You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
535 lines
16 KiB
535 lines
16 KiB
/* |
|
* Copyright (c) 2023 Google LLC. |
|
* Copyright (c) 2024 Croxel Inc. |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#include <errno.h> |
|
|
|
#include <zephyr/drivers/sensor.h> |
|
#include <zephyr/drivers/sensor_clock.h> |
|
#include <zephyr/dsp/types.h> |
|
#include <zephyr/logging/log.h> |
|
#include <zephyr/rtio/work.h> |
|
|
|
LOG_MODULE_REGISTER(sensor_compat, CONFIG_SENSOR_LOG_LEVEL); |
|
|
|
/* |
|
* Ensure that the size of the generic header aligns with the sensor channel specifier . If it |
|
* doesn't, then cores that require aligned memory access will fail to read channel[0]. |
|
*/ |
|
BUILD_ASSERT((sizeof(struct sensor_data_generic_header) % sizeof(struct sensor_chan_spec)) == 0); |
|
|
|
static void sensor_submit_fallback(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe); |
|
|
|
static void sensor_iodev_submit(struct rtio_iodev_sqe *iodev_sqe) |
|
{ |
|
const struct sensor_read_config *cfg = iodev_sqe->sqe.iodev->data; |
|
const struct device *dev = cfg->sensor; |
|
const struct sensor_driver_api *api = dev->api; |
|
|
|
if (api->submit != NULL) { |
|
api->submit(dev, iodev_sqe); |
|
} else if (!cfg->is_streaming) { |
|
sensor_submit_fallback(dev, iodev_sqe); |
|
} else { |
|
rtio_iodev_sqe_err(iodev_sqe, -ENOTSUP); |
|
} |
|
} |
|
|
|
const struct rtio_iodev_api __sensor_iodev_api = { |
|
.submit = sensor_iodev_submit, |
|
}; |
|
|
|
/** |
|
* @brief Compute the number of samples needed for the given channels |
|
* |
|
* @param[in] channels Array of channels requested |
|
* @param[in] num_channels Number of channels on the @p channels array |
|
* @return The number of samples required to read the given channels |
|
*/ |
|
static inline int compute_num_samples(const struct sensor_chan_spec *const channels, |
|
size_t num_channels) |
|
{ |
|
int num_samples = 0; |
|
|
|
for (size_t i = 0; i < num_channels; ++i) { |
|
num_samples += SENSOR_CHANNEL_3_AXIS(channels[i].chan_type) ? 3 : 1; |
|
} |
|
|
|
return num_samples; |
|
} |
|
|
|
/** |
|
* @brief Compute the required header size |
|
* |
|
* This function takes into account alignment of the q31 values that will follow the header. |
|
* |
|
* @param[in] num_output_samples The number of samples to represent |
|
* @return The number of bytes needed for this sample frame's header |
|
*/ |
|
static inline uint32_t compute_header_size(int num_output_samples) |
|
{ |
|
uint32_t size = sizeof(struct sensor_data_generic_header) + |
|
(num_output_samples * sizeof(struct sensor_chan_spec)); |
|
return (size + 3) & ~0x3; |
|
} |
|
|
|
/** |
|
* @brief Compute the minimum number of bytes needed |
|
* |
|
* @param[in] num_output_samples The number of samples to represent |
|
* @return The number of bytes needed for this sample frame |
|
*/ |
|
static inline uint32_t compute_min_buf_len(int num_output_samples) |
|
{ |
|
return compute_header_size(num_output_samples) + (num_output_samples * sizeof(q31_t)); |
|
} |
|
|
|
/** |
|
* @brief Checks if the header already contains a given channel |
|
* |
|
* @param[in] header The header to scan |
|
* @param[in] channel The channel to search for |
|
* @param[in] num_channels The number of valid channels in the header so far |
|
* @return Index of the @p channel if found or negative if not found |
|
*/ |
|
static inline int check_header_contains_channel(const struct sensor_data_generic_header *header, |
|
struct sensor_chan_spec chan_spec, int num_channels) |
|
{ |
|
__ASSERT_NO_MSG(!SENSOR_CHANNEL_3_AXIS(chan_spec.chan_type)); |
|
|
|
for (int i = 0; i < num_channels; ++i) { |
|
if (sensor_chan_spec_eq(header->channels[i], chan_spec)) { |
|
return i; |
|
} |
|
} |
|
return -1; |
|
} |
|
|
|
/** |
|
* @brief Fallback function for retrofiting old drivers to rtio (sync) |
|
* |
|
* @param[in] iodev_sqe The read submission queue event |
|
*/ |
|
static void sensor_submit_fallback_sync(struct rtio_iodev_sqe *iodev_sqe) |
|
{ |
|
const struct sensor_read_config *cfg = iodev_sqe->sqe.iodev->data; |
|
const struct device *dev = cfg->sensor; |
|
const struct sensor_chan_spec *const channels = cfg->channels; |
|
const int num_output_samples = compute_num_samples(channels, cfg->count); |
|
uint32_t min_buf_len = compute_min_buf_len(num_output_samples); |
|
uint64_t cycles; |
|
int rc; |
|
|
|
rc = sensor_clock_get_cycles(&cycles); |
|
if (rc != 0) { |
|
LOG_ERR("Failed to get sensor clock cycles"); |
|
rtio_iodev_sqe_err(iodev_sqe, rc); |
|
return; |
|
} |
|
|
|
uint64_t timestamp_ns = sensor_clock_cycles_to_ns(cycles); |
|
uint8_t *buf; |
|
uint32_t buf_len; |
|
|
|
rc = sensor_sample_fetch(dev); |
|
/* Check that the fetch succeeded */ |
|
if (rc != 0) { |
|
LOG_WRN("Failed to fetch samples"); |
|
rtio_iodev_sqe_err(iodev_sqe, rc); |
|
return; |
|
} |
|
|
|
/* Get the buffer for the frame, it may be allocated dynamically by the rtio context */ |
|
rc = rtio_sqe_rx_buf(iodev_sqe, min_buf_len, min_buf_len, &buf, &buf_len); |
|
if (rc != 0) { |
|
LOG_WRN("Failed to get a read buffer of size %u bytes", min_buf_len); |
|
rtio_iodev_sqe_err(iodev_sqe, rc); |
|
return; |
|
} |
|
|
|
/* Set the timestamp and num_channels */ |
|
struct sensor_data_generic_header *header = (struct sensor_data_generic_header *)buf; |
|
|
|
header->timestamp_ns = timestamp_ns; |
|
header->num_channels = num_output_samples; |
|
header->shift = 0; |
|
|
|
q31_t *q = (q31_t *)(buf + compute_header_size(num_output_samples)); |
|
|
|
/* Populate values, update shift, and set channels */ |
|
for (size_t i = 0, sample_idx = 0; i < cfg->count; ++i) { |
|
struct sensor_value value[3]; |
|
const int num_samples = SENSOR_CHANNEL_3_AXIS(channels[i].chan_type) ? 3 : 1; |
|
|
|
/* Get the current channel requested by the user */ |
|
rc = sensor_channel_get(dev, channels[i].chan_type, value); |
|
|
|
if (num_samples == 3) { |
|
header->channels[sample_idx++] = (struct sensor_chan_spec) { |
|
rc == 0 ? channels[i].chan_type - 3 : SENSOR_CHAN_MAX, |
|
0 |
|
}; |
|
header->channels[sample_idx++] = (struct sensor_chan_spec) { |
|
rc == 0 ? channels[i].chan_type - 2 : SENSOR_CHAN_MAX, |
|
0 |
|
}; |
|
header->channels[sample_idx++] = (struct sensor_chan_spec) { |
|
rc == 0 ? channels[i].chan_type - 1 : SENSOR_CHAN_MAX, |
|
0 |
|
}; |
|
} else { |
|
header->channels[sample_idx++] = (struct sensor_chan_spec) { |
|
rc == 0 ? channels[i].chan_type : SENSOR_CHAN_MAX, |
|
0 |
|
}; |
|
} |
|
|
|
if (rc != 0) { |
|
LOG_DBG("Failed to get channel (type: %d, index %d), skipping", |
|
channels[i].chan_type, channels[i].chan_idx); |
|
continue; |
|
} |
|
|
|
/* Get the largest absolute value reading to set the scale for the channel */ |
|
uint32_t header_scale = 0; |
|
|
|
for (int sample = 0; sample < num_samples; ++sample) { |
|
/* |
|
* The scale is the ceil(abs(sample)). |
|
* Since we are using fractional values, it's easier to assume that .val2 |
|
* is non 0 and convert this to abs(sample.val1) + 1 (removing a branch). |
|
* Since it's possible that val1 (int32_t) is saturated (INT32_MAX) we need |
|
* to upcast it to 64 bit int first, then take the abs() of that 64 bit |
|
* int before we '+ 1'. Once that's done, we can safely cast back down |
|
* to uint32_t because the min value is 0 and max is INT32_MAX + 1 which |
|
* is less than UINT32_MAX. |
|
*/ |
|
uint32_t scale = (uint32_t)llabs((int64_t)value[sample].val1) + 1; |
|
|
|
header_scale = MAX(header_scale, scale); |
|
} |
|
|
|
int8_t new_shift = ilog2(header_scale - 1) + 1; |
|
|
|
/* Reset sample_idx */ |
|
sample_idx -= num_samples; |
|
if (header->shift < new_shift) { |
|
/* |
|
* Shift was updated, need to convert all the existing q values. This could |
|
* be optimized by calling zdsp_scale_q31() but that would force a |
|
* dependency between sensors and the zDSP subsystem. |
|
*/ |
|
for (int q_idx = 0; q_idx < sample_idx; ++q_idx) { |
|
q[q_idx] = q[q_idx] >> (new_shift - header->shift); |
|
} |
|
header->shift = new_shift; |
|
} |
|
|
|
/* |
|
* Spread the q31 values. This is needed because some channels are 3D. If |
|
* the user specified one of those then num_samples will be 3; and we need to |
|
* produce 3 separate readings. |
|
*/ |
|
for (int sample = 0; sample < num_samples; ++sample) { |
|
/* Check if the channel is already in the buffer */ |
|
int prev_computed_value_idx = check_header_contains_channel( |
|
header, header->channels[sample_idx + sample], sample_idx + sample); |
|
|
|
if (prev_computed_value_idx >= 0 && |
|
prev_computed_value_idx != sample_idx + sample) { |
|
LOG_DBG("value[%d] previously computed at q[%d]@%p", sample, |
|
prev_computed_value_idx, |
|
(void *)&q[prev_computed_value_idx]); |
|
q[sample_idx + sample] = q[prev_computed_value_idx]; |
|
continue; |
|
} |
|
|
|
/* Convert the value to micro-units */ |
|
int64_t value_u = sensor_value_to_micro(&value[sample]); |
|
|
|
/* Convert to q31 using the shift */ |
|
q[sample_idx + sample] = |
|
((value_u * ((INT64_C(1) << 31) - 1)) / 1000000) >> header->shift; |
|
|
|
LOG_DBG("value[%d]=%s%d.%06d, q[%d]@%p=%d, shift: %d", |
|
sample, value_u < 0 ? "-" : "", |
|
abs((int)value[sample].val1), abs((int)value[sample].val2), |
|
(int)(sample_idx + sample), (void *)&q[sample_idx + sample], |
|
q[sample_idx + sample], header->shift); |
|
} |
|
sample_idx += num_samples; |
|
} |
|
LOG_DBG("Total channels in header: %" PRIu32, header->num_channels); |
|
rtio_iodev_sqe_ok(iodev_sqe, 0); |
|
} |
|
|
|
/** |
|
* @brief Fallback function for retrofiting old drivers to rtio |
|
* |
|
* @param[in] dev The sensor device to read |
|
* @param[in] iodev_sqe The read submission queue event |
|
*/ |
|
static void sensor_submit_fallback(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe) |
|
{ |
|
struct rtio_work_req *req = rtio_work_req_alloc(); |
|
|
|
if (req == NULL) { |
|
LOG_ERR("RTIO work item allocation failed. Consider to increase " |
|
"CONFIG_RTIO_WORKQ_POOL_ITEMS."); |
|
rtio_iodev_sqe_err(iodev_sqe, -ENOMEM); |
|
return; |
|
} |
|
|
|
rtio_work_req_submit(req, iodev_sqe, sensor_submit_fallback_sync); |
|
} |
|
|
|
void sensor_processing_with_callback(struct rtio *ctx, sensor_processing_callback_t cb) |
|
{ |
|
void *userdata = NULL; |
|
uint8_t *buf = NULL; |
|
uint32_t buf_len = 0; |
|
int rc; |
|
|
|
/* Wait for a CQE */ |
|
struct rtio_cqe *cqe = rtio_cqe_consume_block(ctx); |
|
|
|
/* Cache the data from the CQE */ |
|
rc = cqe->result; |
|
userdata = cqe->userdata; |
|
rtio_cqe_get_mempool_buffer(ctx, cqe, &buf, &buf_len); |
|
|
|
/* Release the CQE */ |
|
rtio_cqe_release(ctx, cqe); |
|
|
|
/* Call the callback */ |
|
cb(rc, buf, buf_len, userdata); |
|
|
|
/* Release the memory */ |
|
rtio_release_buffer(ctx, buf, buf_len); |
|
} |
|
|
|
/** |
|
* @brief Default decoder get frame count |
|
* |
|
* Default reader can only ever service a single frame at a time. |
|
* |
|
* @param[in] buffer The data buffer to parse |
|
* @param[in] channel The channel to get the count for |
|
* @param[in] channel_idx The index of the channel |
|
* @param[out] frame_count The number of frames in the buffer (always 1) |
|
* @return 0 in all cases |
|
*/ |
|
static int get_frame_count(const uint8_t *buffer, struct sensor_chan_spec channel, |
|
uint16_t *frame_count) |
|
{ |
|
struct sensor_data_generic_header *header = (struct sensor_data_generic_header *)buffer; |
|
|
|
switch (channel.chan_type) { |
|
case SENSOR_CHAN_ACCEL_XYZ: |
|
case SENSOR_CHAN_GYRO_XYZ: |
|
case SENSOR_CHAN_MAGN_XYZ: |
|
case SENSOR_CHAN_POS_DXYZ: |
|
for (size_t i = 0 ; i < header->num_channels; ++i) { |
|
/* For 3-axis channels, we need to verify we have each individual axis */ |
|
struct sensor_chan_spec channel_x = { |
|
.chan_type = channel.chan_type - 3, |
|
.chan_idx = channel.chan_idx, |
|
}; |
|
struct sensor_chan_spec channel_y = { |
|
.chan_type = channel.chan_type - 2, |
|
.chan_idx = channel.chan_idx, |
|
}; |
|
struct sensor_chan_spec channel_z = { |
|
.chan_type = channel.chan_type - 1, |
|
.chan_idx = channel.chan_idx, |
|
}; |
|
|
|
/** The three axes don't need to be at the beginning of the header, but |
|
* they should be consecutive. |
|
*/ |
|
if (((header->num_channels - i) >= 3) && |
|
sensor_chan_spec_eq(header->channels[i], channel_x) && |
|
sensor_chan_spec_eq(header->channels[i + 1], channel_y) && |
|
sensor_chan_spec_eq(header->channels[i + 2], channel_z)) { |
|
*frame_count = 1; |
|
return 0; |
|
} |
|
} |
|
break; |
|
default: |
|
for (size_t i = 0; i < header->num_channels; ++i) { |
|
if (sensor_chan_spec_eq(header->channels[i], channel)) { |
|
*frame_count = 1; |
|
return 0; |
|
} |
|
} |
|
break; |
|
} |
|
|
|
return -ENOTSUP; |
|
} |
|
|
|
int sensor_natively_supported_channel_size_info(struct sensor_chan_spec channel, size_t *base_size, |
|
size_t *frame_size) |
|
{ |
|
__ASSERT_NO_MSG(base_size != NULL); |
|
__ASSERT_NO_MSG(frame_size != NULL); |
|
|
|
if (channel.chan_type >= SENSOR_CHAN_ALL) { |
|
return -ENOTSUP; |
|
} |
|
|
|
switch (channel.chan_type) { |
|
case SENSOR_CHAN_ACCEL_XYZ: |
|
case SENSOR_CHAN_GYRO_XYZ: |
|
case SENSOR_CHAN_MAGN_XYZ: |
|
case SENSOR_CHAN_POS_DXYZ: |
|
*base_size = sizeof(struct sensor_three_axis_data); |
|
*frame_size = sizeof(struct sensor_three_axis_sample_data); |
|
return 0; |
|
case SENSOR_CHAN_PROX: |
|
*base_size = sizeof(struct sensor_byte_data); |
|
*frame_size = sizeof(struct sensor_byte_sample_data); |
|
return 0; |
|
case SENSOR_CHAN_GAUGE_CYCLE_COUNT: |
|
*base_size = sizeof(struct sensor_uint64_data); |
|
*frame_size = sizeof(struct sensor_uint64_sample_data); |
|
return 0; |
|
default: |
|
*base_size = sizeof(struct sensor_q31_data); |
|
*frame_size = sizeof(struct sensor_q31_sample_data); |
|
return 0; |
|
} |
|
} |
|
|
|
static int get_q31_value(const struct sensor_data_generic_header *header, const q31_t *values, |
|
struct sensor_chan_spec chan_spec, q31_t *out) |
|
{ |
|
for (size_t i = 0; i < header->num_channels; ++i) { |
|
if (sensor_chan_spec_eq(chan_spec, header->channels[i])) { |
|
*out = values[i]; |
|
return 0; |
|
} |
|
} |
|
return -EINVAL; |
|
} |
|
|
|
static int decode_three_axis(const struct sensor_data_generic_header *header, const q31_t *values, |
|
struct sensor_three_axis_data *data_out, enum sensor_channel x, |
|
enum sensor_channel y, enum sensor_channel z, size_t channel_idx) |
|
{ |
|
int rc; |
|
|
|
data_out->header.base_timestamp_ns = header->timestamp_ns; |
|
data_out->header.reading_count = 1; |
|
data_out->shift = header->shift; |
|
data_out->readings[0].timestamp_delta = 0; |
|
|
|
rc = get_q31_value(header, values, (struct sensor_chan_spec){x, channel_idx}, |
|
&data_out->readings[0].values[0]); |
|
if (rc < 0) { |
|
return rc; |
|
} |
|
rc = get_q31_value(header, values, (struct sensor_chan_spec){y, channel_idx}, |
|
&data_out->readings[0].values[1]); |
|
if (rc < 0) { |
|
return rc; |
|
} |
|
rc = get_q31_value(header, values, (struct sensor_chan_spec){z, channel_idx}, |
|
&data_out->readings[0].values[2]); |
|
if (rc < 0) { |
|
return rc; |
|
} |
|
return 1; |
|
} |
|
|
|
static int decode_q31(const struct sensor_data_generic_header *header, const q31_t *values, |
|
struct sensor_q31_data *data_out, struct sensor_chan_spec chan_spec) |
|
{ |
|
int rc; |
|
|
|
data_out->header.base_timestamp_ns = header->timestamp_ns; |
|
data_out->header.reading_count = 1; |
|
data_out->shift = header->shift; |
|
data_out->readings[0].timestamp_delta = 0; |
|
|
|
rc = get_q31_value(header, values, chan_spec, &data_out->readings[0].value); |
|
if (rc < 0) { |
|
return rc; |
|
} |
|
return 1; |
|
} |
|
|
|
/** |
|
* @brief Decode up to N samples from the buffer |
|
* |
|
* This function will never wrap frames. If 1 channel is available in the current frame and |
|
* @p max_count is 2, only 1 channel will be decoded and the frame iterator will be modified |
|
* so that the next call to decode will begin at the next frame. |
|
* |
|
* @param[in] buffer The buffer provided on the :c:struct:`rtio` context |
|
* @param[in] channel The channel to decode |
|
* @param[in] channel_idx The index of the channel |
|
* @param[in,out] fit The current frame iterator |
|
* @param[in] max_count The maximum number of channels to decode. |
|
* @param[out] data_out The decoded data |
|
* @return 0 no more samples to decode |
|
* @return >0 the number of decoded frames |
|
* @return <0 on error |
|
*/ |
|
static int decode(const uint8_t *buffer, struct sensor_chan_spec chan_spec, |
|
uint32_t *fit, uint16_t max_count, void *data_out) |
|
{ |
|
const struct sensor_data_generic_header *header = |
|
(const struct sensor_data_generic_header *)buffer; |
|
const q31_t *q = (const q31_t *)(buffer + compute_header_size(header->num_channels)); |
|
int count = 0; |
|
|
|
if (*fit != 0 || max_count < 1) { |
|
return -EINVAL; |
|
} |
|
|
|
if (chan_spec.chan_type >= SENSOR_CHAN_ALL) { |
|
return 0; |
|
} |
|
|
|
/* Check for 3d channel mappings */ |
|
switch (chan_spec.chan_type) { |
|
case SENSOR_CHAN_ACCEL_XYZ: |
|
count = decode_three_axis(header, q, data_out, SENSOR_CHAN_ACCEL_X, |
|
SENSOR_CHAN_ACCEL_Y, SENSOR_CHAN_ACCEL_Z, |
|
chan_spec.chan_idx); |
|
break; |
|
case SENSOR_CHAN_GYRO_XYZ: |
|
count = decode_three_axis(header, q, data_out, SENSOR_CHAN_GYRO_X, |
|
SENSOR_CHAN_GYRO_Y, SENSOR_CHAN_GYRO_Z, |
|
chan_spec.chan_idx); |
|
break; |
|
case SENSOR_CHAN_MAGN_XYZ: |
|
count = decode_three_axis(header, q, data_out, SENSOR_CHAN_MAGN_X, |
|
SENSOR_CHAN_MAGN_Y, SENSOR_CHAN_MAGN_Z, |
|
chan_spec.chan_idx); |
|
break; |
|
case SENSOR_CHAN_POS_DXYZ: |
|
count = decode_three_axis(header, q, data_out, SENSOR_CHAN_POS_DX, |
|
SENSOR_CHAN_POS_DY, SENSOR_CHAN_POS_DZ, |
|
chan_spec.chan_idx); |
|
break; |
|
default: |
|
count = decode_q31(header, q, data_out, chan_spec); |
|
break; |
|
} |
|
if (count > 0) { |
|
*fit = 1; |
|
} |
|
return count; |
|
} |
|
|
|
const struct sensor_decoder_api __sensor_default_decoder = { |
|
.get_frame_count = get_frame_count, |
|
.get_size_info = sensor_natively_supported_channel_size_info, |
|
.decode = decode, |
|
};
|
|
|