Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

446 lines
16 KiB

/*
* Copyright (c) 2024 Arif Balik <arifbalik@outlook.com>
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <stdlib.h>
#include <stdbool.h>
#include <autoconf.h>
#include <zephyr/irq.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/input/input.h>
#include <zephyr/drivers/reset.h>
#include <zephyr/sys/util.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/ring_buffer.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
LOG_MODULE_REGISTER(tsc_keys, CONFIG_INPUT_LOG_LEVEL);
#define DT_DRV_COMPAT st_stm32_tsc
/* each group only has 4 configurable I/O */
#define GET_GROUP_BITS(val, group) (uint32_t)(((val) & 0x0f) << ((group - 1) * 4))
struct stm32_tsc_group_config {
uint8_t group;
uint8_t channel_ios;
uint8_t sampling_io;
bool use_as_shield;
};
typedef void (*stm32_tsc_group_ready_cb)(uint32_t count_value, void *user_data);
struct stm32_tsc_group_data {
stm32_tsc_group_ready_cb cb;
void *user_data;
};
struct stm32_tsc_config {
const TSC_TypeDef *tsc;
const struct stm32_pclken *pclken;
struct reset_dt_spec reset;
const struct pinctrl_dev_config *pcfg;
const struct stm32_tsc_group_config *group_config;
struct stm32_tsc_group_data *group_data;
uint8_t group_cnt;
uint32_t pgpsc;
uint8_t ctph;
uint8_t ctpl;
bool spread_spectrum;
uint8_t sscpsc;
uint8_t ssd;
uint16_t max_count;
bool iodef;
bool sync_acq;
bool sync_pol;
void (*irq_func)(void);
};
int stm32_tsc_group_register_callback(const struct device *dev, uint8_t group_idx,
stm32_tsc_group_ready_cb cb, void *user_data)
{
const struct stm32_tsc_config *config = dev->config;
if (group_idx >= config->group_cnt) {
LOG_ERR("%s: group index %d is out of range", dev->name, group_idx);
return -EINVAL;
}
struct stm32_tsc_group_data *group_data = &config->group_data[group_idx];
group_data->cb = cb;
group_data->user_data = user_data;
return 0;
}
void stm32_tsc_start(const struct device *dev)
{
const struct stm32_tsc_config *config = dev->config;
/* clear interrupts */
sys_set_bits((mem_addr_t)&config->tsc->ICR, TSC_ICR_EOAIC | TSC_ICR_MCEIC);
/* enable end of acquisition and max count error interrupts */
sys_set_bits((mem_addr_t)&config->tsc->IER, TSC_IER_EOAIE | TSC_IER_MCEIE);
/* TODO: When sync acqusition mode is enabled, both this bit and an external input signal
* should be set. When the acqusition stops this bit is cleared, so even if a sync signal is
* present, the next acqusition will not start until this bit is set again.
*/
/* start acquisition */
sys_set_bit((mem_addr_t)&config->tsc->CR, TSC_CR_START_Pos);
}
static int get_group_index(const struct device *dev, uint8_t group, uint8_t *group_idx)
{
const struct stm32_tsc_config *config = dev->config;
const struct stm32_tsc_group_config *groups = config->group_config;
for (int i = 0; i < config->group_cnt; i++) {
if (groups[i].group == group) {
*group_idx = i;
return 0;
}
}
return -ENODEV;
}
static int stm32_tsc_handle_incoming_data(const struct device *dev)
{
const struct stm32_tsc_config *config = dev->config;
if (sys_test_bit((mem_addr_t)&config->tsc->ISR, TSC_ISR_MCEF_Pos)) {
/* clear max count error flag */
sys_set_bit((mem_addr_t)&config->tsc->ICR, TSC_ICR_MCEIC_Pos);
LOG_ERR("%s: max count error", dev->name);
LOG_HEXDUMP_DBG(config->tsc, sizeof(TSC_TypeDef), "TSC Registers");
return -EIO;
}
if (sys_test_bit((mem_addr_t)&config->tsc->ISR, TSC_ISR_EOAF_Pos)) {
/* clear end of acquisition flag */
sys_set_bit((mem_addr_t)&config->tsc->ICR, TSC_ICR_EOAIC_Pos);
/* read values */
for (uint8_t i = 0; i < config->group_cnt; i++) {
const struct stm32_tsc_group_config *group = &config->group_config[i];
uint32_t group_bit = BIT(group->group - 1) << 16;
if (config->tsc->IOGCSR & group_bit) {
uint32_t count_value = sys_read32(
(mem_addr_t)&config->tsc->IOGXCR[group->group - 1]);
uint8_t group_idx = 0;
int ret = get_group_index(dev, group->group, &group_idx);
if (ret < 0) {
LOG_ERR("%s: group %d not found", dev->name, group->group);
return ret;
}
struct stm32_tsc_group_data *data = &config->group_data[group_idx];
if (data->cb) {
data->cb(count_value, data->user_data);
}
}
}
}
return 0;
}
static void stm32_tsc_isr(const struct device *dev)
{
const struct stm32_tsc_config *config = dev->config;
/* disable interrupts */
sys_clear_bits((mem_addr_t)&config->tsc->IER, TSC_IER_EOAIE | TSC_IER_MCEIE);
stm32_tsc_handle_incoming_data(dev);
}
static int stm32_tsc_init(const struct device *dev)
{
const struct stm32_tsc_config *config = dev->config;
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
int ret;
if (!device_is_ready(clk)) {
LOG_ERR("%s: clock controller device not ready", dev->name);
return -ENODEV;
}
/* reset TSC values to default */
ret = reset_line_toggle_dt(&config->reset);
if (ret < 0) {
LOG_ERR("Failed to reset %s (%d)", dev->name, ret);
return ret;
}
ret = clock_control_on(clk, (clock_control_subsys_t)&config->pclken[0]);
if (ret < 0) {
LOG_ERR("Failed to enable clock for %s (%d)", dev->name, ret);
return ret;
}
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("Failed to configure %s pins (%d)", dev->name, ret);
return ret;
}
/* set ctph (bits 31:28) and ctpl (bits 27:24) */
sys_set_bits((mem_addr_t)&config->tsc->CR, (((config->ctph - 1) << 4) | (config->ctpl - 1))
<< TSC_CR_CTPL_Pos);
/* set spread spectrum deviation (bits 23:17) */
sys_set_bits((mem_addr_t)&config->tsc->CR, config->ssd << TSC_CR_SSD_Pos);
/* set pulse generator prescaler (bits 14:12) */
sys_set_bits((mem_addr_t)&config->tsc->CR, config->pgpsc << TSC_CR_PGPSC_Pos);
/* set max count value (bits 7:5) */
sys_set_bits((mem_addr_t)&config->tsc->CR, config->max_count << TSC_CR_MCV_Pos);
/* set spread spectrum prescaler (bit 15) */
if (config->sscpsc == 2) {
sys_set_bit((mem_addr_t)&config->tsc->CR, TSC_CR_SSPSC_Pos);
}
/* set sync bit polarity */
if (config->sync_pol) {
sys_set_bit((mem_addr_t)&config->tsc->CR, TSC_CR_SYNCPOL_Pos);
}
/* set sync acquisition */
if (config->sync_acq) {
sys_set_bit((mem_addr_t)&config->tsc->CR, TSC_CR_AM_Pos);
}
/* set I/O default mode */
if (config->iodef) {
sys_set_bit((mem_addr_t)&config->tsc->CR, TSC_CR_IODEF_Pos);
}
/* set spread spectrum */
if (config->spread_spectrum) {
sys_set_bit((mem_addr_t)&config->tsc->CR, TSC_CR_SSE_Pos);
}
/* group configuration */
for (int i = 0; i < config->group_cnt; i++) {
const struct stm32_tsc_group_config *group = &config->group_config[i];
if (group->channel_ios & group->sampling_io) {
LOG_ERR("%s: group %d has the same channel and sampling I/O", dev->name,
group->group);
return -EINVAL;
}
/* if use_as_shield is true, the channel I/Os are used as shield, and can only have
* values 1,2,4,8
*/
if (group->use_as_shield && group->channel_ios != 1 && group->channel_ios != 2 &&
group->channel_ios != 4 && group->channel_ios != 8) {
LOG_ERR("%s: group %d is used as shield, but has invalid channel I/Os. "
"Can only have one",
dev->name, group->group);
return -EINVAL;
}
/* clear schmitt trigger hysteresis for enabled I/Os */
sys_clear_bits(
(mem_addr_t)&config->tsc->IOHCR,
GET_GROUP_BITS(group->channel_ios | group->sampling_io, group->group));
/* set channel I/Os */
sys_set_bits((mem_addr_t)&config->tsc->IOCCR,
GET_GROUP_BITS(group->channel_ios, group->group));
/* set sampling I/O */
sys_set_bits((mem_addr_t)&config->tsc->IOSCR,
GET_GROUP_BITS(group->sampling_io, group->group));
/* enable group */
if (!group->use_as_shield) {
sys_set_bit((mem_addr_t)&config->tsc->IOGCSR, group->group - 1);
}
}
/* disable interrupts */
sys_clear_bits((mem_addr_t)&config->tsc->IER, TSC_IER_EOAIE | TSC_IER_MCEIE);
/* clear interrupts */
sys_set_bits((mem_addr_t)&config->tsc->ICR, TSC_ICR_EOAIC | TSC_ICR_MCEIC);
/* enable peripheral */
sys_set_bit((mem_addr_t)&config->tsc->CR, TSC_CR_TSCE_Pos);
config->irq_func();
return 0;
}
#define STM32_TSC_GROUP_DEFINE(node_id) \
{ \
.group = DT_PROP(node_id, group), \
.channel_ios = DT_PROP(node_id, channel_ios), \
.sampling_io = DT_PROP(node_id, sampling_io), \
.use_as_shield = DT_PROP(node_id, st_use_as_shield), \
}
#define STM32_TSC_INIT(index) \
static const struct stm32_pclken pclken_##index[] = STM32_DT_INST_CLOCKS(index); \
\
PINCTRL_DT_INST_DEFINE(index); \
\
static void stm32_tsc_irq_init_##index(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(index), DT_INST_IRQ(index, priority), stm32_tsc_isr, \
DEVICE_DT_INST_GET(index), 0); \
irq_enable(DT_INST_IRQN(index)); \
}; \
\
static const struct stm32_tsc_group_config group_config_cfg_##index[] = { \
DT_INST_FOREACH_CHILD_STATUS_OKAY_SEP(index, STM32_TSC_GROUP_DEFINE, (,))}; \
\
static struct stm32_tsc_group_data \
group_data_cfg_##index[DT_INST_CHILD_NUM_STATUS_OKAY(index)]; \
\
static const struct stm32_tsc_config stm32_tsc_cfg_##index = { \
.tsc = (TSC_TypeDef *)DT_INST_REG_ADDR(index), \
.pclken = pclken_##index, \
.reset = RESET_DT_SPEC_INST_GET(index), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \
.group_config = group_config_cfg_##index, \
.group_data = group_data_cfg_##index, \
.group_cnt = DT_INST_CHILD_NUM_STATUS_OKAY(index), \
.pgpsc = LOG2CEIL(DT_INST_PROP(index, st_pulse_generator_prescaler)), \
.ctph = DT_INST_PROP(index, st_charge_transfer_pulse_high), \
.ctpl = DT_INST_PROP(index, st_charge_transfer_pulse_low), \
.spread_spectrum = DT_INST_PROP(index, st_spread_spectrum), \
.sscpsc = DT_INST_PROP(index, st_spread_spectrum_prescaler), \
.ssd = DT_INST_PROP(index, st_spread_spectrum_deviation), \
.max_count = LOG2CEIL(DT_INST_PROP(index, st_max_count_value) + 1) - 8, \
.iodef = DT_INST_PROP(index, st_iodef_float), \
.sync_acq = DT_INST_PROP(index, st_synced_acquisition), \
.sync_pol = DT_INST_PROP(index, st_syncpol_rising), \
.irq_func = stm32_tsc_irq_init_##index, \
}; \
DEVICE_DT_INST_DEFINE(index, stm32_tsc_init, NULL, NULL, &stm32_tsc_cfg_##index, \
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, NULL);
DT_INST_FOREACH_STATUS_OKAY(STM32_TSC_INIT)
struct input_tsc_keys_data {
uint32_t buffer[CONFIG_INPUT_STM32_TSC_KEYS_BUFFER_WORD_SIZE];
struct ring_buf rb;
bool expect_release;
struct k_timer sampling_timer;
};
struct input_tsc_keys_config {
const struct device *tsc_dev;
uint32_t sampling_interval_ms;
int32_t noise_threshold;
int zephyr_code;
uint8_t group;
};
static void input_tsc_sampling_timer_callback(struct k_timer *timer)
{
const struct device *dev = k_timer_user_data_get(timer);
stm32_tsc_start(dev);
}
static void input_tsc_callback_handler(uint32_t count_value, void *user_data)
{
const struct device *dev = (const struct device *)user_data;
const struct input_tsc_keys_config *config =
(const struct input_tsc_keys_config *)dev->config;
struct input_tsc_keys_data *data = (struct input_tsc_keys_data *)dev->data;
if (ring_buf_item_space_get(&data->rb) == 0) {
uint32_t oldest_point;
int32_t slope;
(void)ring_buf_get(&data->rb, (uint8_t *)&oldest_point, sizeof(oldest_point));
slope = count_value - oldest_point;
if (slope < -config->noise_threshold && !data->expect_release) {
data->expect_release = true;
input_report_key(dev, config->zephyr_code, 1, false, K_NO_WAIT);
} else if (slope > config->noise_threshold && data->expect_release) {
data->expect_release = false;
input_report_key(dev, config->zephyr_code, 0, false, K_NO_WAIT);
}
}
(void)ring_buf_put(&data->rb, (uint8_t *)&count_value, sizeof(count_value));
}
static int input_tsc_keys_init(const struct device *dev)
{
const struct input_tsc_keys_config *config = dev->config;
struct input_tsc_keys_data *data = dev->data;
if (!device_is_ready(config->tsc_dev)) {
LOG_ERR("%s: TSC device not ready", config->tsc_dev->name);
return -ENODEV;
}
ring_buf_item_init(&data->rb, CONFIG_INPUT_STM32_TSC_KEYS_BUFFER_WORD_SIZE, data->buffer);
uint8_t group_index = 0;
int ret = get_group_index(config->tsc_dev, config->group, &group_index);
if (ret) {
LOG_ERR("%s: group %d not found", config->tsc_dev->name, config->group);
return ret;
}
ret = stm32_tsc_group_register_callback(config->tsc_dev, group_index,
input_tsc_callback_handler, (void *)dev);
if (ret) {
LOG_ERR("%s: failed to register callback for group %d", config->tsc_dev->name,
config->group);
return ret;
}
k_timer_init(&data->sampling_timer, input_tsc_sampling_timer_callback, NULL);
k_timer_user_data_set(&data->sampling_timer, (void *)config->tsc_dev);
k_timer_start(&data->sampling_timer, K_NO_WAIT, K_MSEC(config->sampling_interval_ms));
return 0;
}
#define TSC_KEYS_INIT(inst) \
\
static struct input_tsc_keys_data tsc_keys_data_##inst; \
\
static const struct input_tsc_keys_config tsc_keys_config_##inst = { \
.tsc_dev = DEVICE_DT_GET(DT_GPARENT(inst)), \
.sampling_interval_ms = DT_PROP(inst, sampling_interval_ms), \
.zephyr_code = DT_PROP(inst, zephyr_code), \
.noise_threshold = DT_PROP(inst, noise_threshold), \
.group = DT_PROP(DT_PARENT(inst), group), \
}; \
\
DEVICE_DT_DEFINE(inst, input_tsc_keys_init, NULL, &tsc_keys_data_##inst, \
&tsc_keys_config_##inst, POST_KERNEL, CONFIG_INPUT_INIT_PRIORITY, NULL);
DT_FOREACH_STATUS_OKAY(tsc_keys, TSC_KEYS_INIT);