Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1058 lines
29 KiB

/*
* Copyright (c) 2023-2024 Analog Devices, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifdef CONFIG_UART_ASYNC_API
#include <zephyr/drivers/dma.h>
#include <wrap_max32_dma.h>
#endif
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/drivers/clock_control/adi_max32_clock_control.h>
#include <wrap_max32_uart.h>
#define DT_DRV_COMPAT adi_max32_uart
LOG_MODULE_REGISTER(uart_max32, CONFIG_UART_LOG_LEVEL);
#ifdef CONFIG_UART_ASYNC_API
struct max32_uart_dma_config {
const struct device *dev;
const uint32_t channel;
const uint32_t slot;
};
#endif /* CONFIG_UART_ASYNC_API */
struct max32_uart_config {
mxc_uart_regs_t *regs;
const struct pinctrl_dev_config *pctrl;
const struct device *clock;
struct max32_perclk perclk;
struct uart_config uart_conf;
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
uart_irq_config_func_t irq_config_func;
#endif /* CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API */
#ifdef CONFIG_UART_ASYNC_API
const struct max32_uart_dma_config tx_dma;
const struct max32_uart_dma_config rx_dma;
#endif /* CONFIG_UART_ASYNC_API */
};
#ifdef CONFIG_UART_ASYNC_API
#define MAX32_UART_TX_CACHE_NUM 2
struct max32_uart_async_tx {
const uint8_t *buf;
const uint8_t *src;
size_t len;
uint8_t cache[MAX32_UART_TX_CACHE_NUM][CONFIG_UART_TX_CACHE_LEN];
uint8_t cache_id;
struct dma_block_config dma_blk;
int32_t timeout;
struct k_work_delayable timeout_work;
};
struct max32_uart_async_rx {
uint8_t *buf;
size_t len;
size_t offset;
size_t counter;
uint8_t *next_buf;
size_t next_len;
int32_t timeout;
struct k_work_delayable timeout_work;
};
struct max32_uart_async_data {
const struct device *uart_dev;
struct max32_uart_async_tx tx;
struct max32_uart_async_rx rx;
uart_callback_t cb;
void *user_data;
};
#endif
struct max32_uart_data {
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t cb; /* Interrupt callback */
void *cb_data; /* Interrupt callback arg */
uint32_t flags; /* Cached interrupt flags */
uint32_t status; /* Cached status flags */
#endif
#ifdef CONFIG_UART_ASYNC_API
struct max32_uart_async_data async;
#endif
struct uart_config conf; /* baudrate, stopbits, ... */
};
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void uart_max32_isr(const struct device *dev);
#endif
#ifdef CONFIG_UART_ASYNC_API
static int uart_max32_tx_dma_load(const struct device *dev, uint8_t *buf, size_t len);
#endif
static void api_poll_out(const struct device *dev, unsigned char c)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_WriteCharacter(cfg->regs, c);
}
static int api_poll_in(const struct device *dev, unsigned char *c)
{
int val;
const struct max32_uart_config *cfg = dev->config;
val = MXC_UART_ReadCharacterRaw(cfg->regs);
if (val >= 0) {
*c = (unsigned char)val;
} else {
return -1;
}
return 0;
}
static int api_err_check(const struct device *dev)
{
int err = 0;
uint32_t flags;
const struct max32_uart_config *cfg = dev->config;
flags = MXC_UART_GetFlags(cfg->regs);
if (flags & ADI_MAX32_UART_ERROR_FRAMING) {
err |= UART_ERROR_FRAMING;
}
if (flags & ADI_MAX32_UART_ERROR_PARITY) {
err |= UART_ERROR_PARITY;
}
if (flags & ADI_MAX32_UART_ERROR_OVERRUN) {
err |= UART_ERROR_OVERRUN;
}
return err;
}
static int api_configure(const struct device *dev, const struct uart_config *uart_cfg)
{
int err;
const struct max32_uart_config *const cfg = dev->config;
mxc_uart_regs_t *regs = cfg->regs;
struct max32_uart_data *data = dev->data;
/*
* Set parity
*/
if (data->conf.parity != uart_cfg->parity) {
mxc_uart_parity_t mxc_parity;
switch (uart_cfg->parity) {
case UART_CFG_PARITY_NONE:
mxc_parity = ADI_MAX32_UART_CFG_PARITY_NONE;
break;
case UART_CFG_PARITY_ODD:
mxc_parity = ADI_MAX32_UART_CFG_PARITY_ODD;
break;
case UART_CFG_PARITY_EVEN:
mxc_parity = ADI_MAX32_UART_CFG_PARITY_EVEN;
break;
case UART_CFG_PARITY_MARK:
#if defined(ADI_MAX32_UART_CFG_PARITY_MARK)
mxc_parity = ADI_MAX32_UART_CFG_PARITY_MARK;
break;
#else
return -ENOTSUP;
#endif
case UART_CFG_PARITY_SPACE:
#if defined(ADI_MAX32_UART_CFG_PARITY_SPACE)
mxc_parity = ADI_MAX32_UART_CFG_PARITY_SPACE;
break;
#else
return -ENOTSUP;
#endif
default:
return -EINVAL;
}
err = MXC_UART_SetParity(regs, mxc_parity);
if (err < 0) {
return -ENOTSUP;
}
/* incase of success keep configuration */
data->conf.parity = uart_cfg->parity;
}
/*
* Set stop bit
*/
if (data->conf.stop_bits != uart_cfg->stop_bits) {
if (uart_cfg->stop_bits == UART_CFG_STOP_BITS_1) {
err = MXC_UART_SetStopBits(regs, MXC_UART_STOP_1);
} else if (uart_cfg->stop_bits == UART_CFG_STOP_BITS_2) {
err = MXC_UART_SetStopBits(regs, MXC_UART_STOP_2);
} else {
return -ENOTSUP;
}
if (err < 0) {
return -ENOTSUP;
}
/* incase of success keep configuration */
data->conf.stop_bits = uart_cfg->stop_bits;
}
/*
* Set data bit
* Valid data for MAX32 is 5-6-7-8
* Valid data for Zepyhr is 0-1-2-3
* Added +5 to index match.
*/
if (data->conf.data_bits != uart_cfg->data_bits) {
err = MXC_UART_SetDataSize(regs, (5 + uart_cfg->data_bits));
if (err < 0) {
return -ENOTSUP;
}
/* incase of success keep configuration */
data->conf.data_bits = uart_cfg->data_bits;
}
/*
* Set flow control
* Flow control not implemented yet so that only support no flow mode
*/
if (data->conf.flow_ctrl != uart_cfg->flow_ctrl) {
if (uart_cfg->flow_ctrl != UART_CFG_FLOW_CTRL_NONE) {
return -ENOTSUP;
}
data->conf.flow_ctrl = uart_cfg->flow_ctrl;
}
/*
* Set baudrate
*/
if (data->conf.baudrate != uart_cfg->baudrate) {
err = Wrap_MXC_UART_SetFrequency(regs, uart_cfg->baudrate, cfg->perclk.clk_src);
if (err < 0) {
return -ENOTSUP;
}
/* In case of success keep configuration */
data->conf.baudrate = uart_cfg->baudrate;
}
return 0;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int api_config_get(const struct device *dev, struct uart_config *uart_cfg)
{
struct max32_uart_data *data = dev->data;
/* copy configs from global setting */
*uart_cfg = data->conf;
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_ASYNC_API
static void uart_max32_async_tx_timeout(struct k_work *work);
static void uart_max32_async_rx_timeout(struct k_work *work);
#endif /* CONFIG_UART_ASYNC_API */
static int uart_max32_init(const struct device *dev)
{
int ret;
const struct max32_uart_config *const cfg = dev->config;
mxc_uart_regs_t *regs = cfg->regs;
#ifdef CONFIG_UART_ASYNC_API
struct max32_uart_data *data = dev->data;
#endif
if (!device_is_ready(cfg->clock)) {
LOG_ERR("Clock control device not ready");
return -ENODEV;
}
ret = MXC_UART_Shutdown(regs);
if (ret) {
return ret;
}
ret = clock_control_on(cfg->clock, (clock_control_subsys_t)&cfg->perclk);
if (ret != 0) {
LOG_ERR("Cannot enable UART clock");
return ret;
}
ret = Wrap_MXC_UART_SetClockSource(regs, cfg->perclk.clk_src);
if (ret != 0) {
LOG_ERR("Cannot set UART clock source");
return ret;
}
ret = pinctrl_apply_state(cfg->pctrl, PINCTRL_STATE_DEFAULT);
if (ret) {
return ret;
}
ret = api_configure(dev, &cfg->uart_conf);
if (ret) {
return ret;
}
ret = Wrap_MXC_UART_Init(regs);
if (ret) {
return ret;
}
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
/* Clear any pending UART RX/TX interrupts */
MXC_UART_ClearFlags(regs, (ADI_MAX32_UART_INT_RX | ADI_MAX32_UART_INT_TX));
cfg->irq_config_func(dev);
#endif
#ifdef CONFIG_UART_ASYNC_API
data->async.uart_dev = dev;
k_work_init_delayable(&data->async.tx.timeout_work, uart_max32_async_tx_timeout);
k_work_init_delayable(&data->async.rx.timeout_work, uart_max32_async_rx_timeout);
data->async.rx.len = 0;
data->async.rx.offset = 0;
#endif
return ret;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int api_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size)
{
unsigned int num_tx = 0;
const struct max32_uart_config *cfg = dev->config;
num_tx = MXC_UART_WriteTXFIFO(cfg->regs, (unsigned char *)tx_data, size);
return (int)num_tx;
}
static int api_fifo_read(const struct device *dev, uint8_t *rx_data, const int size)
{
unsigned int num_rx = 0;
const struct max32_uart_config *cfg = dev->config;
num_rx = MXC_UART_ReadRXFIFO(cfg->regs, (unsigned char *)rx_data, size);
if (num_rx == 0) {
MXC_UART_ClearFlags(cfg->regs, ADI_MAX32_UART_INT_RX);
}
return num_rx;
}
static void api_irq_tx_enable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
unsigned int key;
MXC_UART_EnableInt(cfg->regs, ADI_MAX32_UART_INT_TX | ADI_MAX32_UART_INT_TX_OEM);
key = irq_lock();
uart_max32_isr(dev);
irq_unlock(key);
}
static void api_irq_tx_disable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_DisableInt(cfg->regs, ADI_MAX32_UART_INT_TX | ADI_MAX32_UART_INT_TX_OEM);
}
static int api_irq_tx_ready(const struct device *dev)
{
struct max32_uart_data *const data = dev->data;
const struct max32_uart_config *cfg = dev->config;
uint32_t inten = Wrap_MXC_UART_GetRegINTEN(cfg->regs);
return ((inten & (ADI_MAX32_UART_INT_TX | ADI_MAX32_UART_INT_TX_OEM)) &&
!(data->status & ADI_MAX32_UART_STATUS_TX_FULL));
}
static int api_irq_tx_complete(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
if (MXC_UART_GetActive(cfg->regs) == E_BUSY) {
return 0;
} else {
return 1; /* transmission completed */
}
}
static int api_irq_rx_ready(const struct device *dev)
{
struct max32_uart_data *const data = dev->data;
const struct max32_uart_config *cfg = dev->config;
uint32_t inten = Wrap_MXC_UART_GetRegINTEN(cfg->regs);
return ((inten & ADI_MAX32_UART_INT_RX) && !(data->status & ADI_MAX32_UART_RX_EMPTY));
}
static void api_irq_err_enable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_EnableInt(cfg->regs, ADI_MAX32_UART_ERROR_INTERRUPTS);
}
static void api_irq_err_disable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_DisableInt(cfg->regs, ADI_MAX32_UART_ERROR_INTERRUPTS);
}
static int api_irq_is_pending(const struct device *dev)
{
struct max32_uart_data *const data = dev->data;
return (data->flags & (ADI_MAX32_UART_INT_RX | ADI_MAX32_UART_INT_TX));
}
static int api_irq_update(const struct device *dev)
{
struct max32_uart_data *const data = dev->data;
const struct max32_uart_config *const cfg = dev->config;
data->flags = MXC_UART_GetFlags(cfg->regs);
data->status = MXC_UART_GetStatus(cfg->regs);
MXC_UART_ClearFlags(cfg->regs, data->flags);
return 1;
}
static void api_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct max32_uart_data *const dev_data = dev->data;
dev_data->cb = cb;
dev_data->cb_data = cb_data;
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
static void api_irq_rx_enable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_EnableInt(cfg->regs, ADI_MAX32_UART_INT_RX);
}
static void api_irq_rx_disable(const struct device *dev)
{
const struct max32_uart_config *cfg = dev->config;
MXC_UART_DisableInt(cfg->regs, ADI_MAX32_UART_INT_RX);
}
static void uart_max32_isr(const struct device *dev)
{
struct max32_uart_data *data = dev->data;
const struct max32_uart_config *cfg = dev->config;
uint32_t intfl;
intfl = MXC_UART_GetFlags(cfg->regs);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
if (data->cb) {
data->cb(dev, data->cb_data);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_ASYNC_API
if (data->async.rx.timeout != SYS_FOREVER_US && data->async.rx.timeout != 0 &&
(intfl & ADI_MAX32_UART_INT_RX)) {
k_work_reschedule(&data->async.rx.timeout_work, K_USEC(data->async.rx.timeout));
}
#endif /* CONFIG_UART_ASYNC_API */
/* Clear RX/TX interrupts flag after cb is called */
MXC_UART_ClearFlags(cfg->regs, intfl);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API */
#if defined(CONFIG_UART_ASYNC_API)
static inline void async_timer_start(struct k_work_delayable *work, int32_t timeout)
{
if ((timeout != SYS_FOREVER_US) && (timeout != 0)) {
k_work_reschedule(work, K_USEC(timeout));
}
}
static void async_user_callback(const struct device *dev, struct uart_event *evt)
{
const struct max32_uart_data *data = dev->data;
if (data->async.cb) {
data->async.cb(dev, evt, data->async.user_data);
}
}
static uint32_t load_tx_cache(const uint8_t *src, size_t len, uint8_t *dest)
{
memcpy(dest, src, MIN(len, CONFIG_UART_TX_CACHE_LEN));
return MIN(len, CONFIG_UART_TX_CACHE_LEN);
}
static void uart_max32_async_tx_callback(const struct device *dma_dev, void *user_data,
uint32_t channel, int status)
{
const struct device *dev = user_data;
const struct max32_uart_config *config = dev->config;
struct max32_uart_data *data = dev->data;
struct max32_uart_async_tx *tx = &data->async.tx;
struct dma_status dma_stat;
int ret;
unsigned int key = irq_lock();
dma_get_status(config->tx_dma.dev, config->tx_dma.channel, &dma_stat);
/* Skip callback if channel is still busy */
if (dma_stat.busy) {
irq_unlock(key);
return;
}
k_work_cancel_delayable(&tx->timeout_work);
Wrap_MXC_UART_DisableTxDMA(config->regs);
irq_unlock(key);
tx->len -= tx->dma_blk.block_size;
if (tx->len > 0) {
tx->cache_id = !(tx->cache_id);
ret = uart_max32_tx_dma_load(dev, tx->cache[tx->cache_id],
MIN(tx->len, CONFIG_UART_TX_CACHE_LEN));
if (ret < 0) {
LOG_ERR("Error configuring Tx DMA (%d)", ret);
return;
}
ret = dma_start(config->tx_dma.dev, config->tx_dma.channel);
if (ret < 0) {
LOG_ERR("Error starting Tx DMA (%d)", ret);
return;
}
async_timer_start(&tx->timeout_work, tx->timeout);
Wrap_MXC_UART_SetTxDMALevel(config->regs, 2);
Wrap_MXC_UART_EnableTxDMA(config->regs);
/* Load next chunk as well */
if (tx->len > CONFIG_UART_TX_CACHE_LEN) {
tx->src += load_tx_cache(tx->src, tx->len - CONFIG_UART_TX_CACHE_LEN,
tx->cache[!(tx->cache_id)]);
}
} else {
struct uart_event tx_done = {
.type = status == 0 ? UART_TX_DONE : UART_TX_ABORTED,
.data.tx.buf = tx->buf,
.data.tx.len = tx->len,
};
async_user_callback(dev, &tx_done);
}
}
static int uart_max32_tx_dma_load(const struct device *dev, uint8_t *buf, size_t len)
{
int ret;
const struct max32_uart_config *config = dev->config;
struct max32_uart_data *data = dev->data;
struct dma_config dma_cfg = {0};
struct dma_block_config *dma_blk = &data->async.tx.dma_blk;
dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
dma_cfg.dma_callback = uart_max32_async_tx_callback;
dma_cfg.user_data = (void *)dev;
dma_cfg.dma_slot = config->tx_dma.slot;
dma_cfg.block_count = 1;
dma_cfg.source_data_size = 1U;
dma_cfg.source_burst_length = 1U;
dma_cfg.dest_data_size = 1U;
dma_cfg.head_block = dma_blk;
dma_blk->block_size = len;
dma_blk->source_address = (uint32_t)buf;
ret = dma_config(config->tx_dma.dev, config->tx_dma.channel, &dma_cfg);
if (ret < 0) {
return ret;
}
return 0;
}
static int api_callback_set(const struct device *dev, uart_callback_t callback, void *user_data)
{
struct max32_uart_data *data = dev->data;
data->async.cb = callback;
data->async.user_data = user_data;
return 0;
}
static int api_tx(const struct device *dev, const uint8_t *buf, size_t len, int32_t timeout)
{
struct max32_uart_data *data = dev->data;
const struct max32_uart_config *config = dev->config;
struct dma_status dma_stat;
int ret;
bool use_cache = false;
unsigned int key = irq_lock();
if (config->tx_dma.channel == 0xFF) {
LOG_ERR("Tx DMA channel is not configured");
ret = -ENOTSUP;
goto unlock;
}
ret = dma_get_status(config->tx_dma.dev, config->tx_dma.channel, &dma_stat);
if (ret < 0 || dma_stat.busy) {
LOG_ERR("DMA Tx %s", ret < 0 ? "error" : "busy");
irq_unlock(key);
return ret < 0 ? ret : -EBUSY;
}
data->async.tx.buf = buf;
data->async.tx.len = len;
data->async.tx.src = data->async.tx.buf;
if (((uint32_t)buf < MXC_SRAM_MEM_BASE) ||
(((uint32_t)buf + len) > (MXC_SRAM_MEM_BASE + MXC_SRAM_MEM_SIZE))) {
use_cache = true;
len = load_tx_cache(data->async.tx.src, MIN(len, CONFIG_UART_TX_CACHE_LEN),
data->async.tx.cache[0]);
data->async.tx.src += len;
data->async.tx.cache_id = 0;
}
ret = uart_max32_tx_dma_load(dev, use_cache ? data->async.tx.cache[0] : ((uint8_t *)buf),
len);
if (ret < 0) {
LOG_ERR("Error configuring Tx DMA (%d)", ret);
goto unlock;
}
ret = dma_start(config->tx_dma.dev, config->tx_dma.channel);
if (ret < 0) {
LOG_ERR("Error starting Tx DMA (%d)", ret);
goto unlock;
}
data->async.tx.timeout = timeout;
async_timer_start(&data->async.tx.timeout_work, timeout);
Wrap_MXC_UART_SetTxDMALevel(config->regs, 2);
Wrap_MXC_UART_EnableTxDMA(config->regs);
unlock:
irq_unlock(key);
return ret;
}
static int api_tx_abort(const struct device *dev)
{
int ret;
struct max32_uart_data *data = dev->data;
const struct max32_uart_config *config = dev->config;
struct dma_status dma_stat;
size_t bytes_sent;
unsigned int key = irq_lock();
k_work_cancel_delayable(&data->async.tx.timeout_work);
Wrap_MXC_UART_DisableTxDMA(config->regs);
ret = dma_get_status(config->tx_dma.dev, config->tx_dma.channel, &dma_stat);
if (!dma_stat.busy) {
irq_unlock(key);
return 0;
}
bytes_sent = (ret == 0) ? (data->async.tx.len - dma_stat.pending_length) : 0;
ret = dma_stop(config->tx_dma.dev, config->tx_dma.channel);
irq_unlock(key);
if (ret == 0) {
struct uart_event tx_aborted = {
.type = UART_TX_ABORTED,
.data.tx.buf = data->async.tx.buf,
.data.tx.len = bytes_sent,
};
async_user_callback(dev, &tx_aborted);
}
return 0;
}
static void uart_max32_async_tx_timeout(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct max32_uart_async_tx *tx =
CONTAINER_OF(dwork, struct max32_uart_async_tx, timeout_work);
struct max32_uart_async_data *async = CONTAINER_OF(tx, struct max32_uart_async_data, tx);
struct max32_uart_data *data = CONTAINER_OF(async, struct max32_uart_data, async);
api_tx_abort(data->async.uart_dev);
}
static int api_rx_disable(const struct device *dev)
{
struct max32_uart_data *data = dev->data;
const struct max32_uart_config *config = dev->config;
int ret;
unsigned int key = irq_lock();
k_work_cancel_delayable(&data->async.rx.timeout_work);
Wrap_MXC_UART_DisableRxDMA(config->regs);
ret = dma_stop(config->rx_dma.dev, config->rx_dma.channel);
if (ret) {
LOG_ERR("Error stopping Rx DMA (%d)", ret);
irq_unlock(key);
return ret;
}
api_irq_rx_disable(dev);
irq_unlock(key);
/* Release current buffer event */
struct uart_event rel_event = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = data->async.rx.buf,
};
async_user_callback(dev, &rel_event);
/* Disable RX event */
struct uart_event rx_disabled = {.type = UART_RX_DISABLED};
async_user_callback(dev, &rx_disabled);
data->async.rx.buf = NULL;
data->async.rx.len = 0;
data->async.rx.counter = 0;
data->async.rx.offset = 0;
if (data->async.rx.next_buf) {
/* Release next buffer event */
struct uart_event next_rel_event = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = data->async.rx.next_buf,
};
async_user_callback(dev, &next_rel_event);
data->async.rx.next_buf = NULL;
data->async.rx.next_len = 0;
}
return 0;
}
static void uart_max32_async_rx_callback(const struct device *dma_dev, void *user_data,
uint32_t channel, int status)
{
const struct device *dev = user_data;
const struct max32_uart_config *config = dev->config;
struct max32_uart_data *data = dev->data;
struct max32_uart_async_data *async = &data->async;
struct dma_status dma_stat;
size_t total_rx;
unsigned int key = irq_lock();
dma_get_status(config->rx_dma.dev, config->rx_dma.channel, &dma_stat);
if (dma_stat.pending_length > 0) {
irq_unlock(key);
return;
}
total_rx = async->rx.len - dma_stat.pending_length;
api_irq_rx_disable(dev);
irq_unlock(key);
if (total_rx > async->rx.offset) {
async->rx.counter = total_rx - async->rx.offset;
struct uart_event rdy_event = {
.type = UART_RX_RDY,
.data.rx.buf = async->rx.buf,
.data.rx.len = async->rx.counter,
.data.rx.offset = async->rx.offset,
};
async_user_callback(dev, &rdy_event);
}
if (async->rx.next_buf) {
async->rx.offset = 0;
async->rx.counter = 0;
struct uart_event rel_event = {
.type = UART_RX_BUF_RELEASED,
.data.rx_buf.buf = async->rx.buf,
};
async_user_callback(dev, &rel_event);
async->rx.buf = async->rx.next_buf;
async->rx.len = async->rx.next_len;
async->rx.next_buf = NULL;
async->rx.next_len = 0;
struct uart_event req_event = {
.type = UART_RX_BUF_REQUEST,
};
async_user_callback(dev, &req_event);
dma_reload(config->rx_dma.dev, config->rx_dma.channel, config->rx_dma.slot,
(uint32_t)async->rx.buf, async->rx.len);
dma_start(config->rx_dma.dev, config->rx_dma.channel);
api_irq_rx_enable(dev);
async_timer_start(&async->rx.timeout_work, async->rx.timeout);
} else {
api_rx_disable(dev);
}
}
static int api_rx_enable(const struct device *dev, uint8_t *buf, size_t len, int32_t timeout)
{
struct max32_uart_data *data = dev->data;
const struct max32_uart_config *config = dev->config;
struct dma_status dma_stat;
struct dma_config dma_cfg = {0};
struct dma_block_config dma_blk = {0};
int ret;
unsigned int key = irq_lock();
if (config->rx_dma.channel == 0xFF) {
LOG_ERR("Rx DMA channel is not configured");
irq_unlock(key);
return -ENOTSUP;
}
ret = dma_get_status(config->rx_dma.dev, config->rx_dma.channel, &dma_stat);
if (ret < 0 || dma_stat.busy) {
LOG_ERR("DMA Rx %s", ret < 0 ? "error" : "busy");
irq_unlock(key);
return ret < 0 ? ret : -EBUSY;
}
data->async.rx.buf = buf;
data->async.rx.len = len;
dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
dma_cfg.dma_callback = uart_max32_async_rx_callback;
dma_cfg.user_data = (void *)dev;
dma_cfg.dma_slot = config->rx_dma.slot;
dma_cfg.block_count = 1;
dma_cfg.source_data_size = 1U;
dma_cfg.source_burst_length = 1U;
dma_cfg.dest_data_size = 1U;
dma_cfg.head_block = &dma_blk;
dma_blk.block_size = len;
dma_blk.dest_address = (uint32_t)buf;
ret = dma_config(config->rx_dma.dev, config->rx_dma.channel, &dma_cfg);
if (ret < 0) {
LOG_ERR("Error configuring Rx DMA (%d)", ret);
irq_unlock(key);
return ret;
}
ret = dma_start(config->rx_dma.dev, config->rx_dma.channel);
if (ret < 0) {
LOG_ERR("Error starting Rx DMA (%d)", ret);
irq_unlock(key);
return ret;
}
data->async.rx.timeout = timeout;
Wrap_MXC_UART_SetRxDMALevel(config->regs, 1);
Wrap_MXC_UART_EnableRxDMA(config->regs);
struct uart_event buf_req = {
.type = UART_RX_BUF_REQUEST,
};
async_user_callback(dev, &buf_req);
api_irq_rx_enable(dev);
async_timer_start(&data->async.rx.timeout_work, timeout);
irq_unlock(key);
return ret;
}
static int api_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len)
{
struct max32_uart_data *data = dev->data;
data->async.rx.next_buf = buf;
data->async.rx.next_len = len;
return 0;
}
static void uart_max32_async_rx_timeout(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct max32_uart_async_rx *rx =
CONTAINER_OF(dwork, struct max32_uart_async_rx, timeout_work);
struct max32_uart_async_data *async = CONTAINER_OF(rx, struct max32_uart_async_data, rx);
struct max32_uart_data *data = CONTAINER_OF(async, struct max32_uart_data, async);
const struct max32_uart_config *config = data->async.uart_dev->config;
struct dma_status dma_stat;
uint32_t total_rx;
unsigned int key = irq_lock();
dma_get_status(config->rx_dma.dev, config->rx_dma.channel, &dma_stat);
api_irq_rx_disable(data->async.uart_dev);
k_work_cancel_delayable(&data->async.rx.timeout_work);
irq_unlock(key);
total_rx = async->rx.len - dma_stat.pending_length;
if (total_rx > async->rx.offset) {
async->rx.counter = total_rx - async->rx.offset;
struct uart_event rdy_event = {
.type = UART_RX_RDY,
.data.rx.buf = async->rx.buf,
.data.rx.len = async->rx.counter,
.data.rx.offset = async->rx.offset,
};
async_user_callback(async->uart_dev, &rdy_event);
}
async->rx.offset += async->rx.counter;
async->rx.counter = 0;
api_irq_rx_enable(data->async.uart_dev);
}
#endif
static DEVICE_API(uart, uart_max32_driver_api) = {
.poll_in = api_poll_in,
.poll_out = api_poll_out,
.err_check = api_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = api_configure,
.config_get = api_config_get,
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = api_fifo_fill,
.fifo_read = api_fifo_read,
.irq_tx_enable = api_irq_tx_enable,
.irq_tx_disable = api_irq_tx_disable,
.irq_tx_ready = api_irq_tx_ready,
.irq_rx_enable = api_irq_rx_enable,
.irq_rx_disable = api_irq_rx_disable,
.irq_tx_complete = api_irq_tx_complete,
.irq_rx_ready = api_irq_rx_ready,
.irq_err_enable = api_irq_err_enable,
.irq_err_disable = api_irq_err_disable,
.irq_is_pending = api_irq_is_pending,
.irq_update = api_irq_update,
.irq_callback_set = api_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_ASYNC_API
.callback_set = api_callback_set,
.tx = api_tx,
.tx_abort = api_tx_abort,
.rx_enable = api_rx_enable,
.rx_buf_rsp = api_rx_buf_rsp,
.rx_disable = api_rx_disable,
#endif /* CONFIG_UART_ASYNC_API */
};
#ifdef CONFIG_UART_ASYNC_API
#define MAX32_DT_INST_DMA_CTLR(n, name) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), \
(DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, name))), (NULL))
#define MAX32_DT_INST_DMA_CELL(n, name, cell) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), (DT_INST_DMAS_CELL_BY_NAME(n, name, cell)), \
(0xff))
#define MAX32_UART_DMA_INIT(n) \
.tx_dma.dev = MAX32_DT_INST_DMA_CTLR(n, tx), \
.tx_dma.channel = MAX32_DT_INST_DMA_CELL(n, tx, channel), \
.tx_dma.slot = MAX32_DT_INST_DMA_CELL(n, tx, slot), \
.rx_dma.dev = MAX32_DT_INST_DMA_CTLR(n, rx), \
.rx_dma.channel = MAX32_DT_INST_DMA_CELL(n, rx, channel), \
.rx_dma.slot = MAX32_DT_INST_DMA_CELL(n, rx, slot),
#else
#define MAX32_UART_DMA_INIT(n)
#endif
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
#define MAX32_UART_USE_IRQ 1
#else
#define MAX32_UART_USE_IRQ 0
#endif
#define MAX32_UART_INIT(_num) \
PINCTRL_DT_INST_DEFINE(_num); \
IF_ENABLED(MAX32_UART_USE_IRQ, \
(static void uart_max32_irq_init_##_num(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(_num), DT_INST_IRQ(_num, priority), \
uart_max32_isr, DEVICE_DT_INST_GET(_num), 0); \
irq_enable(DT_INST_IRQN(_num)); \
})); \
static const struct max32_uart_config max32_uart_config_##_num = { \
.regs = (mxc_uart_regs_t *)DT_INST_REG_ADDR(_num), \
.pctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(_num), \
.clock = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(_num)), \
.perclk.bus = DT_INST_CLOCKS_CELL(_num, offset), \
.perclk.bit = DT_INST_CLOCKS_CELL(_num, bit), \
.perclk.clk_src = \
DT_INST_PROP_OR(_num, clock_source, ADI_MAX32_PRPH_CLK_SRC_PCLK), \
.uart_conf.baudrate = DT_INST_PROP(_num, current_speed), \
.uart_conf.parity = DT_INST_ENUM_IDX(_num, parity), \
.uart_conf.data_bits = DT_INST_ENUM_IDX(_num, data_bits), \
.uart_conf.stop_bits = DT_INST_ENUM_IDX(_num, stop_bits), \
.uart_conf.flow_ctrl = \
DT_INST_PROP_OR(index, hw_flow_control, UART_CFG_FLOW_CTRL_NONE), \
MAX32_UART_DMA_INIT(_num) IF_ENABLED( \
MAX32_UART_USE_IRQ, (.irq_config_func = uart_max32_irq_init_##_num,))}; \
static struct max32_uart_data max32_uart_data##_num = { \
IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN, (.cb = NULL,))}; \
DEVICE_DT_INST_DEFINE(_num, uart_max32_init, NULL, &max32_uart_data##_num, \
&max32_uart_config_##_num, PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, (void *)&uart_max32_driver_api);
DT_INST_FOREACH_STATUS_OKAY(MAX32_UART_INIT)