Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

662 lines
21 KiB

/*
* Copyright (c) 2025 Renesas Electronics Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/irq.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/dt-bindings/pwm/rx_mtu_pwm.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/logging/log.h>
#include "r_gpio_rx_if.h"
#define DT_DRV_COMPAT renesas_rx_mtu_pwm
LOG_MODULE_REGISTER(pwm_renesas_rx_mtu, CONFIG_PWM_LOG_LEVEL);
#define MAX_CHANNEL (4)
#define TMDR_MD_PWM_NORMAL_MODE (0)
#define TMDR_MD_PWM_MODE_1 (2)
#define TMDR_MD_PWM_MODE_2 (3)
#define TCIEV_BIT (4)
#define TCFD_BIT (7)
#define INPUT_CAPTURE_AT_RISING_EDGE 0x8
#define INPUT_CAPTURE_AT_FALLING_EDGE 0x9
#define INPUT_CAPTURE_AT_BOTH_EDGE 0xA
#define INPUT_LOW (0)
#define INPUT_HIGH (1)
#define CAPTURE_STOP (0)
#define CAPTURE_START (1)
/* output always low (0% duty cycle). */
#define PWM_STATE_0 0x11
/* output switches (1% - 99% duty cycle).*/
#define PWM_STATE_SWITCHING 0x65
/* output always high (100% duty cycle). */
#define PWM_STATE_100 0x66
#ifdef CONFIG_PWM_CAPTURE
struct pwm_renesas_rx_capture_data {
pwm_capture_callback_handler_t callback;
void *user_data;
uint32_t period;
uint32_t pulse;
uint32_t capture;
uint8_t mode;
uint32_t overflows;
bool is_busy;
bool is_pulse_capture;
bool continuous;
uint8_t channel;
};
#endif /* CONFIG_PWM_CAPTURE */
struct tcr_reg {
/* time prescaler select */
uint8_t tpsc: 3;
/* input clock edge select */
uint8_t ckeg: 2;
/* counter clear source select */
uint8_t cclr: 3;
};
struct pwm_renesas_rx_data {
uint32_t clk_rate;
uint8_t capture_a_irqn;
uint8_t cycle_end_irqn;
gpio_port_pin_t port_pin;
#ifdef CONFIG_PWM_CAPTURE
struct pwm_renesas_rx_capture_data capture;
bool start_flag;
uint8_t skip_irq;
uint8_t start_source;
uint8_t capture_source;
#endif /* CONFIG_PWM_CAPTURE */
};
struct pwm_renesas_rx_config {
/* channel MTU */
uint8_t channel;
uint8_t bit_idx;
/* supported number of channels (not necessarily number of used channels) */
uint8_t max_num_channels;
/* operate the device in synchronous mode ? */
bool synchronous;
/* prescaler setting for TCR */
uint8_t prescaler;
const struct device *clock;
struct clock_control_rx_subsys_cfg clock_subsys;
const struct pinctrl_dev_config *pcfg;
struct {
/* timer control register */
volatile struct tcr_reg *tcr;
/* timer mode register */
volatile uint8_t *tmdr;
/* timer I/O control register (16 bit or 8 bit depending on number of channels) */
volatile uint8_t *tior;
/* Timer Interrupt Enable Register */
volatile uint8_t *tier;
/* Timer Status Register */
volatile uint8_t *tsr;
/* timer general registers */
volatile uint16_t *tgr;
/* timer counter register */
volatile uint16_t *tcnt;
/* timer start register */
volatile uint8_t *tstr;
/* timer synchronous register */
volatile uint8_t *tsyr;
/* timer noise filter */
volatile uint8_t *nfcr;
} reg;
#ifdef CONFIG_PWM_CAPTURE
uint8_t tgi_irq[MAX_CHANNEL + 1];
#endif
};
static inline void mtu_output_enable(const struct device *dev, int channel, uint8_t state)
{
const struct pwm_renesas_rx_config *config = dev->config;
switch (config->channel) {
case 3:
if (channel == RX_MTIOCxB) {
MTU.TOER.BIT.OE3B = state;
} else if (channel == RX_MTIOCxD) {
MTU.TOER.BIT.OE3D = state;
} else {
/* Do nothing */
}
break;
case 4:
if (channel == RX_MTIOCxA) {
MTU.TOER.BIT.OE4A = state;
} else if (channel == RX_MTIOCxB) {
MTU.TOER.BIT.OE4B = state;
} else if (channel == RX_MTIOCxC) {
MTU.TOER.BIT.OE4C = state;
} else if (channel == RX_MTIOCxD) {
MTU.TOER.BIT.OE4D = state;
} else {
/* Do nothing */
}
break;
default:
break;
}
}
static inline int pwm_rx_set_counter_clear(const struct device *dev, int counter_clear_channel)
{
const struct pwm_renesas_rx_config *config = dev->config;
switch (counter_clear_channel) {
case RX_MTIOCxA:
config->reg.tcr->cclr = 1;
break;
case RX_MTIOCxB:
config->reg.tcr->cclr = 2;
break;
case RX_MTIOCxC:
if (config->max_num_channels > 2) {
config->reg.tcr->cclr = 5;
}
break;
case RX_MTIOCxD:
if (config->max_num_channels > 2) {
config->reg.tcr->cclr = 6;
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static inline int pwm_rx_set_period(const struct device *dev, int channel, uint16_t period_cycles)
{
const struct pwm_renesas_rx_config *config = dev->config;
int counter_clear_channel, ret;
if (channel % 2 == 0) {
counter_clear_channel = channel + 1;
} else {
counter_clear_channel = channel - 1;
}
ret = pwm_rx_set_counter_clear(dev, counter_clear_channel);
if (ret) {
return ret;
}
config->reg.tgr[counter_clear_channel] = period_cycles;
/* For synchronous PWM, the device with the counter clear register has to be started
* so that all other synchronous PWMs can work. For non-synchronous PWMs, the clock
* has to be started anyway.
*/
return 0;
}
static inline void mtu_start_counter(const struct device *dev)
{
const struct pwm_renesas_rx_config *config = dev->config;
WRITE_BIT(*config->reg.tstr, config->bit_idx, 1);
}
static inline void mtu_stop_counter(const struct device *dev)
{
const struct pwm_renesas_rx_config *config = dev->config;
WRITE_BIT(*config->reg.tstr, config->bit_idx, 0);
}
static int pwm_renesas_rx_set_cycles(const struct device *dev, uint32_t channel,
uint32_t period_cycles, uint32_t pulse_cycles,
pwm_flags_t flags)
{
const struct pwm_renesas_rx_config *config = dev->config;
uint8_t pwm_state = PWM_STATE_SWITCHING;
uint32_t pulse;
if ((period_cycles > UINT16_MAX) || (pulse_cycles > UINT16_MAX)) {
LOG_INF("Fail to set period: %d", period_cycles);
return -EINVAL;
}
if (channel >= config->max_num_channels) {
LOG_INF("Fail to set channel: %d", channel);
return -EINVAL;
}
mtu_stop_counter(dev);
if (pulse_cycles == period_cycles) {
/* 100% duty cycle */
if (flags & PWM_POLARITY_INVERTED) {
pwm_state = PWM_STATE_0;
} else {
pwm_state = PWM_STATE_100;
}
/* The PWM device apparently does not change state if pulse_cycles == period_cycles,
* so we have to reduce pulse_cycles by one. Due to the value of pwm_state, the
* signal will remain constant at compare match
*/
pulse_cycles--;
}
if (pulse_cycles == 0) {
/* 0% duty cycle */
if (flags & PWM_POLARITY_INVERTED) {
pwm_state = PWM_STATE_100;
} else {
pwm_state = PWM_STATE_0;
}
}
/* Enable TOER output when outputting a waveform from the MTIOC pin of MTU3 and MTU4. */
mtu_output_enable(dev, channel, 1);
/* Set the timer I/O control register (TIOR) for a PWM, in this version using PWM mode 1*/
config->reg.tior[channel] = pwm_state;
pulse = (flags & PWM_POLARITY_INVERTED) ? period_cycles - pulse_cycles : pulse_cycles;
config->reg.tgr[channel] = (uint16_t)pulse;
pwm_rx_set_period(dev, channel, (uint16_t)period_cycles);
*config->reg.tcnt = 0;
mtu_start_counter(dev);
return 0;
}
static int pwm_renesas_rx_get_cycles_per_sec(const struct device *dev, uint32_t channel,
uint64_t *cycles)
{
const struct pwm_renesas_rx_config *config = dev->config;
uint32_t freq_hz;
int ret = 0;
ret = clock_control_get_rate(config->clock, (clock_control_subsys_t)&config->clock_subsys,
&freq_hz);
switch (config->prescaler) {
case RX_MTU_PWM_SOURCE_DIV_1:
__fallthrough;
case RX_MTU_PWM_SOURCE_DIV_4:
__fallthrough;
case RX_MTU_PWM_SOURCE_DIV_16:
__fallthrough;
case RX_MTU_PWM_SOURCE_DIV_64:
*cycles = freq_hz >> (config->prescaler * 2);
break;
default:
break;
}
return 0;
}
#ifdef CONFIG_PWM_CAPTURE
static int pwm_renesas_rx_configure_capture(const struct device *dev, uint32_t channel,
pwm_flags_t flags, pwm_capture_callback_handler_t cb,
void *user_data)
{
const struct pwm_renesas_rx_config *config = dev->config;
struct pwm_renesas_rx_data *data = dev->data;
uint8_t state;
int ret;
if (!(flags & PWM_CAPTURE_TYPE_MASK)) {
LOG_ERR("No PWM capture type specified");
return -EINVAL;
}
if ((flags & PWM_CAPTURE_TYPE_MASK) == PWM_CAPTURE_TYPE_BOTH) {
LOG_ERR("Cannot capture both period and pulse width");
return -ENOTSUP;
}
if (data->capture.is_busy) {
LOG_ERR("Capture already active on this pin");
return -EBUSY;
}
/* Set normal mode */
*config->reg.tmdr = TMDR_MD_PWM_NORMAL_MODE;
/* Set clear source */
ret = pwm_rx_set_counter_clear(dev, channel);
if (ret) {
return ret;
}
pinctrl_soc_pin_t pin = config->pcfg->states->pins[0];
data->port_pin = (pin.port_num << PORT_POS) | pin.pin_num;
if (flags & PWM_CAPTURE_TYPE_PERIOD) {
data->capture.is_pulse_capture = false;
if (flags & PWM_POLARITY_INVERTED) {
state = INPUT_CAPTURE_AT_RISING_EDGE;
} else {
state = INPUT_CAPTURE_AT_FALLING_EDGE;
}
} else {
state = INPUT_CAPTURE_AT_BOTH_EDGE;
data->capture.is_pulse_capture = true;
if (flags & PWM_POLARITY_INVERTED) {
data->start_source = INPUT_LOW;
data->capture_source = INPUT_HIGH;
} else {
data->start_source = INPUT_HIGH;
data->capture_source = INPUT_LOW;
}
}
/* Set noise filter */
WRITE_BIT(*config->reg.nfcr, config->bit_idx, 1);
/* Set Timer I/O Control */
if (channel % 2 == 0) {
/* I/O settings for even numbered channels are encoded in the lower 4 bytes
* of the timer I/O control register
*/
config->reg.tior[channel / 2] = (config->reg.tior[channel / 2] & 0xf0) + state;
} else {
/* I/O settings for even numbered channels are encoded in the higher 4 bytes
* of the timer I/O control register
*/
config->reg.tior[channel / 2] =
(config->reg.tior[channel / 2] & 0x0f) + (state << 4);
}
data->capture.channel = channel;
data->capture.callback = cb;
data->capture.user_data = user_data;
data->capture.continuous = (flags & PWM_CAPTURE_MODE_CONTINUOUS) ? true : false;
return 0;
}
static int pwm_renesas_rx_enable_capture(const struct device *dev, uint32_t channel)
{
const struct pwm_renesas_rx_config *config = dev->config;
struct pwm_renesas_rx_data *data = dev->data;
if (channel >= config->max_num_channels) {
return -EINVAL;
}
if (data->capture.is_busy) {
LOG_ERR("Capture already active on this pin");
return -EBUSY;
}
if (!data->capture.callback) {
LOG_ERR("PWM capture not configured");
return -EINVAL;
}
data->capture.is_busy = true;
data->capture_a_irqn = config->tgi_irq[channel];
data->cycle_end_irqn = config->tgi_irq[MAX_CHANNEL];
/* start counter */
mtu_start_counter(dev);
WRITE_BIT(*(config->reg.tier), channel, 1);
WRITE_BIT(*(config->reg.tier), TCIEV_BIT, 1);
irq_enable(data->capture_a_irqn);
irq_enable(data->cycle_end_irqn);
return 0;
}
static int pwm_renesas_rx_disable_capture(const struct device *dev, uint32_t channel)
{
const struct pwm_renesas_rx_config *config = dev->config;
struct pwm_renesas_rx_data *data = dev->data;
if (channel >= config->max_num_channels) {
return -EINVAL;
}
data->capture.is_busy = false;
/* Disable interruption */
irq_disable(data->capture_a_irqn);
irq_disable(data->cycle_end_irqn);
/* Disable capture source */
WRITE_BIT(*(config->reg.tier), channel, 0);
WRITE_BIT(*(config->reg.tier), TCIEV_BIT, 0);
/* Stop timer */
mtu_stop_counter(dev);
/* Clear timer */
config->reg.tgr[channel] = 0;
*config->reg.tcnt = 0;
return 0;
}
static void mtu_rx_tgi_isr(const struct device *dev)
{
struct pwm_renesas_rx_data *data = dev->data;
const struct pwm_renesas_rx_config *config = dev->config;
uint16_t counter = config->reg.tgr[data->capture.channel];
uint32_t period = UINT16_MAX + 1U;
uint8_t source = R_GPIO_PinRead(data->port_pin);
if (data->capture.is_pulse_capture) {
if (source == data->start_source) {
data->capture.overflows = 0U; /* Clear the overflow counter */
data->start_flag = CAPTURE_START; /* Start pulse width measurement */
} else if (source == data->capture_source) {
data->capture.pulse = (data->capture.overflows * period) + counter;
data->start_flag = CAPTURE_STOP; /* Measurement Invalid */
if (data->capture.callback != NULL) {
data->capture.callback(dev, data->capture.channel, 0,
data->capture.pulse, 0,
data->capture.user_data);
}
/* Disable capture in single mode */
if (data->capture.continuous == false) {
pwm_renesas_rx_disable_capture(dev, data->capture.channel);
}
} else {
/* Do nothing */
}
} else {
if (data->start_flag == CAPTURE_STOP) {
data->start_flag = CAPTURE_START; /* Start measurement */
data->capture.overflows = 0U; /* Clear the overflow counter */
} else {
data->capture.period = (data->capture.overflows * period) + counter;
data->start_flag = CAPTURE_STOP;
if (data->capture.callback != NULL) {
data->capture.callback(dev, data->capture.channel,
data->capture.period, 0, 0,
data->capture.user_data);
}
/* Disable capture in single mode */
if (data->capture.continuous == false) {
pwm_renesas_rx_disable_capture(dev, data->capture.channel);
}
}
}
}
static void mtu_rx_tgiv_isr(const struct device *dev)
{
struct pwm_renesas_rx_data *data = dev->data;
/* During the pulse width measurement */
if (data->start_flag != CAPTURE_STOP) {
data->capture.overflows++;
}
}
#endif /* CONFIG_PWM_CAPTURE */
static DEVICE_API(pwm, pwm_renesas_rx_driver_api) = {
.set_cycles = pwm_renesas_rx_set_cycles,
.get_cycles_per_sec = pwm_renesas_rx_get_cycles_per_sec,
#ifdef CONFIG_PWM_CAPTURE
.configure_capture = pwm_renesas_rx_configure_capture,
.enable_capture = pwm_renesas_rx_enable_capture,
.disable_capture = pwm_renesas_rx_disable_capture,
#endif /* CONFIG_PWM_CAPTURE */
};
static int pwm_renesas_rx_init(const struct device *dev)
{
const struct pwm_renesas_rx_config *config = dev->config;
struct pwm_renesas_rx_data *data = dev->data;
int ret;
/* Configure dt provided device signals when available */
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
ret = clock_control_on(config->clock, (clock_control_subsys_t)&config->clock_subsys);
if (ret < 0) {
return ret;
}
ret = clock_control_get_rate(config->clock, (clock_control_subsys_t)&config->clock_subsys,
&data->clk_rate);
if (ret < 0) {
return ret;
}
/* for the functionality provided by the zephyr PWM API, PWM mode 2 is sufficient,
* but some MTUs only support PWM mode 1. So that, we using PWM mode 1 in this version.
*/
*config->reg.tmdr = TMDR_MD_PWM_MODE_1;
config->reg.tcr->tpsc = config->prescaler;
/* internal input clock default setting (falling edge) */
config->reg.tcr->ckeg = 0;
/* setting count-up */
WRITE_BIT(*config->reg.tsr, TCFD_BIT, true);
/* synchronize not set*/
WRITE_BIT(*config->reg.tsyr, config->bit_idx, false);
return 0;
}
#ifdef CONFIG_PWM_CAPTURE
#define IS_HAVE_4_CHANNEL(index) ((DT_REG_SIZE_BY_NAME(DT_INST_PARENT(index), TIOR) * 2) > 2)
#define IRQ_PWM_INIT(index) \
.tgi_irq[RX_MTIOCxA] = DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgia, irq), \
.tgi_irq[RX_MTIOCxB] = DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgib, irq), \
.tgi_irq[MAX_CHANNEL] = DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgiv, irq), \
COND_CODE_1(DT_IRQ_HAS_NAME(DT_INST_PARENT(index), tgic), \
(.tgi_irq[RX_MTIOCxC] = \
DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgic, irq),), ()) \
COND_CODE_1(DT_IRQ_HAS_NAME(DT_INST_PARENT(index), tgid), \
(.tgi_irq[RX_MTIOCxD] = DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgid, irq),), ())
#define IRQ_PWM_CONFIG_INIT(index) \
do { \
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgia, irq), \
DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgia, priority), mtu_rx_tgi_isr, \
DEVICE_DT_INST_GET(index), 0); \
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgib, irq), \
DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgib, priority), mtu_rx_tgi_isr, \
DEVICE_DT_INST_GET(index), 0); \
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgiv, irq), \
DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgiv, priority), \
mtu_rx_tgiv_isr, DEVICE_DT_INST_GET(index), 0); \
COND_CODE_1(DT_IRQ_HAS_NAME(DT_INST_PARENT(index), tgic), \
(IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgic, irq), \
DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgic, priority), \
mtu_rx_tgi_isr, DEVICE_DT_INST_GET(index), 0);), \
()) \
COND_CODE_1(DT_IRQ_HAS_NAME(DT_INST_PARENT(index), tgid), \
(IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgid, irq), \
DT_IRQ_BY_NAME(DT_INST_PARENT(index), tgid, priority), \
mtu_rx_tgi_isr, DEVICE_DT_INST_GET(index), 0);), \
()) \
} while (0)
#else
#define IRQ_PWM_INIT(index)
#define IRQ_PWM_CONFIG_INIT(index)
#endif
#define PWM_DEVICE_INIT(index) \
PINCTRL_DT_DEFINE(DT_INST_PARENT(index)); \
static const struct pwm_renesas_rx_config pwm_rx_cfg##index = { \
.pcfg = PINCTRL_DT_DEV_CONFIG_GET(DT_INST_PARENT(index)), \
.channel = DT_PROP(DT_INST_PARENT(index), channel), \
.prescaler = DT_INST_PROP(index, prescaler), \
.reg = \
{ \
.tcr = (struct tcr_reg *)DT_REG_ADDR_BY_NAME( \
DT_INST_PARENT(index), TCR), \
.tmdr = (uint8_t *)DT_REG_ADDR_BY_NAME(DT_INST_PARENT(index), \
TMDR), \
.tior = (uint8_t *)DT_REG_ADDR_BY_NAME(DT_INST_PARENT(index), \
TIOR), \
.tier = (uint8_t *)DT_REG_ADDR_BY_NAME(DT_INST_PARENT(index), \
TIER), \
.tsr = (uint8_t *)DT_REG_ADDR_BY_NAME(DT_INST_PARENT(index), TSR), \
.tgr = (uint16_t *)DT_REG_ADDR_BY_NAME(DT_INST_PARENT(index), \
TGR), \
.tcnt = (uint16_t *)DT_REG_ADDR_BY_NAME(DT_INST_PARENT(index), \
TCNT), \
.nfcr = (uint8_t *)DT_REG_ADDR_BY_NAME(DT_INST_PARENT(index), \
NFCR), \
.tstr = (uint8_t *)DT_REG_ADDR_BY_NAME(DT_INST_GPARENT(index), \
TSTR), \
.tsyr = (uint8_t *)DT_REG_ADDR_BY_NAME(DT_INST_GPARENT(index), \
TSYR), \
}, \
.bit_idx = DT_PROP(DT_INST_PARENT(index), bit_idx), \
.max_num_channels = DT_REG_SIZE_BY_NAME(DT_INST_PARENT(index), TIOR) * 2, \
.clock = DEVICE_DT_GET(DT_CLOCKS_CTLR(DT_INST_PARENT(index))), \
.clock_subsys = \
{ \
.mstp = DT_CLOCKS_CELL(DT_INST_PARENT(index), mstp), \
.stop_bit = DT_CLOCKS_CELL(DT_INST_PARENT(index), stop_bit), \
}, \
IRQ_PWM_INIT(index)}; \
static struct pwm_renesas_rx_data pwm_renesas_rx_data##index; \
static int pwm_renesas_rx_init_##index(const struct device *dev) \
{ \
IRQ_PWM_CONFIG_INIT(index); \
int err = pwm_renesas_rx_init(dev); \
if (err != 0) { \
return err; \
} \
return 0; \
} \
DEVICE_DT_INST_DEFINE(index, pwm_renesas_rx_init_##index, NULL, \
&pwm_renesas_rx_data##index, &pwm_rx_cfg##index, POST_KERNEL, \
CONFIG_PWM_INIT_PRIORITY, &pwm_renesas_rx_driver_api);
DT_INST_FOREACH_STATUS_OKAY(PWM_DEVICE_INIT)