Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

540 lines
17 KiB

/*
* Copyright (c) 2024-2025 Renesas Electronics Corporation
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT renesas_rz_scif_uart
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include "r_scif_uart.h"
LOG_MODULE_REGISTER(rz_scif_uart);
struct uart_rz_scif_config {
const struct pinctrl_dev_config *pin_config;
const uart_api_t *fsp_api;
};
struct uart_rz_scif_int {
bool rxi_flag;
bool tei_flag;
bool rx_fifo_busy;
bool irq_rx_enable;
bool irq_tx_enable;
uint8_t rx_byte;
uint8_t tx_byte;
uart_event_t event;
};
struct uart_rz_scif_data {
struct uart_config uart_config;
uart_cfg_t *fsp_cfg;
struct uart_rz_scif_int int_data;
scif_uart_instance_ctrl_t *fsp_ctrl;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t callback;
void *callback_data;
#endif
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
void scif_uart_rxi_isr(void *irq);
void scif_uart_txi_isr(void *irq);
void scif_uart_tei_isr(void *irq);
void scif_uart_eri_isr(void *irq);
void scif_uart_bri_isr(void *irq);
#endif
static int uart_rz_scif_poll_in(const struct device *dev, unsigned char *c)
{
struct uart_rz_scif_data *data = dev->data;
R_SCIFA0_Type *reg = data->fsp_ctrl->p_reg;
if (reg->FDR_b.R == 0U) {
/* There are no characters available to read. */
return -1;
}
*c = reg->FRDR;
return 0;
}
static void uart_rz_scif_poll_out(const struct device *dev, unsigned char c)
{
struct uart_rz_scif_data *data = dev->data;
R_SCIFA0_Type *reg = data->fsp_ctrl->p_reg;
uint8_t key;
key = irq_lock();
while (!reg->FSR_b.TDFE) {
}
reg->FTDR = c;
while (!reg->FSR_b.TEND) {
}
irq_unlock(key);
}
static int uart_rz_scif_err_check(const struct device *dev)
{
struct uart_rz_scif_data *data = dev->data;
uart_event_t event = data->int_data.event;
int err = 0;
if (event & UART_EVENT_ERR_OVERFLOW) {
err |= UART_ERROR_OVERRUN;
}
if (event & UART_EVENT_ERR_FRAMING) {
err |= UART_ERROR_FRAMING;
}
if (event & UART_EVENT_ERR_PARITY) {
err |= UART_ERROR_PARITY;
}
return err;
}
static int uart_rz_scif_apply_config(const struct device *dev)
{
struct uart_rz_scif_data *data = dev->data;
struct uart_config *uart_config = &data->uart_config;
uart_cfg_t *fsp_cfg = data->fsp_cfg;
data->fsp_ctrl->p_cfg = data->fsp_cfg;
scif_baud_setting_t baud_setting;
scif_uart_extended_cfg_t *fsp_config_extend = (scif_uart_extended_cfg_t *)fsp_cfg->p_extend;
fsp_err_t fsp_err;
fsp_err = R_SCIF_UART_BaudCalculate(data->fsp_ctrl, uart_config->baudrate, false, 5000,
&baud_setting);
if (fsp_err) {
return -EIO;
}
memcpy(fsp_config_extend->p_baud_setting, &baud_setting, sizeof(scif_baud_setting_t));
switch (uart_config->data_bits) {
case UART_CFG_DATA_BITS_7:
fsp_cfg->data_bits = UART_DATA_BITS_7;
break;
case UART_CFG_DATA_BITS_8:
fsp_cfg->data_bits = UART_DATA_BITS_8;
break;
default:
return -ENOTSUP;
}
switch (uart_config->parity) {
case UART_CFG_PARITY_NONE:
fsp_cfg->parity = UART_PARITY_OFF;
break;
case UART_CFG_PARITY_ODD:
fsp_cfg->parity = UART_PARITY_ODD;
break;
case UART_CFG_PARITY_EVEN:
fsp_cfg->parity = UART_PARITY_EVEN;
break;
default:
return -ENOTSUP;
}
switch (uart_config->stop_bits) {
case UART_CFG_STOP_BITS_1:
fsp_cfg->stop_bits = UART_STOP_BITS_1;
break;
case UART_CFG_STOP_BITS_2:
fsp_cfg->stop_bits = UART_STOP_BITS_2;
break;
default:
return -ENOTSUP;
}
switch (uart_config->flow_ctrl) {
case UART_CFG_FLOW_CTRL_NONE:
fsp_config_extend->flow_control = SCIF_UART_FLOW_CONTROL_NONE;
fsp_config_extend->uart_mode = SCIF_UART_MODE_RS232;
fsp_config_extend->rs485_setting.enable = 0;
break;
case UART_CFG_FLOW_CTRL_RTS_CTS:
fsp_config_extend->flow_control = SCIF_UART_FLOW_CONTROL_AUTO;
fsp_config_extend->uart_mode = SCIF_UART_MODE_RS232;
fsp_config_extend->rs485_setting.enable = 0;
break;
default:
return -ENOTSUP;
}
return 0;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_rz_scif_configure(const struct device *dev, const struct uart_config *cfg)
{
int err;
fsp_err_t fsp_err;
const struct uart_rz_scif_config *config = dev->config;
struct uart_rz_scif_data *data = dev->data;
memcpy(&data->uart_config, cfg, sizeof(struct uart_config));
err = uart_rz_scif_apply_config(dev);
if (err) {
return err;
}
fsp_err = config->fsp_api->close(data->fsp_ctrl);
if (fsp_err) {
return -EIO;
}
fsp_err = config->fsp_api->open(data->fsp_ctrl, data->fsp_cfg);
if (fsp_err) {
return -EIO;
}
return err;
}
static int uart_rz_scif_config_get(const struct device *dev, struct uart_config *cfg)
{
struct uart_rz_scif_data *data = dev->data;
memcpy(cfg, &data->uart_config, sizeof(struct uart_config));
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_rz_scif_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size)
{
struct uart_rz_scif_data *data = dev->data;
scif_uart_instance_ctrl_t *fsp_ctrl = data->fsp_ctrl;
fsp_ctrl->tx_src_bytes = size;
fsp_ctrl->p_tx_src = tx_data;
scif_uart_txi_isr((void *)fsp_ctrl->p_cfg->txi_irq);
return (size - fsp_ctrl->tx_src_bytes);
}
static int uart_rz_scif_fifo_read(const struct device *dev, uint8_t *rx_data, const int size)
{
struct uart_rz_scif_data *data = dev->data;
scif_uart_instance_ctrl_t *fsp_ctrl = data->fsp_ctrl;
fsp_ctrl->rx_dest_bytes = size;
fsp_ctrl->p_rx_dest = rx_data;
/* Read all available data in the FIFO */
/* If there are more available data than required, they will be lost */
if (data->int_data.rxi_flag) {
scif_uart_rxi_isr((void *)fsp_ctrl->p_cfg->rxi_irq);
} else {
scif_uart_tei_isr((void *)fsp_ctrl->p_cfg->tei_irq);
}
data->int_data.rx_fifo_busy = false;
return (size - fsp_ctrl->rx_dest_bytes);
}
static void uart_rz_scif_irq_rx_enable(const struct device *dev)
{
const struct uart_rz_scif_config *config = dev->config;
struct uart_rz_scif_data *data = dev->data;
data->int_data.irq_rx_enable = true;
/* Prepare 1-byte buffer to receive, it will be overwritten by fifo read */
config->fsp_api->read(data->fsp_ctrl, &(data->int_data.rx_byte), 1);
}
static void uart_rz_scif_irq_rx_disable(const struct device *dev)
{
struct uart_rz_scif_data *data = dev->data;
data->int_data.irq_rx_enable = false;
data->int_data.rx_fifo_busy = false;
}
static void uart_rz_scif_irq_tx_enable(const struct device *dev)
{
struct uart_rz_scif_data *data = dev->data;
const struct uart_rz_scif_config *config = dev->config;
data->int_data.irq_tx_enable = true;
/* Trigger TX with a NULL frame */
/* It is expected not to be sent, and will be overwritten by the fifo fill */
data->int_data.tx_byte = '\0';
config->fsp_api->write(data->fsp_ctrl, &data->int_data.tx_byte, 1);
}
static void uart_rz_scif_irq_tx_disable(const struct device *dev)
{
struct uart_rz_scif_data *data = dev->data;
data->int_data.irq_tx_enable = false;
}
static int uart_rz_scif_irq_tx_ready(const struct device *dev)
{
struct uart_rz_scif_data *data = dev->data;
return data->int_data.irq_tx_enable;
}
static int uart_rz_scif_irq_rx_ready(const struct device *dev)
{
struct uart_rz_scif_data *data = dev->data;
return data->int_data.rx_fifo_busy && data->int_data.irq_rx_enable;
}
static int uart_rz_scif_irq_is_pending(const struct device *dev)
{
return (uart_rz_scif_irq_tx_ready(dev)) || (uart_rz_scif_irq_rx_ready(dev));
}
static void uart_rz_scif_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb, void *cb_data)
{
struct uart_rz_scif_data *data = dev->data;
data->callback = cb;
data->callback_data = cb_data;
}
static int uart_rz_scif_irq_update(const struct device *dev)
{
ARG_UNUSED(dev);
return 1;
}
static void uart_rz_scif_rxi_isr(const struct device *dev)
{
struct uart_rz_scif_data *data = dev->data;
data->int_data.rxi_flag = true;
data->int_data.rx_fifo_busy = true;
if (data->callback) {
data->callback(dev, data->callback_data);
}
}
static void uart_rz_scif_txi_isr(const struct device *dev)
{
struct uart_rz_scif_data *data = dev->data;
data->int_data.tei_flag = false;
if (data->callback) {
data->callback(dev, data->callback_data);
}
}
static void uart_rz_scif_tei_isr(const struct device *dev)
{
struct uart_rz_scif_data *data = dev->data;
scif_uart_instance_ctrl_t *fsp_ctrl = data->fsp_ctrl;
if (data->int_data.tei_flag) {
scif_uart_tei_isr((void *)fsp_ctrl->p_cfg->tei_irq);
} else {
data->int_data.rxi_flag = false;
data->int_data.rx_fifo_busy = true;
}
if (data->callback) {
data->callback(dev, data->callback_data);
}
}
static void uart_rz_scif_eri_isr(const struct device *dev)
{
struct uart_rz_scif_data *data = dev->data;
scif_uart_instance_ctrl_t *fsp_ctrl = data->fsp_ctrl;
scif_uart_eri_isr((void *)fsp_ctrl->p_cfg->eri_irq);
}
static void uart_rz_scif_bri_isr(const struct device *dev)
{
struct uart_rz_scif_data *data = dev->data;
uart_cfg_t *fsp_cfg = data->fsp_cfg;
scif_uart_extended_cfg_t *fsp_extend = (scif_uart_extended_cfg_t *)fsp_cfg->p_extend;
scif_uart_bri_isr((void *)fsp_extend->bri_irq);
}
static void uart_rz_scif_event_handler(uart_callback_args_t *p_args)
{
const struct device *dev = (const struct device *)p_args->p_context;
struct uart_rz_scif_data *data = dev->data;
data->int_data.event = p_args->event;
switch (p_args->event) {
case UART_EVENT_RX_CHAR:
data->int_data.rx_byte = p_args->data;
break;
case UART_EVENT_RX_COMPLETE:
break;
case UART_EVENT_TX_DATA_EMPTY:
data->int_data.tei_flag = true;
break;
case UART_EVENT_TX_COMPLETE:
data->int_data.tei_flag = false;
break;
default:
break;
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static DEVICE_API(uart, uart_rz_scif_driver_api) = {
.poll_in = uart_rz_scif_poll_in,
.poll_out = uart_rz_scif_poll_out,
.err_check = uart_rz_scif_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uart_rz_scif_configure,
.config_get = uart_rz_scif_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_rz_scif_fifo_fill,
.fifo_read = uart_rz_scif_fifo_read,
.irq_rx_enable = uart_rz_scif_irq_rx_enable,
.irq_rx_disable = uart_rz_scif_irq_rx_disable,
.irq_tx_enable = uart_rz_scif_irq_tx_enable,
.irq_tx_disable = uart_rz_scif_irq_tx_disable,
.irq_tx_ready = uart_rz_scif_irq_tx_ready,
.irq_rx_ready = uart_rz_scif_irq_rx_ready,
.irq_is_pending = uart_rz_scif_irq_is_pending,
.irq_callback_set = uart_rz_scif_irq_callback_set,
.irq_update = uart_rz_scif_irq_update,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
static int uart_rz_scif_init(const struct device *dev)
{
const struct uart_rz_scif_config *config = dev->config;
struct uart_rz_scif_data *data = dev->data;
int ret;
/* Configure dt provided device signals when available */
ret = pinctrl_apply_state(config->pin_config, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
/* uart_rz_scif_apply_config must be called first before open api */
ret = uart_rz_scif_apply_config(dev);
if (ret < 0) {
return ret;
}
config->fsp_api->open(data->fsp_ctrl, data->fsp_cfg);
return 0;
}
#ifdef CONFIG_CPU_CORTEX_M
#define GET_IRQ_FLAGS(index) 0
#else /* Cortex-A/R */
#define GET_IRQ_FLAGS(index) DT_INST_IRQ_BY_IDX(index, 0, flags)
#endif
#define UART_RZ_IRQ_CONNECT(n, irq_name, isr) \
do { \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(n, irq_name, irq), \
DT_INST_IRQ_BY_NAME(n, irq_name, priority), isr, \
DEVICE_DT_INST_GET(n), GET_IRQ_FLAGS(n)); \
irq_enable(DT_INST_IRQ_BY_NAME(n, irq_name, irq)); \
} while (0)
#define UART_RZ_CONFIG_FUNC(n) \
UART_RZ_IRQ_CONNECT(n, eri, uart_rz_scif_eri_isr); \
UART_RZ_IRQ_CONNECT(n, rxi, uart_rz_scif_rxi_isr); \
UART_RZ_IRQ_CONNECT(n, txi, uart_rz_scif_txi_isr); \
UART_RZ_IRQ_CONNECT(n, tei, uart_rz_scif_tei_isr); \
UART_RZ_IRQ_CONNECT(n, bri, uart_rz_scif_bri_isr);
#define UART_RZ_INIT(n) \
static scif_uart_instance_ctrl_t g_uart##n##_ctrl; \
static scif_baud_setting_t g_uart##n##_baud_setting; \
static scif_uart_extended_cfg_t g_uart##n##_cfg_extend = { \
.bri_ipl = DT_INST_IRQ_BY_NAME(n, bri, priority), \
.bri_irq = DT_INST_IRQ_BY_NAME(n, bri, irq), \
.clock = SCIF_UART_CLOCK_INT, \
.noise_cancel = SCIF_UART_NOISE_CANCELLATION_ENABLE, \
.p_baud_setting = &g_uart##n##_baud_setting, \
.rx_fifo_trigger = 3, \
.rts_fifo_trigger = SCIF_UART_RTS_TRIGGER_14, \
.uart_mode = SCIF_UART_MODE_RS232, \
.flow_control = SCIF_UART_FLOW_CONTROL_NONE, \
.rs485_setting = \
{ \
.enable = 0, \
.polarity = 0, \
.de_control_pin = \
(bsp_io_port_pin_t)SCIF_UART_INVALID_16BIT_PARAM, \
}, \
}; \
static uart_cfg_t g_uart##n##_cfg = { \
.channel = DT_INST_PROP(n, channel), \
.p_extend = &g_uart##n##_cfg_extend, \
.p_transfer_tx = NULL, \
.p_transfer_rx = NULL, \
.rxi_ipl = DT_INST_IRQ_BY_NAME(n, rxi, priority), \
.txi_ipl = DT_INST_IRQ_BY_NAME(n, txi, priority), \
.tei_ipl = DT_INST_IRQ_BY_NAME(n, tei, priority), \
.eri_ipl = DT_INST_IRQ_BY_NAME(n, eri, priority), \
.rxi_irq = DT_INST_IRQ_BY_NAME(n, rxi, irq), \
.txi_irq = DT_INST_IRQ_BY_NAME(n, txi, irq), \
.tei_irq = DT_INST_IRQ_BY_NAME(n, tei, irq), \
.eri_irq = DT_INST_IRQ_BY_NAME(n, eri, irq), \
IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN, ( \
.p_callback = uart_rz_scif_event_handler, \
.p_context = (void *)DEVICE_DT_INST_GET(n),)) }; \
PINCTRL_DT_INST_DEFINE(n); \
static const struct uart_rz_scif_config uart_rz_scif_config_##n = { \
.pin_config = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.fsp_api = &g_uart_on_scif, \
}; \
static struct uart_rz_scif_data uart_rz_scif_data_##n = { \
.uart_config = \
{ \
.baudrate = DT_INST_PROP(n, current_speed), \
.parity = DT_INST_ENUM_IDX(n, parity), \
.stop_bits = DT_INST_ENUM_IDX(n, stop_bits), \
.data_bits = DT_INST_ENUM_IDX(n, data_bits), \
.flow_ctrl = DT_INST_PROP_OR(n, hw_flow_control, \
UART_CFG_FLOW_CTRL_NONE), \
}, \
.fsp_cfg = &g_uart##n##_cfg, \
.fsp_ctrl = &g_uart##n##_ctrl, \
}; \
static int uart_rz_scif_init_##n(const struct device *dev) \
{ \
IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN, \
(UART_RZ_CONFIG_FUNC(n);)) \
return uart_rz_scif_init(dev); \
} \
DEVICE_DT_INST_DEFINE(n, &uart_rz_scif_init_##n, NULL, &uart_rz_scif_data_##n, \
&uart_rz_scif_config_##n, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \
&uart_rz_scif_driver_api);
DT_INST_FOREACH_STATUS_OKAY(UART_RZ_INIT)