can be found via CPUID 0x15 (n = EBX, m = EAX) |
|
* on most CPUs. |
|
*/ |
|
#ifdef CONFIG_APIC_TIMER_TSC |
|
#define APIC_TIMER_TSC_M CONFIG_APIC_TIMER_TSC_M |
|
#define APIC_TIMER_TSC_N CONFIG_APIC_TIMER_TSC_N |
|
#else |
|
#define APIC_TIMER_TSC_M 1 |
|
#define APIC_TIMER_TSC_N 1 |
|
#endif |
|
|
|
#define IA32_TSC_DEADLINE_MSR 0x6e0 |
|
#define IA32_TSC_ADJUST_MSR 0x03b |
|
|
|
#define CYC_PER_TICK (uint32_t)(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \ |
|
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
|
|
|
/* the unsigned long cast limits divisors to native CPU register width */ |
|
#define cycle_diff_t unsigned long |
|
#define CYCLE_DIFF_MAX (~(cycle_diff_t)0) |
|
|
|
/* |
|
* We have two constraints on the maximum number of cycles we can wait for. |
|
* |
|
* 1) sys_clock_announce() accepts at most INT32_MAX ticks. |
|
* |
|
* 2) The number of cycles between two reports must fit in a cycle_diff_t |
|
* variable before converting it to ticks. |
|
* |
|
* Then: |
|
* |
|
* 3) Pick the smallest between (1) and (2). |
|
* |
|
* 4) Take into account some room for the unavoidable IRQ servicing latency. |
|
* Let's use 3/4 of the max range. |
|
* |
|
* Finally let's add the LSB value to the result so to clear out a bunch of |
|
* consecutive set bits coming from the original max values to produce a |
|
* nicer literal for assembly generation. |
|
*/ |
|
#define CYCLES_MAX_1 ((uint64_t)INT32_MAX * (uint64_t)CYC_PER_TICK) |
|
#define CYCLES_MAX_2 ((uint64_t)CYCLE_DIFF_MAX) |
|
#define CYCLES_MAX_3 MIN(CYCLES_MAX_1, CYCLES_MAX_2) |
|
#define CYCLES_MAX_4 (CYCLES_MAX_3 / 2 + CYCLES_MAX_3 / 4) |
|
#define CYCLES_MAX (CYCLES_MAX_4 + LSB_GET(CYCLES_MAX_4)) |
|
|
|
struct apic_timer_lvt { |
|
uint8_t vector : 8; |
|
uint8_t unused0 : 8; |
|
uint8_t masked : 1; |
|
enum { ONE_SHOT, PERIODIC, TSC_DEADLINE } mode: 2; |
|
uint32_t unused2 : 13; |
|
}; |
|
|
|
static struct k_spinlock lock; |
|
static uint64_t last_cycle; |
|
static uint64_t last_tick; |
|
static uint32_t last_elapsed; |
|
static union { uint32_t val; struct apic_timer_lvt lvt; } lvt_reg; |
|
|
|
static ALWAYS_INLINE uint64_t rdtsc(void) |
|
{ |
|
uint32_t hi, lo; |
|
|
|
__asm__ volatile("rdtsc" : "=d"(hi), "=a"(lo)); |
|
return lo + (((uint64_t)hi) << 32); |
|
} |
|
|
|
static inline void wrmsr(int32_t msr, uint64_t val) |
|
{ |
|
uint32_t hi = (uint32_t) (val >> 32); |
|
uint32_t lo = (uint32_t) val; |
|
|
|
__asm__ volatile("wrmsr" :: "d"(hi), "a"(lo), "c"(msr)); |
|
} |
|
|
|
static void set_trigger(uint64_t deadline) |
|
{ |
|
if (IS_ENABLED(CONFIG_APIC_TSC_DEADLINE_TIMER)) { |
|
wrmsr(IA32_TSC_DEADLINE_MSR, deadline); |
|
} else { |
|
/* use the timer ICR to trigger next interrupt */ |
|
uint64_t curr_cycle = rdtsc(); |
|
uint64_t delta_cycles = deadline - MIN(deadline, curr_cycle); |
|
uint64_t icr = (delta_cycles * APIC_TIMER_TSC_M) / APIC_TIMER_TSC_N; |
|
|
|
/* cap icr to 32 bits, and not zero */ |
|
icr = CLAMP(icr, 1, UINT32_MAX); |
|
x86_write_loapic(LOAPIC_TIMER_ICR, icr); |
|
} |
|
} |
|
|
|
static void isr(const void *arg) |
|
{ |
|
ARG_UNUSED(arg); |
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
uint64_t curr_cycle = rdtsc(); |
|
uint64_t delta_cycles = curr_cycle - last_cycle; |
|
uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK; |
|
|
|
last_cycle += (cycle_diff_t)delta_ticks * CYC_PER_TICK; |
|
last_tick += delta_ticks; |
|
last_elapsed = 0; |
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
|
uint64_t next_cycle = last_cycle + CYC_PER_TICK; |
|
|
|
set_trigger(next_cycle); |
|
} |
|
|
|
k_spin_unlock(&lock, key); |
|
sys_clock_announce(delta_ticks); |
|
} |
|
|
|
void sys_clock_set_timeout(int32_t ticks, bool idle) |
|
{ |
|
ARG_UNUSED(idle); |
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
|
return; |
|
} |
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
uint64_t next_cycle; |
|
|
|
if (ticks == K_TICKS_FOREVER) { |
|
next_cycle = last_cycle + CYCLES_MAX; |
|
} else { |
|
next_cycle = (last_tick + last_elapsed + ticks) * CYC_PER_TICK; |
|
if ((next_cycle - last_cycle) > CYCLES_MAX) { |
|
next_cycle = last_cycle + CYCLES_MAX; |
|
} |
|
} |
|
|
|
/* |
|
* Interpreted strictly, the IA SDM description of the |
|
* TSC_DEADLINE MSR implies that it will trigger an immediate |
|
* interrupt if we try to set an expiration across the 64 bit |
|
* rollover. Unfortunately there's no way to test that as on |
|
* real hardware it requires more than a century of uptime, |
|
* but this is cheap and safe. |
|
*/ |
|
if (next_cycle < last_cycle) { |
|
next_cycle = UINT64_MAX; |
|
} |
|
set_trigger(next_cycle); |
|
|
|
k_spin_unlock(&lock, key); |
|
} |
|
|
|
uint32_t sys_clock_elapsed(void) |
|
{ |
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
|
return 0; |
|
} |
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
uint64_t curr_cycle = rdtsc(); |
|
uint64_t delta_cycles = curr_cycle - last_cycle; |
|
uint32_t delta_ticks = (cycle_diff_t)delta_cycles / CYC_PER_TICK; |
|
|
|
last_elapsed = delta_ticks; |
|
k_spin_unlock(&lock, key); |
|
return delta_ticks; |
|
} |
|
|
|
uint32_t sys_clock_cycle_get_32(void) |
|
{ |
|
return (uint32_t) rdtsc(); |
|
} |
|
|
|
uint64_t sys_clock_cycle_get_64(void) |
|
{ |
|
return rdtsc(); |
|
} |
|
|
|
static inline uint32_t timer_irq(void) |
|
{ |
|
/* The Zephyr APIC API is... idiosyncratic. The timer is a |
|
* "local vector table" interrupt. These aren't system IRQs |
|
* presented to the IO-APIC, they're indices into a register |
|
* array in the local APIC. By Zephyr convention they come |
|
* after all the external IO-APIC interrupts, but that number |
|
* changes depending on device configuration so we have to |
|
* fetch it at runtime. The timer happens to be the first |
|
* entry in the table. |
|
*/ |
|
return z_loapic_irq_base(); |
|
} |
|
|
|
/* The TSC_ADJUST MSR implements a synchronized offset such that |
|
* multiple CPUs (within a socket, anyway) can synchronize exactly, or |
|
* implement managed timing spaces for guests in a recoverable way, |
|
* etc... We set it to zero on all cores for simplicity, because |
|
* firmware often leaves it in an inconsistent state between cores. |
|
*/ |
|
static void clear_tsc_adjust(void) |
|
{ |
|
/* But don't touch it on ACRN, where an hypervisor bug |
|
* confuses the APIC emulation and deadline interrupts don't |
|
* arrive. |
|
*/ |
|
#ifndef CONFIG_BOARD_ACRN |
|
wrmsr(IA32_TSC_ADJUST_MSR, 0); |
|
#endif |
|
} |
|
|
|
void smp_timer_init(void) |
|
{ |
|
/* Copy the LVT configuration from CPU0, because IRQ_CONNECT() |
|
* doesn't know how to manage LVT interrupts for anything |
|
* other than the calling/initial CPU. Same fence needed to |
|
* prevent later MSR writes from reordering before the APIC |
|
* configuration write. |
|
*/ |
|
x86_write_loapic(LOAPIC_TIMER, lvt_reg.val); |
|
__asm__ volatile("mfence" ::: "memory"); |
|
clear_tsc_adjust(); |
|
irq_enable(timer_irq()); |
|
} |
|
|
|
static int sys_clock_driver_init(void) |
|
{ |
|
#ifdef CONFIG_ASSERT |
|
uint32_t eax, ebx, ecx, edx; |
|
|
|
if (IS_ENABLED(CONFIG_APIC_TSC_DEADLINE_TIMER)) { |
|
ecx = 0; /* prevent compiler warning */ |
|
__get_cpuid(CPUID_BASIC_INFO_1, &eax, &ebx, &ecx, &edx); |
|
__ASSERT((ecx & BIT(24)) != 0, "No TSC Deadline support"); |
|
} |
|
|
|
edx = 0; /* prevent compiler warning */ |
|
__get_cpuid(0x80000007, &eax, &ebx, &ecx, &edx); |
|
__ASSERT((edx & BIT(8)) != 0, "No Invariant TSC support"); |
|
|
|
if (IS_ENABLED(CONFIG_SMP)) { |
|
ebx = 0; /* prevent compiler warning */ |
|
__get_cpuid_count(CPUID_EXTENDED_FEATURES_LVL, 0, &eax, &ebx, &ecx, &edx); |
|
__ASSERT((ebx & BIT(1)) != 0, "No TSC_ADJUST MSR support"); |
|
} |
|
#endif |
|
|
|
if (IS_ENABLED(CONFIG_SMP)) { |
|
clear_tsc_adjust(); |
|
} |
|
|
|
/* Timer interrupt number is runtime-fetched, so can't use |
|
* static IRQ_CONNECT() |
|
*/ |
|
irq_connect_dynamic(timer_irq(), CONFIG_APIC_TIMER_IRQ_PRIORITY, isr, 0, 0); |
|
|
|
if (IS_ENABLED(CONFIG_APIC_TIMER_TSC)) { |
|
uint32_t timer_conf; |
|
|
|
timer_conf = x86_read_loapic(LOAPIC_TIMER_CONFIG); |
|
timer_conf &= ~0x0f; /* clear divider bits */ |
|
timer_conf |= 0x0b; /* divide by 1 */ |
|
x86_write_loapic(LOAPIC_TIMER_CONFIG, timer_conf); |
|
} |
|
|
|
lvt_reg.val = x86_read_loapic(LOAPIC_TIMER); |
|
lvt_reg.lvt.mode = IS_ENABLED(CONFIG_APIC_TSC_DEADLINE_TIMER) ? |
|
TSC_DEADLINE : ONE_SHOT; |
|
lvt_reg.lvt.masked = 0; |
|
x86_write_loapic(LOAPIC_TIMER, lvt_reg.val); |
|
|
|
/* Per the SDM, the TSC_DEADLINE MSR is not serializing, so |
|
* this fence is needed to be sure that an upcoming MSR write |
|
* (i.e. a timeout we're about to set) cannot possibly reorder |
|
* around the initialization we just did. |
|
*/ |
|
__asm__ volatile("mfence" ::: "memory"); |
|
|
|
last_tick = rdtsc() / CYC_PER_TICK; |
|
last_cycle = last_tick * CYC_PER_TICK; |
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
|
set_trigger(last_cycle + CYC_PER_TICK); |
|
} |
|
irq_enable(timer_irq()); |
|
|
|
return 0; |
|
} |
|
|
|
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, |
|
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
|
|
|