You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1642 lines
45 KiB
1642 lines
45 KiB
/* |
|
* Copyright (c) 2016 BayLibre, SAS |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#define DT_DRV_COMPAT st_stm32_spi |
|
|
|
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL |
|
#include <zephyr/logging/log.h> |
|
LOG_MODULE_REGISTER(spi_ll_stm32); |
|
|
|
#include <zephyr/sys/util.h> |
|
#include <zephyr/kernel.h> |
|
#include <soc.h> |
|
#include <stm32_cache.h> |
|
#include <stm32_ll_spi.h> |
|
#include <errno.h> |
|
#include <zephyr/cache.h> |
|
#include <zephyr/drivers/spi.h> |
|
#include <zephyr/drivers/spi/rtio.h> |
|
#include <zephyr/drivers/pinctrl.h> |
|
#include <zephyr/toolchain.h> |
|
#include <zephyr/pm/policy.h> |
|
#include <zephyr/pm/device.h> |
|
#include <zephyr/pm/device_runtime.h> |
|
#ifdef CONFIG_SPI_STM32_DMA |
|
#include <zephyr/drivers/dma/dma_stm32.h> |
|
#include <zephyr/drivers/dma.h> |
|
#endif |
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h> |
|
#include <zephyr/drivers/clock_control.h> |
|
#include <zephyr/irq.h> |
|
#include <zephyr/mem_mgmt/mem_attr.h> |
|
#include <zephyr/dt-bindings/memory-attr/memory-attr-arm.h> |
|
#include <zephyr/linker/linker-defs.h> |
|
#include <zephyr/arch/cache.h> |
|
|
|
#include "spi_ll_stm32.h" |
|
|
|
#if defined(CONFIG_DCACHE) && \ |
|
!defined(CONFIG_NOCACHE_MEMORY) |
|
/* currently, manual cache coherency management is only done on dummy_rx_tx_buffer */ |
|
#define SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED 1 |
|
#else |
|
#define SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED 0 |
|
#endif /* defined(CONFIG_DCACHE) && !defined(CONFIG_NOCACHE_MEMORY) */ |
|
|
|
#define WAIT_1US 1U |
|
|
|
/* |
|
* Check for SPI_SR_FRE to determine support for TI mode frame format |
|
* error flag, because STM32F1 SoCs do not support it and STM32CUBE |
|
* for F1 family defines an unused LL_SPI_SR_FRE. |
|
*/ |
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
#define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCE | LL_SPI_SR_MODF | \ |
|
LL_SPI_SR_OVR | LL_SPI_SR_TIFRE) |
|
#else |
|
#if defined(LL_SPI_SR_UDR) |
|
#define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \ |
|
LL_SPI_SR_OVR | LL_SPI_SR_FRE) |
|
#elif defined(SPI_SR_FRE) |
|
#define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \ |
|
LL_SPI_SR_OVR | LL_SPI_SR_FRE) |
|
#else |
|
#define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | LL_SPI_SR_OVR) |
|
#endif |
|
#endif /* CONFIG_SOC_SERIES_STM32MP1X */ |
|
|
|
static void spi_stm32_pm_policy_state_lock_get(const struct device *dev) |
|
{ |
|
if (IS_ENABLED(CONFIG_PM)) { |
|
struct spi_stm32_data *data = dev->data; |
|
|
|
if (!data->pm_policy_state_on) { |
|
data->pm_policy_state_on = true; |
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) { |
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES); |
|
} |
|
pm_device_runtime_get(dev); |
|
} |
|
} |
|
} |
|
|
|
static void spi_stm32_pm_policy_state_lock_put(const struct device *dev) |
|
{ |
|
if (IS_ENABLED(CONFIG_PM)) { |
|
struct spi_stm32_data *data = dev->data; |
|
|
|
if (data->pm_policy_state_on) { |
|
data->pm_policy_state_on = false; |
|
pm_device_runtime_put(dev); |
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) { |
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES); |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef CONFIG_SPI_STM32_DMA |
|
static uint32_t bits2bytes(uint32_t bits) |
|
{ |
|
return bits / 8; |
|
} |
|
|
|
/* dummy buffer is used for transferring NOP when tx buf is null |
|
* and used as a dummy sink for when rx buf is null. |
|
*/ |
|
/* |
|
* If Nocache Memory is supported, buffer will be placed in nocache region by |
|
* the linker to avoid potential DMA cache-coherency problems. |
|
* If Nocache Memory is not supported, cache coherency might need to be kept |
|
* manually. See SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED. |
|
*/ |
|
static __aligned(32) uint32_t dummy_rx_tx_buffer __nocache; |
|
|
|
/* This function is executed in the interrupt context */ |
|
static void dma_callback(const struct device *dma_dev, void *arg, |
|
uint32_t channel, int status) |
|
{ |
|
ARG_UNUSED(dma_dev); |
|
|
|
/* arg holds SPI DMA data |
|
* Passed in spi_stm32_dma_tx/rx_load() |
|
*/ |
|
struct spi_stm32_data *spi_dma_data = arg; |
|
|
|
if (status < 0) { |
|
LOG_ERR("DMA callback error with channel %d.", channel); |
|
spi_dma_data->status_flags |= SPI_STM32_DMA_ERROR_FLAG; |
|
} else { |
|
/* identify the origin of this callback */ |
|
if (channel == spi_dma_data->dma_tx.channel) { |
|
/* this part of the transfer ends */ |
|
spi_dma_data->status_flags |= SPI_STM32_DMA_TX_DONE_FLAG; |
|
} else if (channel == spi_dma_data->dma_rx.channel) { |
|
/* this part of the transfer ends */ |
|
spi_dma_data->status_flags |= SPI_STM32_DMA_RX_DONE_FLAG; |
|
} else { |
|
LOG_ERR("DMA callback channel %d is not valid.", channel); |
|
spi_dma_data->status_flags |= SPI_STM32_DMA_ERROR_FLAG; |
|
} |
|
} |
|
|
|
k_sem_give(&spi_dma_data->status_sem); |
|
} |
|
|
|
static int spi_stm32_dma_tx_load(const struct device *dev, const uint8_t *buf, |
|
size_t len) |
|
{ |
|
const struct spi_stm32_config *cfg = dev->config; |
|
struct spi_stm32_data *data = dev->data; |
|
struct dma_block_config *blk_cfg; |
|
int ret; |
|
|
|
/* remember active TX DMA channel (used in callback) */ |
|
struct stream *stream = &data->dma_tx; |
|
|
|
blk_cfg = &stream->dma_blk_cfg; |
|
|
|
/* prepare the block for this TX DMA channel */ |
|
memset(blk_cfg, 0, sizeof(struct dma_block_config)); |
|
blk_cfg->block_size = len; |
|
|
|
/* tx direction has memory as source and periph as dest. */ |
|
if (buf == NULL) { |
|
/* if tx buff is null, then sends NOP on the line. */ |
|
dummy_rx_tx_buffer = 0; |
|
#if SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED |
|
sys_cache_data_flush_range((void *)&dummy_rx_tx_buffer, sizeof(uint32_t)); |
|
#endif /* SPI_STM32_MANUAL_CACHE_COHERENCY_REQUIRED */ |
|
blk_cfg->source_address = (uint32_t)&dummy_rx_tx_buffer; |
|
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} else { |
|
blk_cfg->source_address = (uint32_t)buf; |
|
if (data->dma_tx.src_addr_increment) { |
|
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
|
} else { |
|
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} |
|
} |
|
|
|
blk_cfg->dest_address = ll_func_dma_get_reg_addr(cfg->spi, SPI_STM32_DMA_TX); |
|
/* fifo mode NOT USED there */ |
|
if (data->dma_tx.dst_addr_increment) { |
|
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
|
} else { |
|
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} |
|
|
|
/* give the fifo mode from the DT */ |
|
blk_cfg->fifo_mode_control = data->dma_tx.fifo_threshold; |
|
|
|
/* direction is given by the DT */ |
|
stream->dma_cfg.head_block = blk_cfg; |
|
/* give the dma channel data as arg, as the callback comes from the dma */ |
|
stream->dma_cfg.user_data = data; |
|
/* pass our client origin to the dma: data->dma_tx.dma_channel */ |
|
ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.channel, |
|
&stream->dma_cfg); |
|
/* the channel is the actual stream from 0 */ |
|
if (ret != 0) { |
|
return ret; |
|
} |
|
|
|
/* gives the request ID to the dma mux */ |
|
return dma_start(data->dma_tx.dma_dev, data->dma_tx.channel); |
|
} |
|
|
|
static int spi_stm32_dma_rx_load(const struct device *dev, uint8_t *buf, |
|
size_t len) |
|
{ |
|
const struct spi_stm32_config *cfg = dev->config; |
|
struct spi_stm32_data *data = dev->data; |
|
struct dma_block_config *blk_cfg; |
|
int ret; |
|
|
|
/* retrieve active RX DMA channel (used in callback) */ |
|
struct stream *stream = &data->dma_rx; |
|
|
|
blk_cfg = &stream->dma_blk_cfg; |
|
|
|
/* prepare the block for this RX DMA channel */ |
|
memset(blk_cfg, 0, sizeof(struct dma_block_config)); |
|
blk_cfg->block_size = len; |
|
|
|
|
|
/* rx direction has periph as source and mem as dest. */ |
|
if (buf == NULL) { |
|
/* if rx buff is null, then write data to dummy address. */ |
|
blk_cfg->dest_address = (uint32_t)&dummy_rx_tx_buffer; |
|
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} else { |
|
blk_cfg->dest_address = (uint32_t)buf; |
|
if (data->dma_rx.dst_addr_increment) { |
|
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
|
} else { |
|
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} |
|
} |
|
|
|
blk_cfg->source_address = ll_func_dma_get_reg_addr(cfg->spi, SPI_STM32_DMA_RX); |
|
if (data->dma_rx.src_addr_increment) { |
|
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT; |
|
} else { |
|
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; |
|
} |
|
|
|
/* give the fifo mode from the DT */ |
|
blk_cfg->fifo_mode_control = data->dma_rx.fifo_threshold; |
|
|
|
/* direction is given by the DT */ |
|
stream->dma_cfg.head_block = blk_cfg; |
|
stream->dma_cfg.user_data = data; |
|
|
|
|
|
/* pass our client origin to the dma: data->dma_rx.channel */ |
|
ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.channel, |
|
&stream->dma_cfg); |
|
/* the channel is the actual stream from 0 */ |
|
if (ret != 0) { |
|
return ret; |
|
} |
|
|
|
/* gives the request ID to the dma mux */ |
|
return dma_start(data->dma_rx.dma_dev, data->dma_rx.channel); |
|
} |
|
|
|
static int spi_dma_move_rx_buffers(const struct device *dev, size_t len) |
|
{ |
|
struct spi_stm32_data *data = dev->data; |
|
size_t dma_segment_len; |
|
|
|
dma_segment_len = len * data->dma_rx.dma_cfg.dest_data_size; |
|
return spi_stm32_dma_rx_load(dev, data->ctx.rx_buf, dma_segment_len); |
|
} |
|
|
|
static int spi_dma_move_tx_buffers(const struct device *dev, size_t len) |
|
{ |
|
struct spi_stm32_data *data = dev->data; |
|
size_t dma_segment_len; |
|
|
|
dma_segment_len = len * data->dma_tx.dma_cfg.source_data_size; |
|
return spi_stm32_dma_tx_load(dev, data->ctx.tx_buf, dma_segment_len); |
|
} |
|
|
|
static int spi_dma_move_buffers(const struct device *dev, size_t len) |
|
{ |
|
int ret; |
|
|
|
ret = spi_dma_move_rx_buffers(dev, len); |
|
|
|
if (ret != 0) { |
|
return ret; |
|
} |
|
|
|
return spi_dma_move_tx_buffers(dev, len); |
|
} |
|
|
|
#endif /* CONFIG_SPI_STM32_DMA */ |
|
|
|
/* Value to shift out when no application data needs transmitting. */ |
|
#define SPI_STM32_TX_NOP 0x00 |
|
|
|
static void spi_stm32_send_next_frame(SPI_TypeDef *spi, |
|
struct spi_stm32_data *data) |
|
{ |
|
const uint8_t frame_size = SPI_WORD_SIZE_GET(data->ctx.config->operation); |
|
uint32_t tx_frame = SPI_STM32_TX_NOP; |
|
|
|
if (frame_size == 8) { |
|
if (spi_context_tx_buf_on(&data->ctx)) { |
|
tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf)); |
|
} |
|
LL_SPI_TransmitData8(spi, tx_frame); |
|
spi_context_update_tx(&data->ctx, 1, 1); |
|
} else { |
|
if (spi_context_tx_buf_on(&data->ctx)) { |
|
tx_frame = UNALIGNED_GET((uint16_t *)(data->ctx.tx_buf)); |
|
} |
|
LL_SPI_TransmitData16(spi, tx_frame); |
|
spi_context_update_tx(&data->ctx, 2, 1); |
|
} |
|
} |
|
|
|
static void spi_stm32_read_next_frame(SPI_TypeDef *spi, |
|
struct spi_stm32_data *data) |
|
{ |
|
const uint8_t frame_size = SPI_WORD_SIZE_GET(data->ctx.config->operation); |
|
uint32_t rx_frame = 0; |
|
|
|
if (frame_size == 8) { |
|
rx_frame = LL_SPI_ReceiveData8(spi); |
|
if (spi_context_rx_buf_on(&data->ctx)) { |
|
UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf); |
|
} |
|
spi_context_update_rx(&data->ctx, 1, 1); |
|
} else { |
|
rx_frame = LL_SPI_ReceiveData16(spi); |
|
if (spi_context_rx_buf_on(&data->ctx)) { |
|
UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf); |
|
} |
|
spi_context_update_rx(&data->ctx, 2, 1); |
|
} |
|
} |
|
|
|
static bool spi_stm32_transfer_ongoing(struct spi_stm32_data *data) |
|
{ |
|
return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx); |
|
} |
|
|
|
static int spi_stm32_get_err(SPI_TypeDef *spi) |
|
{ |
|
uint32_t sr = LL_SPI_ReadReg(spi, SR); |
|
|
|
if (sr & SPI_STM32_ERR_MSK) { |
|
LOG_ERR("%s: err=%d", __func__, |
|
sr & (uint32_t)SPI_STM32_ERR_MSK); |
|
|
|
/* OVR error must be explicitly cleared */ |
|
if (LL_SPI_IsActiveFlag_OVR(spi)) { |
|
LL_SPI_ClearFlag_OVR(spi); |
|
} |
|
|
|
return -EIO; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void spi_stm32_shift_fifo(SPI_TypeDef *spi, struct spi_stm32_data *data) |
|
{ |
|
uint32_t transfer_dir = LL_SPI_GetTransferDirection(spi); |
|
|
|
if (transfer_dir != LL_SPI_HALF_DUPLEX_TX && |
|
ll_func_rx_is_not_empty(spi)) { |
|
spi_stm32_read_next_frame(spi, data); |
|
} |
|
|
|
if (transfer_dir != LL_SPI_HALF_DUPLEX_RX && |
|
ll_func_tx_is_not_full(spi)) { |
|
spi_stm32_send_next_frame(spi, data); |
|
} |
|
} |
|
|
|
/* Shift a SPI frame as master. */ |
|
static void spi_stm32_shift_m(const struct spi_stm32_config *cfg, |
|
struct spi_stm32_data *data) |
|
{ |
|
if (cfg->fifo_enabled) { |
|
spi_stm32_shift_fifo(cfg->spi, data); |
|
} else { |
|
uint32_t transfer_dir = LL_SPI_GetTransferDirection(cfg->spi); |
|
|
|
if (transfer_dir != LL_SPI_HALF_DUPLEX_RX) { |
|
while (!ll_func_tx_is_not_full(cfg->spi)) { |
|
/* NOP */ |
|
} |
|
|
|
spi_stm32_send_next_frame(cfg->spi, data); |
|
} |
|
|
|
if (transfer_dir != LL_SPI_HALF_DUPLEX_TX) { |
|
while (!ll_func_rx_is_not_empty(cfg->spi)) { |
|
/* NOP */ |
|
} |
|
|
|
spi_stm32_read_next_frame(cfg->spi, data); |
|
} |
|
} |
|
} |
|
|
|
/* Shift a SPI frame as slave. */ |
|
static void spi_stm32_shift_s(SPI_TypeDef *spi, struct spi_stm32_data *data) |
|
{ |
|
if (ll_func_tx_is_not_full(spi) && spi_context_tx_on(&data->ctx)) { |
|
uint16_t tx_frame; |
|
|
|
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { |
|
tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf)); |
|
LL_SPI_TransmitData8(spi, tx_frame); |
|
spi_context_update_tx(&data->ctx, 1, 1); |
|
} else { |
|
tx_frame = UNALIGNED_GET((uint16_t *)(data->ctx.tx_buf)); |
|
LL_SPI_TransmitData16(spi, tx_frame); |
|
spi_context_update_tx(&data->ctx, 2, 1); |
|
} |
|
} else { |
|
ll_func_disable_int_tx_empty(spi); |
|
} |
|
|
|
if (ll_func_rx_is_not_empty(spi) && |
|
spi_context_rx_buf_on(&data->ctx)) { |
|
uint16_t rx_frame; |
|
|
|
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) { |
|
rx_frame = LL_SPI_ReceiveData8(spi); |
|
UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf); |
|
spi_context_update_rx(&data->ctx, 1, 1); |
|
} else { |
|
rx_frame = LL_SPI_ReceiveData16(spi); |
|
UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf); |
|
spi_context_update_rx(&data->ctx, 2, 1); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
* Without a FIFO, we can only shift out one frame's worth of SPI |
|
* data, and read the response back. |
|
* |
|
* TODO: support 16-bit data frames. |
|
*/ |
|
static int spi_stm32_shift_frames(const struct spi_stm32_config *cfg, |
|
struct spi_stm32_data *data) |
|
{ |
|
spi_operation_t operation = data->ctx.config->operation; |
|
|
|
if (SPI_OP_MODE_GET(operation) == SPI_OP_MODE_MASTER) { |
|
spi_stm32_shift_m(cfg, data); |
|
} else { |
|
spi_stm32_shift_s(cfg->spi, data); |
|
} |
|
|
|
return spi_stm32_get_err(cfg->spi); |
|
} |
|
|
|
static void spi_stm32_cs_control(const struct device *dev, bool on) |
|
{ |
|
struct spi_stm32_data *data = dev->data; |
|
|
|
spi_context_cs_control(&data->ctx, on); |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz) |
|
const struct spi_stm32_config *cfg = dev->config; |
|
|
|
if (cfg->use_subghzspi_nss) { |
|
if (on) { |
|
LL_PWR_SelectSUBGHZSPI_NSS(); |
|
} else { |
|
LL_PWR_UnselectSUBGHZSPI_NSS(); |
|
} |
|
} |
|
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz) */ |
|
} |
|
|
|
static void spi_stm32_complete(const struct device *dev, int status) |
|
{ |
|
const struct spi_stm32_config *cfg = dev->config; |
|
SPI_TypeDef *spi = cfg->spi; |
|
struct spi_stm32_data *data = dev->data; |
|
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT |
|
ll_func_disable_int_tx_empty(spi); |
|
ll_func_disable_int_rx_not_empty(spi); |
|
ll_func_disable_int_errors(spi); |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
if (cfg->fifo_enabled) { |
|
LL_SPI_DisableIT_EOT(spi); |
|
} |
|
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
|
|
|
#endif /* CONFIG_SPI_STM32_INTERRUPT */ |
|
|
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo) |
|
/* Flush RX buffer */ |
|
while (ll_func_rx_is_not_empty(spi)) { |
|
(void) LL_SPI_ReceiveData8(spi); |
|
} |
|
#endif /* compat st_stm32_spi_fifo*/ |
|
|
|
if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) { |
|
while (ll_func_spi_is_busy(spi)) { |
|
/* NOP */ |
|
} |
|
|
|
spi_stm32_cs_control(dev, false); |
|
} |
|
|
|
/* BSY flag is cleared when MODF flag is raised */ |
|
if (LL_SPI_IsActiveFlag_MODF(spi)) { |
|
LL_SPI_ClearFlag_MODF(spi); |
|
} |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
uint32_t transfer_dir = LL_SPI_GetTransferDirection(spi); |
|
|
|
if (cfg->fifo_enabled) { |
|
LL_SPI_ClearFlag_TXTF(spi); |
|
LL_SPI_ClearFlag_OVR(spi); |
|
LL_SPI_ClearFlag_EOT(spi); |
|
LL_SPI_SetTransferSize(spi, 0); |
|
} else if (transfer_dir == LL_SPI_HALF_DUPLEX_RX) { |
|
LL_SPI_SetTransferSize(spi, 0); |
|
} |
|
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
|
|
|
if (!(data->ctx.config->operation & SPI_HOLD_ON_CS)) { |
|
ll_func_disable_spi(spi); |
|
#if defined(CONFIG_SPI_STM32_INTERRUPT) && defined(CONFIG_SOC_SERIES_STM32H7X) |
|
} else { |
|
/* On H7, with SPI still enabled, the ISR is always called, even if the interrupt |
|
* enable register is cleared. |
|
* As a workaround, disable the IRQ at NVIC level. |
|
*/ |
|
irq_disable(cfg->irq_line); |
|
#endif /* CONFIG_SPI_STM32_INTERRUPT && CONFIG_SOC_SERIES_STM32H7X */ |
|
} |
|
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT |
|
spi_context_complete(&data->ctx, dev, status); |
|
#endif |
|
|
|
spi_stm32_pm_policy_state_lock_put(dev); |
|
} |
|
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT |
|
static void spi_stm32_isr(const struct device *dev) |
|
{ |
|
const struct spi_stm32_config *cfg = dev->config; |
|
struct spi_stm32_data *data = dev->data; |
|
SPI_TypeDef *spi = cfg->spi; |
|
int err; |
|
|
|
/* Some spurious interrupts are triggered when SPI is not enabled; ignore them. |
|
* Do it only when fifo is enabled to leave non-fifo functionality untouched for now |
|
*/ |
|
if (cfg->fifo_enabled) { |
|
if (!LL_SPI_IsEnabled(spi)) { |
|
return; |
|
} |
|
} |
|
|
|
err = spi_stm32_get_err(spi); |
|
if (err) { |
|
spi_stm32_complete(dev, err); |
|
return; |
|
} |
|
|
|
if (spi_stm32_transfer_ongoing(data)) { |
|
err = spi_stm32_shift_frames(cfg, data); |
|
} |
|
|
|
if (err) { |
|
spi_stm32_complete(dev, err); |
|
} |
|
|
|
uint32_t transfer_dir = LL_SPI_GetTransferDirection(spi); |
|
|
|
if (transfer_dir == LL_SPI_FULL_DUPLEX) { |
|
if (!spi_stm32_transfer_ongoing(data)) { |
|
spi_stm32_complete(dev, err); |
|
} |
|
} else if (transfer_dir == LL_SPI_HALF_DUPLEX_TX) { |
|
if (!spi_context_tx_on(&data->ctx)) { |
|
spi_stm32_complete(dev, err); |
|
} |
|
} else { |
|
if (!spi_context_rx_on(&data->ctx)) { |
|
spi_stm32_complete(dev, err); |
|
} |
|
} |
|
} |
|
#endif /* CONFIG_SPI_STM32_INTERRUPT */ |
|
|
|
static int spi_stm32_configure(const struct device *dev, |
|
const struct spi_config *config, |
|
bool write) |
|
{ |
|
const struct spi_stm32_config *cfg = dev->config; |
|
struct spi_stm32_data *data = dev->data; |
|
const uint32_t scaler[] = { |
|
LL_SPI_BAUDRATEPRESCALER_DIV2, |
|
LL_SPI_BAUDRATEPRESCALER_DIV4, |
|
LL_SPI_BAUDRATEPRESCALER_DIV8, |
|
LL_SPI_BAUDRATEPRESCALER_DIV16, |
|
LL_SPI_BAUDRATEPRESCALER_DIV32, |
|
LL_SPI_BAUDRATEPRESCALER_DIV64, |
|
LL_SPI_BAUDRATEPRESCALER_DIV128, |
|
LL_SPI_BAUDRATEPRESCALER_DIV256 |
|
}; |
|
SPI_TypeDef *spi = cfg->spi; |
|
uint32_t clock; |
|
int br; |
|
|
|
if (spi_context_configured(&data->ctx, config)) { |
|
if (config->operation & SPI_HALF_DUPLEX) { |
|
if (write) { |
|
LL_SPI_SetTransferDirection(spi, LL_SPI_HALF_DUPLEX_TX); |
|
} else { |
|
LL_SPI_SetTransferDirection(spi, LL_SPI_HALF_DUPLEX_RX); |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
if ((SPI_WORD_SIZE_GET(config->operation) != 8) |
|
&& (SPI_WORD_SIZE_GET(config->operation) != 16)) { |
|
return -ENOTSUP; |
|
} |
|
|
|
/* configure the frame format Motorola (default) or TI */ |
|
if ((config->operation & SPI_FRAME_FORMAT_TI) == SPI_FRAME_FORMAT_TI) { |
|
#ifdef LL_SPI_PROTOCOL_TI |
|
LL_SPI_SetStandard(spi, LL_SPI_PROTOCOL_TI); |
|
#else |
|
LOG_ERR("Frame Format TI not supported"); |
|
/* on stm32F1 or some stm32L1 (cat1,2) without SPI_CR2_FRF */ |
|
return -ENOTSUP; |
|
#endif |
|
#if defined(LL_SPI_PROTOCOL_MOTOROLA) && defined(SPI_CR2_FRF) |
|
} else { |
|
LL_SPI_SetStandard(spi, LL_SPI_PROTOCOL_MOTOROLA); |
|
#endif |
|
} |
|
|
|
if (IS_ENABLED(STM32_SPI_DOMAIN_CLOCK_SUPPORT) && (cfg->pclk_len > 1)) { |
|
if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), |
|
(clock_control_subsys_t) &cfg->pclken[1], &clock) < 0) { |
|
LOG_ERR("Failed call clock_control_get_rate(pclk[1])"); |
|
return -EIO; |
|
} |
|
} else { |
|
if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), |
|
(clock_control_subsys_t) &cfg->pclken[0], &clock) < 0) { |
|
LOG_ERR("Failed call clock_control_get_rate(pclk[0])"); |
|
return -EIO; |
|
} |
|
} |
|
|
|
for (br = 1 ; br <= ARRAY_SIZE(scaler) ; ++br) { |
|
uint32_t clk = clock >> br; |
|
|
|
if (clk <= config->frequency) { |
|
break; |
|
} |
|
} |
|
|
|
if (br > ARRAY_SIZE(scaler)) { |
|
LOG_ERR("Unsupported frequency %uHz, max %uHz, min %uHz", |
|
config->frequency, |
|
clock >> 1, |
|
clock >> ARRAY_SIZE(scaler)); |
|
return -EINVAL; |
|
} |
|
|
|
LL_SPI_Disable(spi); |
|
LL_SPI_SetBaudRatePrescaler(spi, scaler[br - 1]); |
|
|
|
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) { |
|
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_HIGH); |
|
} else { |
|
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_LOW); |
|
} |
|
|
|
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) { |
|
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_2EDGE); |
|
} else { |
|
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_1EDGE); |
|
} |
|
|
|
if (config->operation & SPI_HALF_DUPLEX) { |
|
if (write) { |
|
LL_SPI_SetTransferDirection(spi, LL_SPI_HALF_DUPLEX_TX); |
|
} else { |
|
LL_SPI_SetTransferDirection(spi, LL_SPI_HALF_DUPLEX_RX); |
|
} |
|
} else { |
|
LL_SPI_SetTransferDirection(spi, LL_SPI_FULL_DUPLEX); |
|
} |
|
|
|
if (config->operation & SPI_TRANSFER_LSB) { |
|
LL_SPI_SetTransferBitOrder(spi, LL_SPI_LSB_FIRST); |
|
} else { |
|
LL_SPI_SetTransferBitOrder(spi, LL_SPI_MSB_FIRST); |
|
} |
|
|
|
LL_SPI_DisableCRC(spi); |
|
|
|
if (spi_cs_is_gpio(config) || !IS_ENABLED(CONFIG_SPI_STM32_USE_HW_SS)) { |
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
if (SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_MASTER) { |
|
if (LL_SPI_GetNSSPolarity(spi) == LL_SPI_NSS_POLARITY_LOW) |
|
LL_SPI_SetInternalSSLevel(spi, LL_SPI_SS_LEVEL_HIGH); |
|
} |
|
#endif |
|
LL_SPI_SetNSSMode(spi, LL_SPI_NSS_SOFT); |
|
} else { |
|
if (config->operation & SPI_OP_MODE_SLAVE) { |
|
LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_INPUT); |
|
} else { |
|
LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_OUTPUT); |
|
} |
|
} |
|
|
|
if (config->operation & SPI_OP_MODE_SLAVE) { |
|
LL_SPI_SetMode(spi, LL_SPI_MODE_SLAVE); |
|
} else { |
|
LL_SPI_SetMode(spi, LL_SPI_MODE_MASTER); |
|
} |
|
|
|
if (SPI_WORD_SIZE_GET(config->operation) == 8) { |
|
LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_8BIT); |
|
} else { |
|
LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_16BIT); |
|
} |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
LL_SPI_SetMasterSSIdleness(spi, cfg->mssi_clocks); |
|
LL_SPI_SetInterDataIdleness(spi, (cfg->midi_clocks << SPI_CFG2_MIDI_Pos)); |
|
#endif |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_fifo) |
|
ll_func_set_fifo_threshold_8bit(spi); |
|
#endif |
|
|
|
/* At this point, it's mandatory to set this on the context! */ |
|
data->ctx.config = config; |
|
|
|
LOG_DBG("Installed config %p: freq %uHz (div = %u)," |
|
" mode %u/%u/%u, slave %u", |
|
config, clock >> br, 1 << br, |
|
(SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) ? 1 : 0, |
|
(SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) ? 1 : 0, |
|
(SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) ? 1 : 0, |
|
config->slave); |
|
|
|
return 0; |
|
} |
|
|
|
static int spi_stm32_release(const struct device *dev, |
|
const struct spi_config *config) |
|
{ |
|
struct spi_stm32_data *data = dev->data; |
|
const struct spi_stm32_config *cfg = dev->config; |
|
|
|
spi_context_unlock_unconditionally(&data->ctx); |
|
ll_func_disable_spi(cfg->spi); |
|
|
|
return 0; |
|
} |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
static int32_t spi_stm32_count_bufset_frames(const struct spi_config *config, |
|
const struct spi_buf_set *bufs) |
|
{ |
|
if (bufs == NULL) { |
|
return 0; |
|
} |
|
|
|
uint32_t num_bytes = 0; |
|
|
|
for (size_t i = 0; i < bufs->count; i++) { |
|
num_bytes += bufs->buffers[i].len; |
|
} |
|
|
|
uint8_t bytes_per_frame = SPI_WORD_SIZE_GET(config->operation) / 8; |
|
|
|
if ((num_bytes % bytes_per_frame) != 0) { |
|
return -EINVAL; |
|
} |
|
|
|
int frames = num_bytes / bytes_per_frame; |
|
|
|
if (frames > UINT16_MAX) { |
|
return -EMSGSIZE; |
|
} |
|
|
|
return frames; |
|
} |
|
|
|
static int32_t spi_stm32_count_total_frames(const struct spi_config *config, |
|
const struct spi_buf_set *tx_bufs, |
|
const struct spi_buf_set *rx_bufs) |
|
{ |
|
int tx_frames = spi_stm32_count_bufset_frames(config, tx_bufs); |
|
|
|
if (tx_frames < 0) { |
|
return tx_frames; |
|
} |
|
|
|
int rx_frames = spi_stm32_count_bufset_frames(config, rx_bufs); |
|
|
|
if (rx_frames < 0) { |
|
return rx_frames; |
|
} |
|
|
|
return MAX(rx_frames, tx_frames); |
|
} |
|
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
|
|
|
static int spi_stm32_half_duplex_switch_to_receive(const struct spi_stm32_config *cfg, |
|
struct spi_stm32_data *data) |
|
{ |
|
SPI_TypeDef *spi = cfg->spi; |
|
|
|
if (!spi_context_tx_on(&data->ctx) && |
|
spi_context_rx_on(&data->ctx)) { |
|
#ifndef CONFIG_SPI_STM32_INTERRUPT |
|
while (ll_func_spi_is_busy(spi)) { |
|
/* NOP */ |
|
} |
|
LL_SPI_Disable(spi); |
|
#endif /* CONFIG_SPI_STM32_INTERRUPT*/ |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
const struct spi_config *config = data->ctx.config; |
|
|
|
if (SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_MASTER) { |
|
int num_bytes = spi_context_total_rx_len(&data->ctx); |
|
uint8_t bytes_per_frame = SPI_WORD_SIZE_GET(config->operation) / 8; |
|
|
|
if ((num_bytes % bytes_per_frame) != 0) { |
|
return -EINVAL; |
|
} |
|
|
|
LL_SPI_SetTransferSize(spi, (uint32_t) num_bytes / bytes_per_frame); |
|
} |
|
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
|
|
|
LL_SPI_SetTransferDirection(spi, LL_SPI_HALF_DUPLEX_RX); |
|
|
|
LL_SPI_Enable(spi); |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
/* With the STM32MP1, STM32U5 and the STM32H7, |
|
* if the device is the SPI master, |
|
* we need to enable the start of the transfer with |
|
* LL_SPI_StartMasterTransfer(spi). |
|
*/ |
|
if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) { |
|
LL_SPI_StartMasterTransfer(spi); |
|
while (!LL_SPI_IsActiveMasterTransfer(spi)) { |
|
/* NOP */ |
|
} |
|
} |
|
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
|
|
|
#if CONFIG_SOC_SERIES_STM32H7X |
|
/* |
|
* Add a small delay after enabling to prevent transfer stalling at high |
|
* system clock frequency (see errata sheet ES0392). |
|
*/ |
|
k_busy_wait(WAIT_1US); |
|
#endif |
|
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT |
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
if (cfg->fifo_enabled) { |
|
LL_SPI_EnableIT_EOT(spi); |
|
} |
|
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
|
|
|
ll_func_enable_int_errors(spi); |
|
ll_func_enable_int_rx_not_empty(spi); |
|
#endif /* CONFIG_SPI_STM32_INTERRUPT */ |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static int transceive(const struct device *dev, |
|
const struct spi_config *config, |
|
const struct spi_buf_set *tx_bufs, |
|
const struct spi_buf_set *rx_bufs, |
|
bool asynchronous, |
|
spi_callback_t cb, |
|
void *userdata) |
|
{ |
|
const struct spi_stm32_config *cfg = dev->config; |
|
struct spi_stm32_data *data = dev->data; |
|
SPI_TypeDef *spi = cfg->spi; |
|
int ret; |
|
|
|
if (!tx_bufs && !rx_bufs) { |
|
return 0; |
|
} |
|
|
|
#ifndef CONFIG_SPI_STM32_INTERRUPT |
|
if (asynchronous) { |
|
return -ENOTSUP; |
|
} |
|
#endif /* CONFIG_SPI_STM32_INTERRUPT */ |
|
|
|
spi_context_lock(&data->ctx, asynchronous, cb, userdata, config); |
|
|
|
spi_stm32_pm_policy_state_lock_get(dev); |
|
|
|
ret = spi_stm32_configure(dev, config, tx_bufs != NULL); |
|
if (ret) { |
|
goto end; |
|
} |
|
|
|
/* Set buffers info */ |
|
if (SPI_WORD_SIZE_GET(config->operation) == 8) { |
|
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); |
|
} else { |
|
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 2); |
|
} |
|
|
|
uint32_t transfer_dir = LL_SPI_GetTransferDirection(spi); |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
if (cfg->fifo_enabled && SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_MASTER) { |
|
int total_frames; |
|
|
|
if (transfer_dir == LL_SPI_FULL_DUPLEX) { |
|
total_frames = spi_stm32_count_total_frames( |
|
config, tx_bufs, rx_bufs); |
|
} else if (transfer_dir == LL_SPI_HALF_DUPLEX_TX) { |
|
total_frames = spi_stm32_count_bufset_frames( |
|
config, tx_bufs); |
|
} else { |
|
total_frames = spi_stm32_count_bufset_frames( |
|
config, rx_bufs); |
|
} |
|
|
|
if (total_frames < 0) { |
|
ret = total_frames; |
|
goto end; |
|
} |
|
LL_SPI_SetTransferSize(spi, (uint32_t)total_frames); |
|
} |
|
|
|
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
|
|
|
#if defined(CONFIG_SPI_STM32_INTERRUPT) && defined(CONFIG_SOC_SERIES_STM32H7X) |
|
/* Make sure IRQ is disabled to avoid any spurious IRQ to happen */ |
|
irq_disable(cfg->irq_line); |
|
#endif /* CONFIG_SPI_STM32_INTERRUPT && CONFIG_SOC_SERIES_STM32H7X */ |
|
LL_SPI_Enable(spi); |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
/* With the STM32MP1, STM32U5 and the STM32H7, |
|
* if the device is the SPI master, |
|
* we need to enable the start of the transfer with |
|
* LL_SPI_StartMasterTransfer(spi) |
|
*/ |
|
if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) { |
|
LL_SPI_StartMasterTransfer(spi); |
|
while (!LL_SPI_IsActiveMasterTransfer(spi)) { |
|
/* NOP */ |
|
} |
|
} |
|
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
|
|
|
#ifdef CONFIG_SOC_SERIES_STM32H7X |
|
/* |
|
* Add a small delay after enabling to prevent transfer stalling at high |
|
* system clock frequency (see errata sheet ES0392). |
|
*/ |
|
k_busy_wait(WAIT_1US); |
|
#endif /* CONFIG_SOC_SERIES_STM32H7X */ |
|
|
|
/* This is turned off in spi_stm32_complete(). */ |
|
spi_stm32_cs_control(dev, true); |
|
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
if (cfg->fifo_enabled) { |
|
LL_SPI_EnableIT_EOT(spi); |
|
} |
|
#endif /* DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) */ |
|
|
|
ll_func_enable_int_errors(spi); |
|
|
|
if (rx_bufs) { |
|
ll_func_enable_int_rx_not_empty(spi); |
|
} |
|
|
|
ll_func_enable_int_tx_empty(spi); |
|
|
|
#if defined(CONFIG_SPI_STM32_INTERRUPT) && defined(CONFIG_SOC_SERIES_STM32H7X) |
|
irq_enable(cfg->irq_line); |
|
#endif /* CONFIG_SPI_STM32_INTERRUPT && CONFIG_SOC_SERIES_STM32H7X */ |
|
|
|
do { |
|
ret = spi_context_wait_for_completion(&data->ctx); |
|
|
|
if (!ret && |
|
transfer_dir == LL_SPI_HALF_DUPLEX_TX) { |
|
ret = spi_stm32_half_duplex_switch_to_receive(cfg, data); |
|
transfer_dir = LL_SPI_GetTransferDirection(spi); |
|
} |
|
} while (!ret && spi_stm32_transfer_ongoing(data)); |
|
#else /* CONFIG_SPI_STM32_INTERRUPT */ |
|
do { |
|
ret = spi_stm32_shift_frames(cfg, data); |
|
|
|
if (!ret && |
|
transfer_dir == LL_SPI_HALF_DUPLEX_TX) { |
|
ret = spi_stm32_half_duplex_switch_to_receive(cfg, data); |
|
transfer_dir = LL_SPI_GetTransferDirection(spi); |
|
} |
|
} while (!ret && spi_stm32_transfer_ongoing(data)); |
|
|
|
spi_stm32_complete(dev, ret); |
|
|
|
#ifdef CONFIG_SPI_SLAVE |
|
if (spi_context_is_slave(&data->ctx) && !ret) { |
|
ret = data->ctx.recv_frames; |
|
} |
|
#endif /* CONFIG_SPI_SLAVE */ |
|
|
|
#endif /* CONFIG_SPI_STM32_INTERRUPT */ |
|
|
|
end: |
|
spi_context_release(&data->ctx, ret); |
|
|
|
return ret; |
|
} |
|
|
|
#ifdef CONFIG_SPI_STM32_DMA |
|
|
|
static int wait_dma_rx_tx_done(const struct device *dev) |
|
{ |
|
struct spi_stm32_data *data = dev->data; |
|
int res = -1; |
|
k_timeout_t timeout; |
|
|
|
/* |
|
* In slave mode we do not know when the transaction will start. Hence, |
|
* it doesn't make sense to have timeout in this case. |
|
*/ |
|
if (IS_ENABLED(CONFIG_SPI_SLAVE) && spi_context_is_slave(&data->ctx)) { |
|
timeout = K_FOREVER; |
|
} else { |
|
timeout = K_MSEC(1000); |
|
} |
|
|
|
while (1) { |
|
res = k_sem_take(&data->status_sem, timeout); |
|
if (res != 0) { |
|
return res; |
|
} |
|
|
|
if (data->status_flags & SPI_STM32_DMA_ERROR_FLAG) { |
|
return -EIO; |
|
} |
|
|
|
if (data->status_flags & SPI_STM32_DMA_DONE_FLAG) { |
|
return 0; |
|
} |
|
} |
|
|
|
return res; |
|
} |
|
|
|
#ifdef CONFIG_DCACHE |
|
static bool is_dummy_buffer(const struct spi_buf *buf) |
|
{ |
|
return buf->buf == NULL; |
|
} |
|
|
|
static bool spi_buf_set_in_nocache(const struct spi_buf_set *bufs) |
|
{ |
|
for (size_t i = 0; i < bufs->count; i++) { |
|
const struct spi_buf *buf = &bufs->buffers[i]; |
|
|
|
if (!is_dummy_buffer(buf) && |
|
!stm32_buf_in_nocache((uintptr_t)buf->buf, buf->len)) { |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
#endif /* CONFIG_DCACHE */ |
|
|
|
static int transceive_dma(const struct device *dev, |
|
const struct spi_config *config, |
|
const struct spi_buf_set *tx_bufs, |
|
const struct spi_buf_set *rx_bufs, |
|
bool asynchronous, |
|
spi_callback_t cb, |
|
void *userdata) |
|
{ |
|
const struct spi_stm32_config *cfg = dev->config; |
|
struct spi_stm32_data *data = dev->data; |
|
SPI_TypeDef *spi = cfg->spi; |
|
int ret; |
|
int err; |
|
|
|
if (!tx_bufs && !rx_bufs) { |
|
return 0; |
|
} |
|
|
|
if (asynchronous) { |
|
return -ENOTSUP; |
|
} |
|
|
|
#ifdef CONFIG_DCACHE |
|
if ((tx_bufs != NULL && !spi_buf_set_in_nocache(tx_bufs)) || |
|
(rx_bufs != NULL && !spi_buf_set_in_nocache(rx_bufs))) { |
|
LOG_ERR("SPI DMA transfers not supported on cached memory"); |
|
return -ENOTSUP; |
|
} |
|
#endif /* CONFIG_DCACHE */ |
|
|
|
spi_context_lock(&data->ctx, asynchronous, cb, userdata, config); |
|
|
|
spi_stm32_pm_policy_state_lock_get(dev); |
|
|
|
k_sem_reset(&data->status_sem); |
|
|
|
ret = spi_stm32_configure(dev, config, tx_bufs != NULL); |
|
if (ret) { |
|
goto end; |
|
} |
|
|
|
uint32_t transfer_dir = LL_SPI_GetTransferDirection(spi); |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
if (transfer_dir == LL_SPI_HALF_DUPLEX_RX) { |
|
int frames = spi_stm32_count_bufset_frames(config, rx_bufs); |
|
|
|
if (frames < 0) { |
|
ret = frames; |
|
goto end; |
|
} |
|
|
|
LL_SPI_SetTransferSize(cfg->spi, frames); |
|
} |
|
#endif /* st_stm32h7_spi */ |
|
|
|
/* Set buffers info */ |
|
if (SPI_WORD_SIZE_GET(config->operation) == 8) { |
|
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); |
|
} else { |
|
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 2); |
|
} |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
/* set request before enabling (else SPI CFG1 reg is write protected) */ |
|
if (transfer_dir == LL_SPI_FULL_DUPLEX) { |
|
LL_SPI_EnableDMAReq_RX(spi); |
|
LL_SPI_EnableDMAReq_TX(spi); |
|
} else if (transfer_dir == LL_SPI_HALF_DUPLEX_TX) { |
|
LL_SPI_EnableDMAReq_TX(spi); |
|
} else { |
|
LL_SPI_EnableDMAReq_RX(spi); |
|
} |
|
|
|
LL_SPI_Enable(spi); |
|
|
|
/* In half-duplex rx mode, start transfer after |
|
* setting DMA configurations |
|
*/ |
|
if (transfer_dir != LL_SPI_HALF_DUPLEX_RX && |
|
LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) { |
|
LL_SPI_StartMasterTransfer(spi); |
|
} |
|
#else |
|
LL_SPI_Enable(spi); |
|
#endif /* st_stm32h7_spi */ |
|
|
|
/* This is turned off in spi_stm32_complete(). */ |
|
spi_stm32_cs_control(dev, true); |
|
|
|
uint8_t word_size_bytes = bits2bytes(SPI_WORD_SIZE_GET(config->operation)); |
|
|
|
data->dma_rx.dma_cfg.source_data_size = word_size_bytes; |
|
data->dma_rx.dma_cfg.dest_data_size = word_size_bytes; |
|
data->dma_tx.dma_cfg.source_data_size = word_size_bytes; |
|
data->dma_tx.dma_cfg.dest_data_size = word_size_bytes; |
|
|
|
while (data->ctx.rx_len > 0 || data->ctx.tx_len > 0) { |
|
size_t dma_len; |
|
|
|
data->status_flags = 0; |
|
|
|
if (transfer_dir == LL_SPI_FULL_DUPLEX) { |
|
if (data->ctx.rx_len == 0) { |
|
dma_len = data->ctx.tx_len; |
|
} else if (data->ctx.tx_len == 0) { |
|
dma_len = data->ctx.rx_len; |
|
} else { |
|
dma_len = MIN(data->ctx.tx_len, data->ctx.rx_len); |
|
} |
|
|
|
ret = spi_dma_move_buffers(dev, dma_len); |
|
} else if (transfer_dir == LL_SPI_HALF_DUPLEX_TX) { |
|
dma_len = data->ctx.tx_len; |
|
ret = spi_dma_move_tx_buffers(dev, dma_len); |
|
} else { |
|
dma_len = data->ctx.rx_len; |
|
ret = spi_dma_move_rx_buffers(dev, dma_len); |
|
} |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
if (transfer_dir == LL_SPI_HALF_DUPLEX_RX && |
|
LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) { |
|
LL_SPI_StartMasterTransfer(spi); |
|
} |
|
#endif /* st_stm32h7_spi */ |
|
|
|
if (ret != 0) { |
|
break; |
|
} |
|
|
|
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
|
|
/* toggle the DMA request to restart the transfer */ |
|
if (transfer_dir == LL_SPI_FULL_DUPLEX) { |
|
LL_SPI_EnableDMAReq_RX(spi); |
|
LL_SPI_EnableDMAReq_TX(spi); |
|
} else if (transfer_dir == LL_SPI_HALF_DUPLEX_TX) { |
|
LL_SPI_EnableDMAReq_TX(spi); |
|
} else { |
|
LL_SPI_EnableDMAReq_RX(spi); |
|
} |
|
#endif /* ! st_stm32h7_spi */ |
|
|
|
ret = wait_dma_rx_tx_done(dev); |
|
if (ret != 0) { |
|
break; |
|
} |
|
|
|
#ifdef SPI_SR_FTLVL |
|
while (LL_SPI_GetTxFIFOLevel(spi) > 0) { |
|
} |
|
#endif /* SPI_SR_FTLVL */ |
|
|
|
#ifdef CONFIG_SPI_STM32_ERRATA_BUSY |
|
WAIT_FOR(ll_func_spi_dma_busy(spi) != 0, |
|
CONFIG_SPI_STM32_BUSY_FLAG_TIMEOUT, |
|
k_yield()); |
|
#else |
|
/* wait until spi is no more busy (spi TX fifo is really empty) */ |
|
while (ll_func_spi_dma_busy(spi) == 0) { |
|
} |
|
#endif /* CONFIG_SPI_STM32_ERRATA_BUSY */ |
|
|
|
#if !DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
/* toggle the DMA transfer request */ |
|
LL_SPI_DisableDMAReq_TX(spi); |
|
LL_SPI_DisableDMAReq_RX(spi); |
|
#endif /* ! st_stm32h7_spi */ |
|
|
|
uint8_t frame_size_bytes = bits2bytes( |
|
SPI_WORD_SIZE_GET(config->operation)); |
|
|
|
if (transfer_dir == LL_SPI_FULL_DUPLEX) { |
|
spi_context_update_tx(&data->ctx, frame_size_bytes, dma_len); |
|
spi_context_update_rx(&data->ctx, frame_size_bytes, dma_len); |
|
} else if (transfer_dir == LL_SPI_HALF_DUPLEX_TX) { |
|
spi_context_update_tx(&data->ctx, frame_size_bytes, dma_len); |
|
} else { |
|
spi_context_update_rx(&data->ctx, frame_size_bytes, dma_len); |
|
} |
|
|
|
if (transfer_dir == LL_SPI_HALF_DUPLEX_TX && |
|
!spi_context_tx_on(&data->ctx) && |
|
spi_context_rx_on(&data->ctx)) { |
|
LL_SPI_Disable(spi); |
|
LL_SPI_SetTransferDirection(spi, LL_SPI_HALF_DUPLEX_RX); |
|
|
|
transfer_dir = LL_SPI_HALF_DUPLEX_RX; |
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi) |
|
int frames = spi_stm32_count_bufset_frames(config, rx_bufs); |
|
|
|
if (frames < 0) { |
|
ret = frames; |
|
break; |
|
} |
|
|
|
LL_SPI_SetTransferSize(cfg->spi, frames); |
|
|
|
LL_SPI_EnableDMAReq_RX(spi); |
|
#endif /* st_stm32h7_spi */ |
|
|
|
LL_SPI_Enable(spi); |
|
} |
|
} |
|
|
|
/* spi complete relies on SPI Status Reg which cannot be disabled */ |
|
spi_stm32_complete(dev, ret); |
|
/* disable spi instance after completion */ |
|
LL_SPI_Disable(spi); |
|
/* The Config. Reg. on some mcus is write un-protected when SPI is disabled */ |
|
LL_SPI_DisableDMAReq_TX(spi); |
|
LL_SPI_DisableDMAReq_RX(spi); |
|
|
|
err = dma_stop(data->dma_rx.dma_dev, data->dma_rx.channel); |
|
if (err) { |
|
LOG_DBG("Rx dma_stop failed with error %d", err); |
|
} |
|
err = dma_stop(data->dma_tx.dma_dev, data->dma_tx.channel); |
|
if (err) { |
|
LOG_DBG("Tx dma_stop failed with error %d", err); |
|
} |
|
|
|
#ifdef CONFIG_SPI_SLAVE |
|
if (spi_context_is_slave(&data->ctx) && !ret) { |
|
ret = data->ctx.recv_frames; |
|
} |
|
#endif /* CONFIG_SPI_SLAVE */ |
|
|
|
end: |
|
spi_context_release(&data->ctx, ret); |
|
|
|
spi_stm32_pm_policy_state_lock_put(dev); |
|
|
|
return ret; |
|
} |
|
#endif /* CONFIG_SPI_STM32_DMA */ |
|
|
|
static int spi_stm32_transceive(const struct device *dev, |
|
const struct spi_config *config, |
|
const struct spi_buf_set *tx_bufs, |
|
const struct spi_buf_set *rx_bufs) |
|
{ |
|
#ifdef CONFIG_SPI_STM32_DMA |
|
struct spi_stm32_data *data = dev->data; |
|
|
|
if ((data->dma_tx.dma_dev != NULL) |
|
&& (data->dma_rx.dma_dev != NULL)) { |
|
return transceive_dma(dev, config, tx_bufs, rx_bufs, |
|
false, NULL, NULL); |
|
} |
|
#endif /* CONFIG_SPI_STM32_DMA */ |
|
return transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL); |
|
} |
|
|
|
#ifdef CONFIG_SPI_ASYNC |
|
static int spi_stm32_transceive_async(const struct device *dev, |
|
const struct spi_config *config, |
|
const struct spi_buf_set *tx_bufs, |
|
const struct spi_buf_set *rx_bufs, |
|
spi_callback_t cb, |
|
void *userdata) |
|
{ |
|
return transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata); |
|
} |
|
#endif /* CONFIG_SPI_ASYNC */ |
|
|
|
static DEVICE_API(spi, api_funcs) = { |
|
.transceive = spi_stm32_transceive, |
|
#ifdef CONFIG_SPI_ASYNC |
|
.transceive_async = spi_stm32_transceive_async, |
|
#endif |
|
#ifdef CONFIG_SPI_RTIO |
|
.iodev_submit = spi_rtio_iodev_default_submit, |
|
#endif |
|
.release = spi_stm32_release, |
|
}; |
|
|
|
static inline bool spi_stm32_is_subghzspi(const struct device *dev) |
|
{ |
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz) |
|
const struct spi_stm32_config *cfg = dev->config; |
|
|
|
return cfg->use_subghzspi_nss; |
|
#else |
|
ARG_UNUSED(dev); |
|
return false; |
|
#endif /* st_stm32_spi_subghz */ |
|
} |
|
|
|
static int spi_stm32_init(const struct device *dev) |
|
{ |
|
struct spi_stm32_data *data __attribute__((unused)) = dev->data; |
|
const struct spi_stm32_config *cfg = dev->config; |
|
int err; |
|
|
|
if (!device_is_ready(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE))) { |
|
LOG_ERR("clock control device not ready"); |
|
return -ENODEV; |
|
} |
|
|
|
err = clock_control_on(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), |
|
(clock_control_subsys_t) &cfg->pclken[0]); |
|
if (err < 0) { |
|
LOG_ERR("Could not enable SPI clock"); |
|
return err; |
|
} |
|
|
|
if (IS_ENABLED(STM32_SPI_DOMAIN_CLOCK_SUPPORT) && (cfg->pclk_len > 1)) { |
|
err = clock_control_configure(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), |
|
(clock_control_subsys_t) &cfg->pclken[1], |
|
NULL); |
|
if (err < 0) { |
|
LOG_ERR("Could not select SPI domain clock"); |
|
return err; |
|
} |
|
} |
|
|
|
if (!spi_stm32_is_subghzspi(dev)) { |
|
/* Configure dt provided device signals when available */ |
|
err = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); |
|
if (err < 0) { |
|
LOG_ERR("SPI pinctrl setup failed (%d)", err); |
|
return err; |
|
} |
|
} |
|
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT |
|
cfg->irq_config(dev); |
|
#endif /* CONFIG_SPI_STM32_INTERRUPT */ |
|
|
|
#ifdef CONFIG_SPI_STM32_DMA |
|
if ((data->dma_rx.dma_dev != NULL) && |
|
!device_is_ready(data->dma_rx.dma_dev)) { |
|
LOG_ERR("%s device not ready", data->dma_rx.dma_dev->name); |
|
return -ENODEV; |
|
} |
|
|
|
if ((data->dma_tx.dma_dev != NULL) && |
|
!device_is_ready(data->dma_tx.dma_dev)) { |
|
LOG_ERR("%s device not ready", data->dma_tx.dma_dev->name); |
|
return -ENODEV; |
|
} |
|
|
|
LOG_DBG("SPI with DMA transfer"); |
|
|
|
#endif /* CONFIG_SPI_STM32_DMA */ |
|
|
|
err = spi_context_cs_configure_all(&data->ctx); |
|
if (err < 0) { |
|
return err; |
|
} |
|
|
|
spi_context_unlock_unconditionally(&data->ctx); |
|
|
|
return pm_device_runtime_enable(dev); |
|
} |
|
|
|
#ifdef CONFIG_PM_DEVICE |
|
static int spi_stm32_pm_action(const struct device *dev, |
|
enum pm_device_action action) |
|
{ |
|
const struct spi_stm32_config *config = dev->config; |
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
|
int err; |
|
|
|
|
|
switch (action) { |
|
case PM_DEVICE_ACTION_RESUME: |
|
if (!spi_stm32_is_subghzspi(dev)) { |
|
/* Set pins to active state */ |
|
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); |
|
if (err < 0) { |
|
return err; |
|
} |
|
} |
|
|
|
/* enable clock */ |
|
err = clock_control_on(clk, (clock_control_subsys_t)&config->pclken[0]); |
|
if (err != 0) { |
|
LOG_ERR("Could not enable SPI clock"); |
|
return err; |
|
} |
|
break; |
|
case PM_DEVICE_ACTION_SUSPEND: |
|
/* Stop device clock. */ |
|
err = clock_control_off(clk, (clock_control_subsys_t)&config->pclken[0]); |
|
if (err != 0) { |
|
LOG_ERR("Could not disable SPI clock"); |
|
return err; |
|
} |
|
|
|
if (!spi_stm32_is_subghzspi(dev)) { |
|
/* Move pins to sleep state */ |
|
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP); |
|
if ((err < 0) && (err != -ENOENT)) { |
|
/* |
|
* If returning -ENOENT, no pins where defined for sleep mode : |
|
* Do not output on console (might sleep already) when going to |
|
* sleep, |
|
* "SPI pinctrl sleep state not available" |
|
* and don't block PM suspend. |
|
* Else return the error. |
|
*/ |
|
return err; |
|
} |
|
} |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
|
|
return 0; |
|
} |
|
#endif /* CONFIG_PM_DEVICE */ |
|
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT |
|
#define STM32_SPI_IRQ_HANDLER_DECL(id) \ |
|
static void spi_stm32_irq_config_func_##id(const struct device *dev) |
|
#define STM32_SPI_IRQ_HANDLER_FUNC(id) \ |
|
.irq_config = spi_stm32_irq_config_func_##id, \ |
|
IF_ENABLED(CONFIG_SOC_SERIES_STM32H7X, \ |
|
(.irq_line = DT_INST_IRQN(id),)) |
|
#define STM32_SPI_IRQ_HANDLER(id) \ |
|
static void spi_stm32_irq_config_func_##id(const struct device *dev) \ |
|
{ \ |
|
IRQ_CONNECT(DT_INST_IRQN(id), \ |
|
DT_INST_IRQ(id, priority), \ |
|
spi_stm32_isr, DEVICE_DT_INST_GET(id), 0); \ |
|
irq_enable(DT_INST_IRQN(id)); \ |
|
} |
|
#else |
|
#define STM32_SPI_IRQ_HANDLER_DECL(id) |
|
#define STM32_SPI_IRQ_HANDLER_FUNC(id) |
|
#define STM32_SPI_IRQ_HANDLER(id) |
|
#endif /* CONFIG_SPI_STM32_INTERRUPT */ |
|
|
|
#define SPI_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \ |
|
.dma_dev = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \ |
|
.channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ |
|
.dma_cfg = { \ |
|
.dma_slot = STM32_DMA_SLOT(index, dir, slot),\ |
|
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
|
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
|
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
|
.source_burst_length = 1, /* SINGLE transfer */ \ |
|
.dest_burst_length = 1, /* SINGLE transfer */ \ |
|
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\ |
|
.dma_callback = dma_callback, \ |
|
.block_count = 2, \ |
|
}, \ |
|
.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
|
.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \ |
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \ |
|
.fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \ |
|
STM32_DMA_FEATURES(index, dir)), \ |
|
|
|
|
|
#ifdef CONFIG_SPI_STM32_DMA |
|
#define SPI_DMA_CHANNEL(id, dir, DIR, src, dest) \ |
|
.dma_##dir = { \ |
|
COND_CODE_1(DT_INST_DMAS_HAS_NAME(id, dir), \ |
|
(SPI_DMA_CHANNEL_INIT(id, dir, DIR, src, dest)),\ |
|
(NULL)) \ |
|
}, |
|
#define SPI_DMA_STATUS_SEM(id) \ |
|
.status_sem = Z_SEM_INITIALIZER( \ |
|
spi_stm32_dev_data_##id.status_sem, 0, 1), |
|
#else |
|
#define SPI_DMA_CHANNEL(id, dir, DIR, src, dest) |
|
#define SPI_DMA_STATUS_SEM(id) |
|
#endif /* CONFIG_SPI_STM32_DMA */ |
|
|
|
#define SPI_SUPPORTS_FIFO(id) DT_INST_NODE_HAS_PROP(id, fifo_enable) |
|
#define SPI_GET_FIFO_PROP(id) DT_INST_PROP(id, fifo_enable) |
|
#define SPI_FIFO_ENABLED(id) COND_CODE_1(SPI_SUPPORTS_FIFO(id), (SPI_GET_FIFO_PROP(id)), (0)) |
|
|
|
#define STM32_SPI_INIT(id) \ |
|
STM32_SPI_IRQ_HANDLER_DECL(id); \ |
|
\ |
|
PINCTRL_DT_INST_DEFINE(id); \ |
|
\ |
|
static const struct stm32_pclken pclken_##id[] = \ |
|
STM32_DT_INST_CLOCKS(id);\ |
|
\ |
|
static const struct spi_stm32_config spi_stm32_cfg_##id = { \ |
|
.spi = (SPI_TypeDef *) DT_INST_REG_ADDR(id), \ |
|
.pclken = pclken_##id, \ |
|
.pclk_len = DT_INST_NUM_CLOCKS(id), \ |
|
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(id), \ |
|
.fifo_enabled = SPI_FIFO_ENABLED(id), \ |
|
STM32_SPI_IRQ_HANDLER_FUNC(id) \ |
|
IF_ENABLED(DT_HAS_COMPAT_STATUS_OKAY(st_stm32_spi_subghz), \ |
|
(.use_subghzspi_nss = \ |
|
DT_INST_PROP_OR(id, use_subghzspi_nss, false),))\ |
|
IF_ENABLED(DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi), \ |
|
(.midi_clocks = \ |
|
DT_INST_PROP(id, midi_clock),)) \ |
|
IF_ENABLED(DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_spi), \ |
|
(.mssi_clocks = \ |
|
DT_INST_PROP(id, mssi_clock),)) \ |
|
}; \ |
|
\ |
|
static struct spi_stm32_data spi_stm32_dev_data_##id = { \ |
|
SPI_CONTEXT_INIT_LOCK(spi_stm32_dev_data_##id, ctx), \ |
|
SPI_CONTEXT_INIT_SYNC(spi_stm32_dev_data_##id, ctx), \ |
|
SPI_DMA_CHANNEL(id, rx, RX, PERIPHERAL, MEMORY) \ |
|
SPI_DMA_CHANNEL(id, tx, TX, MEMORY, PERIPHERAL) \ |
|
SPI_DMA_STATUS_SEM(id) \ |
|
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(id), ctx) \ |
|
}; \ |
|
\ |
|
PM_DEVICE_DT_INST_DEFINE(id, spi_stm32_pm_action); \ |
|
\ |
|
SPI_DEVICE_DT_INST_DEFINE(id, spi_stm32_init, PM_DEVICE_DT_INST_GET(id),\ |
|
&spi_stm32_dev_data_##id, &spi_stm32_cfg_##id, \ |
|
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ |
|
&api_funcs); \ |
|
\ |
|
STM32_SPI_IRQ_HANDLER(id) |
|
|
|
DT_INST_FOREACH_STATUS_OKAY(STM32_SPI_INIT)
|
|
|