Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1146 lines
33 KiB

/*
* Copyright (c) 2022 Cypress Semiconductor Corporation (an Infineon company) or
* an affiliate of Cypress Semiconductor Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief UART driver for Infineon CAT1 MCU family.
*
*/
#define DT_DRV_COMPAT infineon_cat1_uart
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/pinctrl.h>
#include <cyhal_uart.h>
#include <cyhal_utils_impl.h>
#include <cyhal_scb_common.h>
#include "cy_scb_uart.h"
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(uart_ifx_cat1, CONFIG_UART_LOG_LEVEL);
#if (CONFIG_SOC_FAMILY_INFINEON_CAT1C)
extern void cyhal_uart_irq_handler(cyhal_uart_t *cyhal_uart_irq_obj);
#endif
#ifdef CONFIG_UART_ASYNC_API
#include <zephyr/drivers/dma.h>
#include <cyhal_dma.h>
extern int ifx_cat1_dma_ex_connect_digital(const struct device *dev, uint32_t channel,
cyhal_source_t source, cyhal_dma_input_t input);
struct ifx_cat1_dma_stream {
const struct device *dev;
uint32_t dma_channel;
struct dma_config dma_cfg;
struct dma_block_config blk_cfg;
uint8_t *buf;
size_t buf_len;
size_t offset;
size_t counter;
uint32_t timeout;
size_t dma_transmitted_bytes;
struct k_work_delayable timeout_work;
};
struct ifx_cat1_uart_async {
const struct device *uart_dev;
uart_callback_t cb;
void *user_data;
struct ifx_cat1_dma_stream dma_rx;
struct ifx_cat1_dma_stream dma_tx;
uint8_t *rx_next_buf;
size_t rx_next_buf_len;
};
#define CURRENT_BUFFER 0
#define NEXT_BUFFER 1
#endif /* CONFIG_UART_ASYNC_API */
/* Data structure */
struct ifx_cat1_uart_data {
cyhal_uart_t obj; /* UART CYHAL object */
struct uart_config cfg;
cyhal_resource_inst_t hw_resource;
cyhal_clock_t clock;
#if CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t irq_cb; /* Interrupt Callback */
void *irq_cb_data; /* Interrupt Callback Arg */
#endif
#ifdef CONFIG_UART_ASYNC_API
struct ifx_cat1_uart_async async;
#endif
};
/* Device config structure */
struct ifx_cat1_uart_config {
const struct pinctrl_dev_config *pcfg;
CySCB_Type *reg_addr;
struct uart_config dt_cfg;
#if (CONFIG_SOC_FAMILY_INFINEON_CAT1C)
uint16_t irq_num;
#endif
uint8_t irq_priority;
};
/* Default Counter configuration structure */
static const cy_stc_scb_uart_config_t _cyhal_uart_default_config = {
.uartMode = CY_SCB_UART_STANDARD,
.enableMutliProcessorMode = false,
.smartCardRetryOnNack = false,
.irdaInvertRx = false,
.irdaEnableLowPowerReceiver = false,
.oversample = 12,
.enableMsbFirst = false,
.dataWidth = 8UL,
.parity = CY_SCB_UART_PARITY_NONE,
.stopBits = CY_SCB_UART_STOP_BITS_1,
.enableInputFilter = false,
.breakWidth = 11UL,
.dropOnFrameError = false,
.dropOnParityError = false,
.receiverAddress = 0x0UL,
.receiverAddressMask = 0x0UL,
.acceptAddrInFifo = false,
.enableCts = false,
.ctsPolarity = CY_SCB_UART_ACTIVE_LOW,
#if defined(COMPONENT_CAT1A) || defined(COMPONENT_CAT1B)
.rtsRxFifoLevel = 20UL,
#elif defined(COMPONENT_CAT2)
.rtsRxFifoLevel = 3UL,
#endif
.rtsPolarity = CY_SCB_UART_ACTIVE_LOW,
/* Level triggers when at least one element is in FIFO */
.rxFifoTriggerLevel = 0UL,
.rxFifoIntEnableMask = 0x0UL,
/* Level triggers when half-fifo is half empty */
.txFifoTriggerLevel = (CY_SCB_FIFO_SIZE / 2 - 1),
.txFifoIntEnableMask = 0x0UL
};
/* Helper API */
static cyhal_uart_parity_t _convert_uart_parity_z_to_cyhal(enum uart_config_parity parity)
{
cyhal_uart_parity_t cyhal_parity;
switch (parity) {
case UART_CFG_PARITY_NONE:
cyhal_parity = CYHAL_UART_PARITY_NONE;
break;
case UART_CFG_PARITY_ODD:
cyhal_parity = CYHAL_UART_PARITY_ODD;
break;
case UART_CFG_PARITY_EVEN:
cyhal_parity = CYHAL_UART_PARITY_EVEN;
break;
default:
cyhal_parity = CYHAL_UART_PARITY_NONE;
}
return cyhal_parity;
}
static uint32_t _convert_uart_stop_bits_z_to_cyhal(enum uart_config_stop_bits stop_bits)
{
uint32_t cyhal_stop_bits;
switch (stop_bits) {
case UART_CFG_STOP_BITS_1:
cyhal_stop_bits = 1u;
break;
case UART_CFG_STOP_BITS_2:
cyhal_stop_bits = 2u;
break;
default:
cyhal_stop_bits = 1u;
}
return cyhal_stop_bits;
}
static uint32_t _convert_uart_data_bits_z_to_cyhal(enum uart_config_data_bits data_bits)
{
uint32_t cyhal_data_bits;
switch (data_bits) {
case UART_CFG_DATA_BITS_5:
cyhal_data_bits = 1u;
break;
case UART_CFG_DATA_BITS_6:
cyhal_data_bits = 6u;
break;
case UART_CFG_DATA_BITS_7:
cyhal_data_bits = 7u;
break;
case UART_CFG_DATA_BITS_8:
cyhal_data_bits = 8u;
break;
case UART_CFG_DATA_BITS_9:
cyhal_data_bits = 9u;
break;
default:
cyhal_data_bits = 1u;
}
return cyhal_data_bits;
}
static int32_t _get_hw_block_num(CySCB_Type *reg_addr)
{
extern const uint8_t _CYHAL_SCB_BASE_ADDRESS_INDEX[_SCB_ARRAY_SIZE];
extern CySCB_Type *const _CYHAL_SCB_BASE_ADDRESSES[_SCB_ARRAY_SIZE];
uint32_t i;
for (i = 0u; i < _SCB_ARRAY_SIZE; i++) {
if (_CYHAL_SCB_BASE_ADDRESSES[i] == reg_addr) {
return _CYHAL_SCB_BASE_ADDRESS_INDEX[i];
}
}
return -1;
}
uint32_t ifx_cat1_uart_get_num_in_tx_fifo(const struct device *dev)
{
const struct ifx_cat1_uart_config *const config = dev->config;
return Cy_SCB_GetNumInTxFifo(config->reg_addr);
}
bool ifx_cat1_uart_get_tx_active(const struct device *dev)
{
const struct ifx_cat1_uart_config *const config = dev->config;
return Cy_SCB_GetTxSrValid(config->reg_addr) ? true : false;
}
static int ifx_cat1_uart_poll_in(const struct device *dev, unsigned char *c)
{
cy_rslt_t rec;
struct ifx_cat1_uart_data *data = dev->data;
rec = cyhal_uart_getc(&data->obj, c, 0u);
return ((rec == CY_SCB_UART_RX_NO_DATA) ? -1 : 0);
}
static void ifx_cat1_uart_poll_out(const struct device *dev, unsigned char c)
{
struct ifx_cat1_uart_data *data = dev->data;
(void)cyhal_uart_putc(&data->obj, (uint32_t)c);
}
static int ifx_cat1_uart_err_check(const struct device *dev)
{
struct ifx_cat1_uart_data *data = dev->data;
uint32_t status = Cy_SCB_UART_GetRxFifoStatus(data->obj.base);
int errors = 0;
if (status & CY_SCB_UART_RX_OVERFLOW) {
errors |= UART_ERROR_OVERRUN;
}
if (status & CY_SCB_UART_RX_ERR_PARITY) {
errors |= UART_ERROR_PARITY;
}
if (status & CY_SCB_UART_RX_ERR_FRAME) {
errors |= UART_ERROR_FRAMING;
}
return errors;
}
static int ifx_cat1_uart_configure(const struct device *dev, const struct uart_config *cfg)
{
__ASSERT_NO_MSG(cfg != NULL);
cy_rslt_t result;
struct ifx_cat1_uart_data *data = dev->data;
cyhal_uart_cfg_t uart_cfg = {
.data_bits = _convert_uart_data_bits_z_to_cyhal(cfg->data_bits),
.stop_bits = _convert_uart_stop_bits_z_to_cyhal(cfg->stop_bits),
.parity = _convert_uart_parity_z_to_cyhal(cfg->parity)};
/* Store Uart Zephyr configuration (uart config) into data structure */
data->cfg = *cfg;
/* Configure parity, data and stop bits */
result = cyhal_uart_configure(&data->obj, &uart_cfg);
/* Configure the baud rate */
if (result == CY_RSLT_SUCCESS) {
result = cyhal_uart_set_baud(&data->obj, cfg->baudrate, NULL);
}
/* Set RTS/CTS flow control pins as NC so cyhal will skip initialization */
data->obj.pin_cts = NC;
data->obj.pin_rts = NC;
/* Enable RTS/CTS flow control */
if ((result == CY_RSLT_SUCCESS) && cfg->flow_ctrl) {
result = cyhal_uart_enable_flow_control(&data->obj, true, true);
}
return (result == CY_RSLT_SUCCESS) ? 0 : -ENOTSUP;
};
static int ifx_cat1_uart_config_get(const struct device *dev, struct uart_config *cfg)
{
ARG_UNUSED(dev);
struct ifx_cat1_uart_data *const data = dev->data;
if (cfg == NULL) {
return -EINVAL;
}
*cfg = data->cfg;
return 0;
}
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
/* Uart event callback for Interrupt driven mode */
static void _uart_event_callback_irq_mode(void *arg, cyhal_uart_event_t event)
{
ARG_UNUSED(event);
const struct device *dev = (const struct device *)arg;
struct ifx_cat1_uart_data *const data = dev->data;
if (data->irq_cb != NULL) {
data->irq_cb(dev, data->irq_cb_data);
}
}
/* Fill FIFO with data */
static int ifx_cat1_uart_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size)
{
struct ifx_cat1_uart_data *const data = dev->data;
size_t _size = (size_t)size;
(void)cyhal_uart_write(&data->obj, (uint8_t *)tx_data, &_size);
return (int)_size;
}
/* Read data from FIFO */
static int ifx_cat1_uart_fifo_read(const struct device *dev, uint8_t *rx_data, const int size)
{
struct ifx_cat1_uart_data *const data = dev->data;
size_t _size = (size_t)size;
(void)cyhal_uart_read(&data->obj, rx_data, &_size);
return (int)_size;
}
/* Enable TX interrupt */
static void ifx_cat1_uart_irq_tx_enable(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cyhal_uart_enable_event(&data->obj, (cyhal_uart_event_t)CYHAL_UART_IRQ_TX_EMPTY,
config->irq_priority, true);
}
/* Disable TX interrupt */
static void ifx_cat1_uart_irq_tx_disable(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cyhal_uart_enable_event(&data->obj, (cyhal_uart_event_t)CYHAL_UART_IRQ_TX_EMPTY,
config->irq_priority, false);
}
/* Check if UART TX buffer can accept a new char */
static int ifx_cat1_uart_irq_tx_ready(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
uint32_t mask = Cy_SCB_GetTxInterruptStatusMasked(data->obj.base);
return (((mask & (CY_SCB_UART_TX_NOT_FULL | SCB_INTR_TX_EMPTY_Msk)) != 0u) ? 1 : 0);
}
/* Check if UART TX block finished transmission */
static int ifx_cat1_uart_irq_tx_complete(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
return (int)!(cyhal_uart_is_tx_active(&data->obj));
}
/* Enable RX interrupt */
static void ifx_cat1_uart_irq_rx_enable(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cyhal_uart_enable_event(&data->obj, (cyhal_uart_event_t)CYHAL_UART_IRQ_RX_NOT_EMPTY,
config->irq_priority, true);
}
/* Disable TX interrupt */
static void ifx_cat1_uart_irq_rx_disable(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cyhal_uart_enable_event(&data->obj, (cyhal_uart_event_t)CYHAL_UART_IRQ_RX_NOT_EMPTY,
config->irq_priority, false);
}
/* Check if UART RX buffer has a received char */
static int ifx_cat1_uart_irq_rx_ready(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
return cyhal_uart_readable(&data->obj) ? 1 : 0;
}
/* Enable Error interrupts */
static void ifx_cat1_uart_irq_err_enable(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cyhal_uart_enable_event(
&data->obj, (cyhal_uart_event_t)(CYHAL_UART_IRQ_TX_ERROR | CYHAL_UART_IRQ_RX_ERROR),
config->irq_priority, true);
}
/* Disable Error interrupts */
static void ifx_cat1_uart_irq_err_disable(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cyhal_uart_enable_event(
&data->obj, (cyhal_uart_event_t)(CYHAL_UART_IRQ_TX_ERROR | CYHAL_UART_IRQ_RX_ERROR),
config->irq_priority, false);
}
/* Check if any IRQs is pending */
static int ifx_cat1_uart_irq_is_pending(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
uint32_t intcause = Cy_SCB_GetInterruptCause(data->obj.base);
return (int)(intcause & (CY_SCB_TX_INTR | CY_SCB_RX_INTR));
}
/* Start processing interrupts in ISR.
* This function should be called the first thing in the ISR. Calling
* uart_irq_rx_ready(), uart_irq_tx_ready(), uart_irq_tx_complete()
* allowed only after this.
*/
static int ifx_cat1_uart_irq_update(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
int status = 1;
if (((ifx_cat1_uart_irq_is_pending(dev) & CY_SCB_RX_INTR) != 0u) &&
(Cy_SCB_UART_GetNumInRxFifo(data->obj.base) == 0u)) {
status = 0;
}
return status;
}
static void ifx_cat1_uart_irq_callback_set(const struct device *dev,
uart_irq_callback_user_data_t cb, void *cb_data)
{
struct ifx_cat1_uart_data *data = dev->data;
cyhal_uart_t *uart_obj = &data->obj;
/* Store user callback info */
data->irq_cb = cb;
data->irq_cb_data = cb_data;
/* Register a uart general callback handler */
cyhal_uart_register_callback(uart_obj, _uart_event_callback_irq_mode, (void *)dev);
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#ifdef CONFIG_UART_ASYNC_API
static int ifx_cat1_uart_async_callback_set(const struct device *dev, uart_callback_t callback,
void *user_data)
{
struct ifx_cat1_uart_data *const data = dev->data;
data->async.cb = callback;
data->async.user_data = user_data;
data->async.dma_tx.dma_cfg.user_data = (void *)dev;
return 0;
}
/* Async DMA helper */
static int ifx_cat1_uart_async_dma_config_buffer(const struct device *dev, bool tx)
{
int ret;
struct ifx_cat1_uart_data *const data = dev->data;
struct ifx_cat1_dma_stream *dma_stream = tx ? &data->async.dma_tx : &data->async.dma_rx;
/* Configure byte mode */
dma_stream->blk_cfg.block_size = dma_stream->buf_len;
if (tx) {
dma_stream->blk_cfg.source_address = (uint32_t)dma_stream->buf;
} else {
dma_stream->blk_cfg.dest_address = (uint32_t)dma_stream->buf;
}
ret = dma_config(dma_stream->dev, dma_stream->dma_channel, &dma_stream->dma_cfg);
if (!ret) {
ret = dma_start(dma_stream->dev, dma_stream->dma_channel);
}
return ret;
}
static int ifx_cat1_uart_async_tx(const struct device *dev, const uint8_t *tx_data,
size_t tx_data_size, int32_t timeout)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct device *dev_dma = data->async.dma_tx.dev;
int err;
if (dev_dma == NULL) {
err = -ENODEV;
goto exit;
}
if (tx_data == NULL || tx_data_size == 0) {
err = -EINVAL;
goto exit;
}
/* Store information about data buffer need to send */
data->async.dma_tx.buf = (uint8_t *)tx_data;
data->async.dma_tx.buf_len = tx_data_size;
data->async.dma_tx.blk_cfg.block_size = 0;
data->async.dma_tx.dma_transmitted_bytes = 0;
/* Configure dma to transfer */
err = ifx_cat1_uart_async_dma_config_buffer(dev, true);
if (err) {
LOG_ERR("Error Tx DMA configure (%d)", err);
goto exit;
}
/* Configure timeout */
if ((timeout != SYS_FOREVER_US) && (timeout != 0)) {
k_work_reschedule(&data->async.dma_tx.timeout_work, K_USEC(timeout));
}
exit:
return err;
}
static int ifx_cat1_uart_async_tx_abort(const struct device *dev)
{
struct ifx_cat1_uart_data *data = dev->data;
struct uart_event evt = {0};
struct dma_status stat;
int err = 0;
unsigned int key = irq_lock();
k_work_cancel_delayable(&data->async.dma_tx.timeout_work);
err = dma_stop(data->async.dma_tx.dev, data->async.dma_tx.dma_channel);
if (err) {
LOG_ERR("Error stopping Tx DMA (%d)", err);
goto unlock;
}
err = dma_get_status(data->async.dma_tx.dev, data->async.dma_tx.dma_channel, &stat);
if (err) {
LOG_ERR("Error stopping Tx DMA (%d)", err);
goto unlock;
}
evt.type = UART_TX_ABORTED;
evt.data.tx.buf = data->async.dma_tx.buf;
evt.data.tx.len = 0;
if (data->async.cb) {
data->async.cb(dev, &evt, data->async.user_data);
}
unlock:
irq_unlock(key);
return err;
}
static void dma_callback_tx_done(const struct device *dma_dev, void *arg, uint32_t channel,
int status)
{
const struct device *uart_dev = (void *)arg;
struct ifx_cat1_uart_data *const data = uart_dev->data;
unsigned int key = irq_lock();
if (status == 0) {
k_work_cancel_delayable(&data->async.dma_tx.timeout_work);
dma_stop(data->async.dma_tx.dev, data->async.dma_tx.dma_channel);
struct uart_event evt = {.type = UART_TX_DONE,
.data.tx.buf = data->async.dma_tx.buf,
.data.tx.len = data->async.dma_tx.buf_len};
data->async.dma_tx.buf = NULL;
data->async.dma_tx.buf_len = 0;
if (data->async.cb) {
data->async.cb(uart_dev, &evt, data->async.user_data);
}
} else {
/* DMA error */
dma_stop(data->async.dma_tx.dev, data->async.dma_tx.dma_channel);
}
irq_unlock(key);
}
static void ifx_cat1_uart_async_tx_timeout(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct ifx_cat1_dma_stream *dma_tx =
CONTAINER_OF(dwork, struct ifx_cat1_dma_stream, timeout_work);
struct ifx_cat1_uart_async *async =
CONTAINER_OF(dma_tx, struct ifx_cat1_uart_async, dma_tx);
(void)ifx_cat1_uart_async_tx_abort(async->uart_dev);
}
static inline void async_evt_rx_rdy(struct ifx_cat1_uart_data *data)
{
struct uart_event event = {.type = UART_RX_RDY,
.data.rx.buf = (uint8_t *)data->async.dma_rx.buf,
.data.rx.len =
data->async.dma_rx.counter - data->async.dma_rx.offset,
.data.rx.offset = data->async.dma_rx.offset};
data->async.dma_rx.offset = data->async.dma_rx.counter;
if (event.data.rx.len > 0 && data->async.cb) {
data->async.cb(data->async.uart_dev, &event, data->async.user_data);
}
}
static inline void async_evt_rx_buf_request(struct ifx_cat1_uart_data *data)
{
struct uart_event evt = {.type = UART_RX_BUF_REQUEST};
if (data->async.cb) {
data->async.cb(data->async.uart_dev, &evt, data->async.user_data);
}
}
static inline void async_evt_rx_release_buffer(struct ifx_cat1_uart_data *data, int buffer_type)
{
struct uart_event event = {.type = UART_RX_BUF_RELEASED};
if (buffer_type == NEXT_BUFFER && !data->async.rx_next_buf) {
return;
}
if (buffer_type == CURRENT_BUFFER && !data->async.dma_rx.buf) {
return;
}
if (buffer_type == NEXT_BUFFER) {
event.data.rx_buf.buf = data->async.rx_next_buf;
data->async.rx_next_buf = NULL;
data->async.rx_next_buf_len = 0;
} else {
event.data.rx_buf.buf = data->async.dma_rx.buf;
data->async.dma_rx.buf = NULL;
data->async.dma_rx.buf_len = 0;
}
if (data->async.cb) {
data->async.cb(data->async.uart_dev, &event, data->async.user_data);
}
}
static inline void async_evt_rx_disabled(struct ifx_cat1_uart_data *data)
{
struct uart_event event = {.type = UART_RX_DISABLED};
data->async.dma_rx.buf = NULL;
data->async.dma_rx.buf_len = 0;
data->async.dma_rx.offset = 0;
data->async.dma_rx.counter = 0;
if (data->async.cb) {
data->async.cb(data->async.uart_dev, &event, data->async.user_data);
}
}
static inline void async_evt_rx_stopped(struct ifx_cat1_uart_data *data,
enum uart_rx_stop_reason reason)
{
struct uart_event event = {.type = UART_RX_STOPPED, .data.rx_stop.reason = reason};
struct uart_event_rx *rx = &event.data.rx_stop.data;
struct dma_status stat;
if (data->async.dma_rx.buf_len == 0 || data->async.cb == NULL) {
return;
}
rx->buf = data->async.dma_rx.buf;
if (dma_get_status(data->async.dma_rx.dev, data->async.dma_rx.dma_channel, &stat) == 0) {
data->async.dma_rx.counter = data->async.dma_rx.buf_len - stat.pending_length;
}
rx->len = data->async.dma_rx.counter - data->async.dma_rx.offset;
rx->offset = data->async.dma_rx.counter;
data->async.cb(data->async.uart_dev, &event, data->async.user_data);
}
static int ifx_cat1_uart_async_rx_enable(const struct device *dev, uint8_t *rx_data,
size_t rx_data_size, int32_t timeout)
{
struct ifx_cat1_uart_data *const data = dev->data;
struct dma_status dma_status = {0};
int err = 0;
unsigned int key = irq_lock();
if (data->async.dma_rx.dev == NULL) {
return -ENODEV;
}
if (data->async.dma_rx.buf_len != 0) {
return -EBUSY;
}
/* Store information about data buffer need to send */
data->async.dma_rx.buf = (uint8_t *)rx_data;
data->async.dma_rx.buf_len = rx_data_size;
data->async.dma_rx.blk_cfg.block_size = 0;
data->async.dma_rx.dma_transmitted_bytes = 0;
data->async.dma_rx.timeout = timeout;
/* Request buffers before enabling rx */
async_evt_rx_buf_request(data);
/* Configure dma to transfer */
err = ifx_cat1_uart_async_dma_config_buffer(dev, false);
if (err) {
LOG_ERR("Error Rx DMA configure (%d)", err);
goto unlock;
}
err = dma_get_status(data->async.dma_rx.dev, data->async.dma_rx.dma_channel, &dma_status);
if (err) {
return err;
}
if (dma_status.busy) {
return -EBUSY;
}
/* Configure timeout */
if ((timeout != SYS_FOREVER_US) && (timeout != 0)) {
k_work_reschedule(&data->async.dma_rx.timeout_work, K_USEC(timeout));
}
unlock:
irq_unlock(key);
return err;
}
static void dma_callback_rx_rdy(const struct device *dma_dev, void *arg, uint32_t channel,
int status)
{
const struct device *uart_dev = (void *)arg;
struct ifx_cat1_uart_data *const data = uart_dev->data;
unsigned int key = irq_lock();
if (status == 0) {
/* All data are sent, call user callback */
k_work_cancel_delayable(&data->async.dma_rx.timeout_work);
data->async.dma_rx.counter = data->async.dma_rx.buf_len;
async_evt_rx_rdy(data);
async_evt_rx_release_buffer(data, CURRENT_BUFFER);
data->async.dma_rx.buf = NULL;
data->async.dma_rx.buf_len = 0;
data->async.dma_rx.blk_cfg.block_size = 0;
data->async.dma_rx.dma_transmitted_bytes = 0;
if (!data->async.rx_next_buf) {
dma_stop(data->async.dma_rx.dev, data->async.dma_rx.dma_channel);
async_evt_rx_disabled(data);
goto unlock;
}
data->async.dma_rx.buf = data->async.rx_next_buf;
data->async.dma_rx.buf_len = data->async.rx_next_buf_len;
data->async.dma_rx.offset = 0;
data->async.dma_rx.counter = 0;
data->async.rx_next_buf = NULL;
data->async.rx_next_buf_len = 0;
ifx_cat1_uart_async_dma_config_buffer(uart_dev, false);
async_evt_rx_buf_request(data);
if ((data->async.dma_rx.timeout != SYS_FOREVER_US) &&
(data->async.dma_rx.timeout != 0)) {
k_work_reschedule(&data->async.dma_rx.timeout_work,
K_USEC(data->async.dma_rx.timeout));
}
} else {
/* DMA error */
dma_stop(data->async.dma_rx.dev, data->async.dma_rx.dma_channel);
async_evt_rx_stopped(data, UART_ERROR_OVERRUN);
async_evt_rx_release_buffer(data, CURRENT_BUFFER);
async_evt_rx_release_buffer(data, NEXT_BUFFER);
async_evt_rx_disabled(data);
goto unlock;
}
unlock:
irq_unlock(key);
}
static void ifx_cat1_uart_async_rx_timeout(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct ifx_cat1_dma_stream *dma_rx =
CONTAINER_OF(dwork, struct ifx_cat1_dma_stream, timeout_work);
struct ifx_cat1_uart_async *async =
CONTAINER_OF(dma_rx, struct ifx_cat1_uart_async, dma_rx);
struct ifx_cat1_uart_data *data = CONTAINER_OF(async, struct ifx_cat1_uart_data, async);
struct dma_status stat;
unsigned int key = irq_lock();
if (dma_rx->buf_len == 0) {
irq_unlock(key);
return;
}
if (dma_get_status(dma_rx->dev, dma_rx->dma_channel, &stat) == 0) {
size_t rx_rcv_len = dma_rx->buf_len - stat.pending_length;
if ((rx_rcv_len > 0) && (rx_rcv_len == dma_rx->counter)) {
dma_rx->counter = rx_rcv_len;
async_evt_rx_rdy(data);
} else {
dma_rx->counter = rx_rcv_len;
}
}
irq_unlock(key);
if ((dma_rx->timeout != SYS_FOREVER_US) && (dma_rx->timeout != 0)) {
k_work_reschedule(&dma_rx->timeout_work, K_USEC(dma_rx->timeout));
}
}
static int ifx_cat1_uart_async_rx_disable(const struct device *dev)
{
struct ifx_cat1_uart_data *data = dev->data;
struct dma_status stat;
unsigned int key;
k_work_cancel_delayable(&data->async.dma_rx.timeout_work);
key = irq_lock();
if (data->async.dma_rx.buf_len == 0) {
__ASSERT_NO_MSG(data->async.dma_rx.buf == NULL);
irq_unlock(key);
return -EINVAL;
}
dma_stop(data->async.dma_rx.dev, data->async.dma_rx.dma_channel);
if (dma_get_status(data->async.dma_rx.dev, data->async.dma_rx.dma_channel, &stat) == 0) {
size_t rx_rcv_len = data->async.dma_rx.buf_len - stat.pending_length;
if (rx_rcv_len > data->async.dma_rx.offset) {
data->async.dma_rx.counter = rx_rcv_len;
async_evt_rx_rdy(data);
}
}
async_evt_rx_release_buffer(data, CURRENT_BUFFER);
async_evt_rx_release_buffer(data, NEXT_BUFFER);
async_evt_rx_disabled(data);
irq_unlock(key);
return 0;
}
static int ifx_cat1_uart_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len)
{
struct ifx_cat1_uart_data *data = dev->data;
unsigned int key;
int ret = 0;
key = irq_lock();
if (data->async.dma_rx.buf_len == 0U) {
ret = -EACCES;
goto unlock;
}
if (data->async.rx_next_buf_len != 0U) {
ret = -EBUSY;
goto unlock;
}
data->async.rx_next_buf = buf;
data->async.rx_next_buf_len = len;
unlock:
irq_unlock(key);
return ret;
}
#endif /*CONFIG_UART_ASYNC_API */
static int ifx_cat1_uart_init(const struct device *dev)
{
struct ifx_cat1_uart_data *const data = dev->data;
const struct ifx_cat1_uart_config *const config = dev->config;
cy_rslt_t result;
int ret;
cyhal_uart_configurator_t uart_init_cfg = {
.resource = &data->hw_resource,
.config = &_cyhal_uart_default_config,
.clock = &data->clock,
.gpios = {.pin_tx = NC, .pin_rts = NC, .pin_cts = NC},
};
/* Dedicate SCB HW resource */
data->hw_resource.type = CYHAL_RSC_SCB;
data->hw_resource.block_num = _get_hw_block_num(config->reg_addr);
/* Configure dt provided device signals when available */
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
/* Allocates clock for selected IP block */
result = _cyhal_utils_allocate_clock(&data->clock, &data->hw_resource,
CYHAL_CLOCK_BLOCK_PERIPHERAL_16BIT, true);
if (result != CY_RSLT_SUCCESS) {
return -ENOTSUP;
}
/* Assigns a programmable divider to a selected IP block */
en_clk_dst_t clk_idx = _cyhal_scb_get_clock_index(uart_init_cfg.resource->block_num);
result = _cyhal_utils_peri_pclk_assign_divider(clk_idx, uart_init_cfg.clock);
if (result != CY_RSLT_SUCCESS) {
return -ENOTSUP;
}
/* Initialize the UART peripheral */
result = cyhal_uart_init_cfg(&data->obj, &uart_init_cfg);
if (result != CY_RSLT_SUCCESS) {
return -ENOTSUP;
}
#if (CONFIG_SOC_FAMILY_INFINEON_CAT1C && CONFIG_UART_INTERRUPT_DRIVEN)
/* Enable the UART interrupt */
enable_sys_int(config->irq_num, config->irq_priority,
(void (*)(const void *))(void *)cyhal_uart_irq_handler, &data->obj);
#endif
/* Perform initial Uart configuration */
data->obj.is_clock_owned = true;
ret = ifx_cat1_uart_configure(dev, &config->dt_cfg);
#ifdef CONFIG_UART_ASYNC_API
data->async.uart_dev = dev;
if (data->async.dma_rx.dev != NULL) {
cyhal_source_t uart_source;
if (!device_is_ready(data->async.dma_rx.dev)) {
return -ENODEV;
}
data->async.dma_rx.blk_cfg.source_address =
(uint32_t)(&config->reg_addr->RX_FIFO_RD);
data->async.dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
data->async.dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
data->async.dma_rx.dma_cfg.head_block = &data->async.dma_rx.blk_cfg;
data->async.dma_rx.dma_cfg.user_data = (void *)dev;
data->async.dma_rx.dma_cfg.dma_callback = dma_callback_rx_rdy;
if (cyhal_uart_enable_output(&data->obj,
CYHAL_UART_OUTPUT_TRIGGER_RX_FIFO_LEVEL_REACHED,
&uart_source)) {
return -ENOTSUP;
}
if (ifx_cat1_dma_ex_connect_digital(data->async.dma_rx.dev,
data->async.dma_rx.dma_channel, uart_source,
CYHAL_DMA_INPUT_TRIGGER_ALL_ELEMENTS)) {
return -ENOTSUP;
}
Cy_SCB_SetRxFifoLevel(config->reg_addr, 0);
}
if (data->async.dma_tx.dev != NULL) {
cyhal_source_t uart_source;
if (!device_is_ready(data->async.dma_tx.dev)) {
return -ENODEV;
}
data->async.dma_tx.blk_cfg.dest_address = (uint32_t)(&config->reg_addr->TX_FIFO_WR);
data->async.dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
data->async.dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
data->async.dma_tx.dma_cfg.head_block = &data->async.dma_tx.blk_cfg;
data->async.dma_tx.dma_cfg.user_data = (void *)dev;
data->async.dma_tx.dma_cfg.dma_callback = dma_callback_tx_done;
if (cyhal_uart_enable_output(&data->obj,
CYHAL_UART_OUTPUT_TRIGGER_TX_FIFO_LEVEL_REACHED,
&uart_source)) {
return -ENOTSUP;
}
if (ifx_cat1_dma_ex_connect_digital(data->async.dma_tx.dev,
data->async.dma_tx.dma_channel, uart_source,
CYHAL_DMA_INPUT_TRIGGER_ALL_ELEMENTS)) {
return -ENOTSUP;
}
Cy_SCB_SetTxFifoLevel(config->reg_addr, 1);
}
k_work_init_delayable(&data->async.dma_tx.timeout_work, ifx_cat1_uart_async_tx_timeout);
k_work_init_delayable(&data->async.dma_rx.timeout_work, ifx_cat1_uart_async_rx_timeout);
#endif /* CONFIG_UART_ASYNC_API */
return ret;
}
static DEVICE_API(uart, ifx_cat1_uart_driver_api) = {
.poll_in = ifx_cat1_uart_poll_in,
.poll_out = ifx_cat1_uart_poll_out,
.err_check = ifx_cat1_uart_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = ifx_cat1_uart_configure,
.config_get = ifx_cat1_uart_config_get,
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = ifx_cat1_uart_fifo_fill,
.fifo_read = ifx_cat1_uart_fifo_read,
.irq_tx_enable = ifx_cat1_uart_irq_tx_enable,
.irq_tx_disable = ifx_cat1_uart_irq_tx_disable,
.irq_tx_ready = ifx_cat1_uart_irq_tx_ready,
.irq_rx_enable = ifx_cat1_uart_irq_rx_enable,
.irq_rx_disable = ifx_cat1_uart_irq_rx_disable,
.irq_tx_complete = ifx_cat1_uart_irq_tx_complete,
.irq_rx_ready = ifx_cat1_uart_irq_rx_ready,
.irq_err_enable = ifx_cat1_uart_irq_err_enable,
.irq_err_disable = ifx_cat1_uart_irq_err_disable,
.irq_is_pending = ifx_cat1_uart_irq_is_pending,
.irq_update = ifx_cat1_uart_irq_update,
.irq_callback_set = ifx_cat1_uart_irq_callback_set,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
#if CONFIG_UART_ASYNC_API
.callback_set = ifx_cat1_uart_async_callback_set,
.tx = ifx_cat1_uart_async_tx,
.rx_enable = ifx_cat1_uart_async_rx_enable,
.tx_abort = ifx_cat1_uart_async_tx_abort,
.rx_buf_rsp = ifx_cat1_uart_async_rx_buf_rsp,
.rx_disable = ifx_cat1_uart_async_rx_disable,
#endif /*CONFIG_UART_ASYNC_API*/
};
#if defined(CONFIG_UART_ASYNC_API)
#define UART_DMA_CHANNEL_INIT(index, dir, ch_dir, src_data_size, dst_data_size) \
.dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(index, dir)), \
.dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \
.dma_cfg = { \
.channel_direction = ch_dir, \
.source_data_size = src_data_size, \
.dest_data_size = dst_data_size, \
.source_burst_length = 0, \
.dest_burst_length = 0, \
.block_count = 1, \
.complete_callback_en = 0, \
},
#define UART_DMA_CHANNEL(index, dir, ch_dir, src_data_size, dst_data_size) \
.async.dma_##dir = {COND_CODE_1( \
DT_INST_DMAS_HAS_NAME(index, dir), \
(UART_DMA_CHANNEL_INIT(index, dir, ch_dir, src_data_size, dst_data_size)), \
(NULL))},
#else
#define UART_DMA_CHANNEL(index, dir, ch_dir, src_data_size, dst_data_size)
#endif /* CONFIG_UART_ASYNC_API */
#if (CONFIG_SOC_FAMILY_INFINEON_CAT1C)
#define IRQ_INFO(n) \
.irq_num = DT_INST_PROP_BY_IDX(n, system_interrupts, SYS_INT_NUM), \
.irq_priority = DT_INST_PROP_BY_IDX(n, system_interrupts, SYS_INT_PRI)};
#else
#define IRQ_INFO(n) .irq_priority = DT_INST_IRQ(n, priority)};
#endif
#define INFINEON_CAT1_UART_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
static struct ifx_cat1_uart_data ifx_cat1_uart##n##_data = { \
UART_DMA_CHANNEL(n, tx, MEMORY_TO_PERIPHERAL, 1, 1) \
UART_DMA_CHANNEL(n, rx, PERIPHERAL_TO_MEMORY, 1, 1)}; \
\
static struct ifx_cat1_uart_config ifx_cat1_uart##n##_cfg = { \
.dt_cfg.baudrate = DT_INST_PROP(n, current_speed), \
.dt_cfg.parity = DT_INST_ENUM_IDX(n, parity), \
.dt_cfg.stop_bits = DT_INST_ENUM_IDX(n, stop_bits), \
.dt_cfg.data_bits = DT_INST_ENUM_IDX(n, data_bits), \
.dt_cfg.flow_ctrl = DT_INST_PROP(n, hw_flow_control), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.reg_addr = (CySCB_Type *)DT_INST_REG_ADDR(n), \
IRQ_INFO(n) \
\
DEVICE_DT_INST_DEFINE(n, &ifx_cat1_uart_init, NULL, &ifx_cat1_uart##n##_data, \
&ifx_cat1_uart##n##_cfg, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \
&ifx_cat1_uart_driver_api);
DT_INST_FOREACH_STATUS_OKAY(INFINEON_CAT1_UART_INIT)