Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

140 lines
4.8 KiB

/*
* Copyright (c) 2025 Analog Devices, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <soc.h>
#include <zephyr/drivers/clock_control/adi_max32_clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(memc_max32_hpb, CONFIG_MEMC_LOG_LEVEL);
#include <hpb.h>
#include <emcc.h>
#define DT_DRV_COMPAT adi_max32_hpb
struct memc_max32_hpb_config {
const struct device *clock;
const struct pinctrl_dev_config *pcfg;
};
struct memc_max32_hpb_mem_config {
uint8_t reg;
mxc_hpb_mem_config_t config;
};
/* clang-format off */
#define MEM_CONFIG(n) \
{ \
.reg = DT_REG_ADDR(n), \
.config = {.device_type = DT_PROP(n, device_type), \
.base_addr = DT_PROP(n, base_address), \
.latency_cycle = DT_PROP_OR(n, latency_cycles, 1), \
.write_cs_high = DT_PROP_OR(n, write_cs_high, 0), \
.read_cs_high = DT_PROP_OR(n, read_cs_high, 0), \
.write_cs_hold = DT_PROP_OR(n, write_cs_hold, 0), \
.read_cs_hold = DT_PROP_OR(n, read_cs_hold, 0), \
.write_cs_setup = DT_PROP_OR(n, write_cs_setup, 0), \
.read_cs_setup = DT_PROP_OR(n, read_cs_setup, 0), \
.fixed_latency = DT_PROP_OR(n, fixed_read_latency, 0), \
COND_CODE_1(DT_NODE_HAS_PROP(n, config_regs), \
(.cfg_reg_val = config_regs_##n, \
.cfg_reg_val_len = ARRAY_SIZE(config_regs_##n)), ()) }, \
}
/* clang-format on */
#define CR_ENTRY(idx, n) \
{ \
.addr = DT_PROP_BY_IDX(n, config_regs, idx), \
.val = DT_PROP_BY_IDX(n, config_reg_vals, idx), \
}
#define MEM_CR_ENTRIES(n) \
COND_CODE_1(DT_NODE_HAS_PROP(n, config_regs), ( \
BUILD_ASSERT(DT_PROP_LEN(n, config_regs) == DT_PROP_LEN(n, config_reg_vals), \
"The config-regs and config-reg-vals properties of adi,max32-hpb memory device" \
" child nodes must be the same length"); \
static const mxc_hpb_cfg_reg_val_t config_regs_##n[] = \
{ LISTIFY(DT_PROP_LEN(n, config_regs), CR_ENTRY, (,), n) }; \
), ())
/** memory device configuration(s). */
DT_INST_FOREACH_CHILD(0, MEM_CR_ENTRIES)
/* clang-format off */
static const struct memc_max32_hpb_mem_config mem_configs[] = {
DT_INST_FOREACH_CHILD_SEP(0, MEM_CONFIG, (,))};
#define CLOCK_CFG(node_id, prop, idx) \
{.bus = DT_CLOCKS_CELL_BY_IDX(node_id, idx, offset), \
.bit = DT_CLOCKS_CELL_BY_IDX(node_id, idx, bit)}
static const struct max32_perclk perclks[] = {
DT_INST_FOREACH_PROP_ELEM_SEP(0, clocks, CLOCK_CFG, (,))};
/* clang-format on */
static int memc_max32_hpb_init(const struct device *dev)
{
const struct memc_max32_hpb_config *config = dev->config;
int r;
const mxc_hpb_mem_config_t *mem0 = NULL, *mem1 = NULL;
if (!device_is_ready(config->clock)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
for (size_t i = 0; i < ARRAY_SIZE(perclks); i++) {
r = clock_control_on(config->clock, (clock_control_subsys_t)&perclks[i]);
if (r < 0) {
LOG_ERR("Could not initialize HPB clock (%d)", r);
return r;
}
}
for (size_t i = 0; i < ARRAY_SIZE(mem_configs); i++) {
if (mem_configs[i].reg == 0) {
mem0 = &mem_configs[i].config;
} else if (mem_configs[i].reg == 1) {
mem1 = &mem_configs[i].config;
}
}
/* configure pinmux */
r = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (r < 0) {
LOG_ERR("HPB pinctrl setup failed (%d)", r);
return r;
}
r = MXC_HPB_Init(mem0, mem1);
if (r < 0) {
LOG_ERR("HPB init failed (%d)", r);
return r;
}
COND_CODE_1(DT_INST_PROP(0, enable_emcc), (MXC_EMCC_Enable()), (MXC_EMCC_Disable()));
return 0;
}
PINCTRL_DT_INST_DEFINE(0);
static const struct memc_max32_hpb_config config = {
.clock = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(0)),
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
};
DEVICE_DT_INST_DEFINE(0, memc_max32_hpb_init, NULL, NULL, &config, POST_KERNEL,
CONFIG_MEMC_INIT_PRIORITY, NULL);