Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

728 lines
25 KiB

/*
* Copyright (c) 2025 Renesas Electronics Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT renesas_ra_i2c_sci_b
#define MDDR_DISABLE 256
#include <zephyr/devicetree.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/irq.h>
#include <zephyr/sys/util.h>
#include <zephyr/logging/log.h>
#include "r_sci_b_i2c.h"
#ifdef CONFIG_I2C_RENESAS_RA_SCI_B_DTC
#include "r_dtc.h"
#endif
#include <soc.h>
LOG_MODULE_REGISTER(renesas_ra_i2c_sci_b, CONFIG_I2C_LOG_LEVEL);
#define I2C_MAX_MSG_LEN (1 << (sizeof(uint8_t) * 8))
typedef void (*init_func_t)(const struct device *dev);
struct sci_b_i2c_config {
void (*irq_config_func)(const struct device *dev);
const struct pinctrl_dev_config *pcfg;
uint16_t sda_output_delay;
};
struct sci_b_i2c_data {
sci_b_i2c_instance_ctrl_t ctrl;
i2c_master_cfg_t i2c_config;
sci_b_i2c_extended_cfg_t ext_cfg;
struct k_sem bus_lock;
struct k_sem complete_sem;
i2c_master_event_t event;
uint32_t dev_config;
#ifdef CONFIG_I2C_CALLBACK
uint16_t addr;
uint32_t msg_idx;
struct i2c_msg *msgs;
uint32_t num_msgs;
i2c_callback_t cb;
void *p_context;
#endif /* CONFIG_I2C_CALLBACK */
#ifdef CONFIG_I2C_RENESAS_RA_SCI_B_DTC
/* RX */
transfer_instance_t rx_transfer;
transfer_info_t rx_transfer_info DTC_TRANSFER_INFO_ALIGNMENT;
transfer_cfg_t rx_transfer_cfg;
dtc_instance_ctrl_t rx_transfer_ctrl;
dtc_extended_cfg_t rx_transfer_cfg_extend;
/* TX */
transfer_instance_t tx_transfer;
transfer_info_t tx_transfer_info DTC_TRANSFER_INFO_ALIGNMENT;
transfer_cfg_t tx_transfer_cfg;
dtc_instance_ctrl_t tx_transfer_ctrl;
dtc_extended_cfg_t tx_transfer_cfg_extend;
#endif /* CONFIG_I2C_RENESAS_RA_SCI_B_DTC */
};
static void calc_sci_b_iic_clock_setting(const struct device *dev, const uint32_t fsp_i2c_rate,
sci_b_i2c_clock_settings_t *clk_cfg);
/* FSP interruption handlers. */
void sci_b_i2c_txi_isr(void);
void sci_b_i2c_tei_isr(void);
void sci_b_i2c_rxi_isr(void);
static int renesas_ra_sci_b_i2c_configure(const struct device *dev, uint32_t dev_config)
{
struct sci_b_i2c_data *data = (struct sci_b_i2c_data *const)dev->data;
if (!(dev_config & I2C_MODE_CONTROLLER)) {
LOG_ERR("Only I2C Master mode supported.");
return -EIO;
}
switch (I2C_SPEED_GET(dev_config)) {
case I2C_SPEED_STANDARD:
data->i2c_config.rate = I2C_MASTER_RATE_STANDARD;
break;
case I2C_SPEED_FAST:
data->i2c_config.rate = I2C_MASTER_RATE_FAST;
break;
default:
LOG_ERR("Invalid I2C speed rate flag: %d", I2C_SPEED_GET(dev_config));
return -EIO;
}
calc_sci_b_iic_clock_setting(dev, data->i2c_config.rate, &data->ext_cfg.clock_settings);
R_SCI_B_I2C_Close(&data->ctrl);
R_SCI_B_I2C_Open(&data->ctrl, &data->i2c_config);
/* save current devconfig. */
data->dev_config = dev_config;
return 0;
}
static int renesas_ra_sci_b_i2c_get_config(const struct device *dev, uint32_t *dev_config)
{
struct sci_b_i2c_data *data = (struct sci_b_i2c_data *const)dev->data;
*dev_config = data->dev_config;
return 0;
}
#define OPERATION(msg) (((struct i2c_msg *)msg)->flags & I2C_MSG_RW_MASK)
static int renesas_ra_sci_b_i2c_transfer(const struct device *dev, struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr)
{
struct sci_b_i2c_data *data = (struct sci_b_i2c_data *const)dev->data;
struct i2c_msg *current, *next;
fsp_err_t fsp_err;
int ret;
if (!num_msgs) {
return 0;
}
/* Handle i2c burst write, restructure message to be compatible with HAL*/
if (num_msgs == 2) {
if (msgs[0].len == 1U && !(msgs[0].flags & I2C_MSG_READ) &&
!(msgs[1].flags & I2C_MSG_READ)) {
uint16_t tmp_len = msgs[0].len + msgs[1].len;
if (tmp_len <= I2C_MAX_MSG_LEN) {
static uint8_t merge_buf[I2C_MAX_MSG_LEN];
struct i2c_msg tmp_msg;
memcpy(&merge_buf[0], msgs[0].buf, msgs[0].len);
memcpy(&merge_buf[msgs[0].len], msgs[1].buf, msgs[1].len);
tmp_msg.buf = &merge_buf[0];
tmp_msg.flags = I2C_MSG_WRITE | I2C_MSG_STOP;
tmp_msg.len = (uint8_t)tmp_len;
/* Merge 2 msgs into 1 msg */
msgs[0] = tmp_msg;
num_msgs = 1;
} else {
LOG_DBG("messages are too large to merge");
}
}
}
current = msgs;
ret = 0;
/* Check for validity of all messages before transfer */
for (int i = 1; i <= num_msgs; i++) {
if (i < num_msgs) {
next = current + 1;
/*
* Restart condition between messages
* of different directions is required
*/
if (OPERATION(current) != OPERATION(next)) {
if (!(next->flags & I2C_MSG_RESTART)) {
LOG_ERR("Restart condition between messages of "
"different directions is required."
"Current/Total: [%d/%d]",
i, num_msgs);
ret = -EIO;
break;
}
}
/* Stop condition is only allowed on last message */
if (current->flags & I2C_MSG_STOP) {
LOG_ERR("Invalid stop flag. Stop condition is only allowed on "
"last message. "
"Current/Total: [%d/%d]",
i, num_msgs);
ret = -EIO;
break;
}
} else {
current->flags |= I2C_MSG_STOP;
}
current++;
}
if (ret) {
return ret;
}
k_sem_take(&data->bus_lock, K_FOREVER);
/* Set destination address with configured address mode before sending msg. */
i2c_master_addr_mode_t addr_mode = 0;
if (I2C_MSG_ADDR_10_BITS & data->dev_config) {
addr_mode = I2C_MASTER_ADDR_MODE_10BIT;
} else {
addr_mode = I2C_MASTER_ADDR_MODE_7BIT;
}
R_SCI_B_I2C_SlaveAddressSet(&data->ctrl, addr, addr_mode);
/* Process input `msgs`. */
current = msgs;
while (num_msgs > 0) {
if (num_msgs > 1) {
next = current + 1;
} else {
next = NULL;
}
if (current->flags & I2C_MSG_READ) {
fsp_err = R_SCI_B_I2C_Read(&data->ctrl, current->buf, current->len,
next != NULL && (next->flags & I2C_MSG_RESTART));
} else {
fsp_err =
R_SCI_B_I2C_Write(&data->ctrl, current->buf, current->len,
next != NULL && (next->flags & I2C_MSG_RESTART));
}
if (fsp_err != FSP_SUCCESS) {
switch (fsp_err) {
case FSP_ERR_INVALID_SIZE:
LOG_ERR("Provided number of bytes more than uint16_t size "
"(65535) while DTC is used for data transfer.");
break;
case FSP_ERR_IN_USE:
LOG_ERR("Bus busy condition. Another transfer was in progress.");
break;
default:
LOG_ERR("Unknown error.");
break;
}
ret = -EIO;
goto RELEASE_BUS;
}
/* Wait for callback to return. */
k_sem_take(&data->complete_sem, K_FOREVER);
/* Handle event msg from callback. */
switch (data->event) {
case I2C_MASTER_EVENT_ABORTED:
LOG_ERR("%s failed.", (current->flags & I2C_MSG_READ) ? "Read" : "Write");
ret = -EIO;
goto RELEASE_BUS;
case I2C_MASTER_EVENT_RX_COMPLETE:
break;
case I2C_MASTER_EVENT_TX_COMPLETE:
break;
default:
break;
}
current++;
num_msgs--;
}
RELEASE_BUS:
k_sem_give(&data->bus_lock);
return ret;
}
#ifdef CONFIG_I2C_CALLBACK
static void renesas_ra_sci_b_i2c_async_done(const struct device *dev, struct sci_b_i2c_data *data,
int result)
{
i2c_callback_t cb = data->cb;
void *p_context = data->p_context;
data->msg_idx = 0;
data->msgs = NULL;
data->num_msgs = 0;
data->cb = NULL;
data->p_context = NULL;
data->addr = 0;
k_sem_give(&data->bus_lock);
/* Callback may wish to start another transfer */
cb(dev, result, p_context);
}
/* Start a transfer asynchronously */
static void renesas_ra_sci_b_i2c_async_iter(const struct device *dev)
{
struct sci_b_i2c_data *data = dev->data;
fsp_err_t fsp_err;
struct i2c_msg *current, *next;
struct i2c_msg *msg = &data->msgs[data->msg_idx];
/* Check for validity of all messages before transfer */
current = msg;
if (data->msg_idx < (data->num_msgs - 1)) {
next = current + 1;
/*
* Restart condition between messages
* of different directions is required
*/
if (OPERATION(current) != OPERATION(next)) {
if (!(next->flags & I2C_MSG_RESTART)) {
LOG_ERR("Restart condition between messages of "
"different directions is required."
"Current/Total: [%d/%d]",
data->msg_idx + 1, data->num_msgs);
renesas_ra_sci_b_i2c_async_done(dev, data, -EIO);
return;
}
}
if (current->flags & I2C_MSG_STOP) {
LOG_ERR("Invalid stop flag. Stop condition is only allowed on "
"last message. "
"Current/Total: [%d/%d]",
data->msg_idx + 1, data->num_msgs);
renesas_ra_sci_b_i2c_async_done(dev, data, -EIO);
return;
}
} else {
current->flags |= I2C_MSG_STOP;
next = NULL;
}
if (current->flags & I2C_MSG_READ) {
fsp_err = R_SCI_B_I2C_Read(&data->ctrl, current->buf, current->len,
(next != NULL) && (next->flags & I2C_MSG_RESTART));
} else {
fsp_err = R_SCI_B_I2C_Write(&data->ctrl, current->buf, current->len,
(next != NULL) && (next->flags & I2C_MSG_RESTART));
}
/* Return an error if the transfer didn't start successfully
* e.g., if the bus was busy
*/
if (fsp_err != FSP_SUCCESS) {
switch (fsp_err) {
case FSP_ERR_INVALID_SIZE:
LOG_ERR("Provided number of bytes more than uint16_t size "
"(65535) while DTC is used for data transfer.");
break;
case FSP_ERR_IN_USE:
LOG_ERR("Bus busy condition. Another transfer was in progress.");
break;
default:
LOG_ERR("Unknown error.");
break;
}
R_SCI_B_I2C_Abort(&data->ctrl);
return;
}
}
static int renesas_ra_sci_b_i2c_transfer_cb(const struct device *dev, struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr, i2c_callback_t cb,
void *p_context)
{
struct sci_b_i2c_data *data = dev->data;
int res = k_sem_take(&data->bus_lock, K_NO_WAIT);
if (res != 0) {
return -EWOULDBLOCK;
}
data->msg_idx = 0;
data->msgs = msgs;
data->num_msgs = num_msgs;
data->addr = addr;
data->cb = cb;
data->p_context = p_context;
renesas_ra_sci_b_i2c_async_iter(dev);
return 0;
}
#endif /* CONFIG_I2C_CALLBACK */
static void renesas_ra_sci_b_i2c_callback(i2c_master_callback_args_t *p_args)
{
const struct device *dev = p_args->p_context;
struct sci_b_i2c_data *data = dev->data;
#ifdef CONFIG_I2C_CALLBACK
if (data->cb != NULL) {
/* Async transfer */
if (p_args->event == I2C_MASTER_EVENT_ABORTED) {
R_SCI_B_I2C_Abort(&data->ctrl);
renesas_ra_sci_b_i2c_async_done(dev, data, -EIO);
} else if (data->msg_idx == data->num_msgs - 1) {
renesas_ra_sci_b_i2c_async_done(dev, data, 0);
} else {
data->msg_idx++;
renesas_ra_sci_b_i2c_async_iter(dev);
}
return;
}
#endif /* CONFIG_I2C_CALLBACK */
data->event = p_args->event;
k_sem_give(&data->complete_sem);
}
static int renesas_ra_sci_b_i2c_init(const struct device *dev)
{
const struct sci_b_i2c_config *config = dev->config;
struct sci_b_i2c_data *data = (struct sci_b_i2c_data *)dev->data;
fsp_err_t fsp_err;
int ret;
data->dev_config |= I2C_MODE_CONTROLLER;
/* Configure dt provided device signals when available */
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("Pinctrl config failed.");
return ret;
}
k_sem_init(&data->bus_lock, 1, 1);
k_sem_init(&data->complete_sem, 0, 1);
switch (data->i2c_config.rate) {
case I2C_MASTER_RATE_STANDARD:
calc_sci_b_iic_clock_setting(dev, data->i2c_config.rate,
&data->ext_cfg.clock_settings);
data->i2c_config.p_extend = &data->ext_cfg;
data->dev_config |= I2C_SPEED_SET(I2C_SPEED_STANDARD);
break;
case I2C_MASTER_RATE_FAST:
calc_sci_b_iic_clock_setting(dev, data->i2c_config.rate,
&data->ext_cfg.clock_settings);
data->i2c_config.p_extend = &data->ext_cfg;
data->dev_config |= I2C_SPEED_SET(I2C_SPEED_FAST);
break;
default:
LOG_ERR("Invalid I2C speed rate: %d", data->i2c_config.rate);
return -ENOTSUP;
}
#ifdef CONFIG_I2C_RENESAS_RA_SCI_B_DTC
data->i2c_config.p_transfer_rx = &data->rx_transfer;
data->i2c_config.p_transfer_tx = &data->tx_transfer;
#endif
fsp_err = R_SCI_B_I2C_Open(&data->ctrl, &data->i2c_config);
if (fsp_err != FSP_SUCCESS) {
LOG_ERR("I2C init failed.");
}
config->irq_config_func(dev);
return 0;
};
static void calc_sci_b_iic_clock_setting(const struct device *dev, const uint32_t fsp_i2c_rate,
sci_b_i2c_clock_settings_t *clk_cfg)
{
const struct sci_b_i2c_config *config = dev->config;
uint32_t bitrate = 0;
bool use_mddr = clk_cfg->bitrate_modulation;
uint32_t divisor = 0;
uint32_t divisor_bitrate_multiple = 0;
uint32_t brr = 0;
int32_t cks = 0;
uint32_t delta_error = 0;
uint32_t sda_delay_clock = 0;
uint32_t sda_delay_counts = 0;
uint32_t temp_mddr;
uint32_t calculated_bitrate = 0;
uint32_t mddr = MDDR_DISABLE;
uint32_t peripheral_clock = R_FSP_SciClockHzGet();
uint32_t sda_delay_ns = config->sda_output_delay;
if (I2C_MASTER_RATE_FAST == fsp_i2c_rate) {
bitrate = 400000;
} else {
bitrate = 100000;
}
for (uint32_t i = 0; i <= 3; i++) {
divisor_bitrate_multiple = (1 << (2 * (i + 1))) * 8;
divisor = divisor_bitrate_multiple * bitrate;
/* Calculate BRR so that the bit rate is the largest possible value less than or
* equal to the desired bitrate.
*/
brr = (uint32_t)ceil(((double)peripheral_clock) / divisor - 1);
if (brr <= 255) {
break;
}
cks++;
}
calculated_bitrate = (uint32_t)((double)peripheral_clock) /
(divisor_bitrate_multiple * (256 / mddr) * (brr + 1));
delta_error = bitrate - calculated_bitrate;
if (use_mddr) {
for (uint32_t temp_brr = brr; temp_brr > 0; temp_brr--) {
/** Calculate the MDDR (M) value if bit rate modulation is enabled,
* The formula to calculate MBBR (from the M and N relationship given in the
* hardware manual) is as follows and it must be between 128 and 256. MDDR =
* ((divisor * 256) * (BRR + 1)) / PCLK
*/
temp_mddr = (uint32_t)floor(((double)divisor) * 256 * (temp_brr + 1) /
peripheral_clock);
/* The maximum value that could result from the calculation above is 256,
* which is a valid MDDR value, so only the lower bound is checked.
*/
if (temp_mddr < 128) {
break;
}
/* The maximum for MDDR is 256 (MDDR unused). */
if (temp_mddr > 256) {
continue;
}
calculated_bitrate =
(uint32_t)(peripheral_clock /
(divisor_bitrate_multiple * (256 / ((double)temp_mddr)) *
(temp_brr + 1)));
/** If the bit rate error is less than the previous lowest bit rate error,
* then store these settings as the best value.
*/
if ((bitrate - calculated_bitrate) < delta_error) {
delta_error = bitrate - calculated_bitrate;
brr = temp_brr;
mddr = temp_mddr;
}
}
}
/* If MDDR == 256, disable bitrate modulation and set MDDR to a valid value. */
if (mddr == 256) {
mddr = 255;
use_mddr = false;
}
/* Calculate SDA delay. */
sda_delay_clock = peripheral_clock >> cks;
sda_delay_counts = (uint32_t)ceil(((double)sda_delay_ns) * sda_delay_clock / 1000000000);
if (sda_delay_counts > 31) {
sda_delay_counts = 31;
}
clk_cfg->clk_divisor_value = (uint8_t)cks;
clk_cfg->brr_value = (uint8_t)brr;
clk_cfg->mddr_value = (uint8_t)mddr;
clk_cfg->bitrate_modulation = use_mddr;
clk_cfg->cycles_value = (uint8_t)sda_delay_counts;
}
static const struct i2c_driver_api renesas_ra_sci_b_i2c_driver_api = {
.configure = renesas_ra_sci_b_i2c_configure,
.get_config = renesas_ra_sci_b_i2c_get_config,
.transfer = renesas_ra_sci_b_i2c_transfer,
#ifdef CONFIG_I2C_CALLBACK
.transfer_cb = renesas_ra_sci_b_i2c_transfer_cb,
#endif /* CONFIG_I2C_CALLBACK */
};
#define _ELC_EVENT_SCI_RXI(channel) ELC_EVENT_SCI##channel##_RXI
#define _ELC_EVENT_SCI_TXI(channel) ELC_EVENT_SCI##channel##_TXI
#define _ELC_EVENT_SCI_TEI(channel) ELC_EVENT_SCI##channel##_TEI
#define ELC_EVENT_SCI_RXI(channel) _ELC_EVENT_SCI_RXI(channel)
#define ELC_EVENT_SCI_TXI(channel) _ELC_EVENT_SCI_TXI(channel)
#define ELC_EVENT_SCI_TEI(channel) _ELC_EVENT_SCI_TEI(channel)
#ifndef CONFIG_I2C_RENESAS_RA_SCI_B_DTC
#define SCI_B_I2C_DTC_INIT(index)
#define RXI_TRANSFER(index)
#else
#define SCI_B_I2C_DTC_INIT(index) \
.rx_transfer_info = \
{ \
.transfer_settings_word_b.dest_addr_mode = TRANSFER_ADDR_MODE_INCREMENTED, \
.transfer_settings_word_b.repeat_area = TRANSFER_REPEAT_AREA_DESTINATION, \
.transfer_settings_word_b.irq = TRANSFER_IRQ_END, \
.transfer_settings_word_b.chain_mode = TRANSFER_CHAIN_MODE_DISABLED, \
.transfer_settings_word_b.src_addr_mode = TRANSFER_ADDR_MODE_FIXED, \
.transfer_settings_word_b.size = TRANSFER_SIZE_1_BYTE, \
.transfer_settings_word_b.mode = TRANSFER_MODE_NORMAL, \
.p_dest = (void *)NULL, \
.p_src = (void const *)NULL, \
.num_blocks = 0, \
.length = 0, \
}, \
.rx_transfer_cfg_extend = {.activation_source = \
DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, irq)}, \
.rx_transfer_cfg = \
{ \
.p_info = &sci_b_i2c_data_##index.rx_transfer_info, \
.p_extend = &sci_b_i2c_data_##index.rx_transfer_cfg_extend, \
}, \
.rx_transfer = \
{ \
.p_ctrl = &sci_b_i2c_data_##index.rx_transfer_ctrl, \
.p_cfg = &sci_b_i2c_data_##index.rx_transfer_cfg, \
.p_api = &g_transfer_on_dtc, \
}, \
.tx_transfer_info = \
{ \
.transfer_settings_word_b.dest_addr_mode = TRANSFER_ADDR_MODE_FIXED, \
.transfer_settings_word_b.repeat_area = TRANSFER_REPEAT_AREA_SOURCE, \
.transfer_settings_word_b.irq = TRANSFER_IRQ_END, \
.transfer_settings_word_b.chain_mode = TRANSFER_CHAIN_MODE_DISABLED, \
.transfer_settings_word_b.src_addr_mode = TRANSFER_ADDR_MODE_INCREMENTED, \
.transfer_settings_word_b.size = TRANSFER_SIZE_1_BYTE, \
.transfer_settings_word_b.mode = TRANSFER_MODE_NORMAL, \
.p_dest = (void *)NULL, \
.p_src = (void const *)NULL, \
.num_blocks = 0, \
.length = 0, \
}, \
.tx_transfer_cfg_extend = {.activation_source = \
DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, irq)}, \
.tx_transfer_cfg = \
{ \
.p_info = &sci_b_i2c_data_##index.tx_transfer_info, \
.p_extend = &sci_b_i2c_data_##index.tx_transfer_cfg_extend, \
}, \
.tx_transfer = { \
.p_ctrl = &sci_b_i2c_data_##index.tx_transfer_ctrl, \
.p_cfg = &sci_b_i2c_data_##index.tx_transfer_cfg, \
.p_api = &g_transfer_on_dtc, \
},
#define RXI_TRANSFER(index) \
/* rxi */ \
R_ICU->IELSR[DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, irq)] = \
ELC_EVENT_SCI_RXI(DT_INST_PROP(index, channel)); \
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, irq), \
DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, priority), sci_b_i2c_rxi_isr, \
DEVICE_DT_INST_GET(index), 0); \
irq_enable(DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, irq));
#endif
#define SCI_B_I2C_RA_INIT(index) \
static void renesas_ra_sci_b_i2c_irq_config_func##index(const struct device *dev) \
{ \
RXI_TRANSFER(index) \
\
/* txi */ \
R_ICU->IELSR[DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, irq)] = \
ELC_EVENT_SCI_TXI(DT_INST_PROP(index, channel)); \
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, irq), \
DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, priority), \
sci_b_i2c_txi_isr, DEVICE_DT_INST_GET(index), 0); \
irq_enable(DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, irq)); \
\
/* tei */ \
R_ICU->IELSR[DT_IRQ_BY_NAME(DT_INST_PARENT(index), tei, irq)] = \
ELC_EVENT_SCI_TEI(DT_INST_PROP(index, channel)); \
IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), tei, irq), \
DT_IRQ_BY_NAME(DT_INST_PARENT(index), tei, priority), \
sci_b_i2c_tei_isr, DEVICE_DT_INST_GET(index), 0); \
irq_enable(DT_IRQ_BY_NAME(DT_INST_PARENT(index), tei, irq)); \
} \
PINCTRL_DT_DEFINE(DT_INST_PARENT(index)); \
\
static const struct sci_b_i2c_config sci_b_i2c_config_##index = { \
.pcfg = PINCTRL_DT_DEV_CONFIG_GET(DT_INST_PARENT(index)), \
.irq_config_func = renesas_ra_sci_b_i2c_irq_config_func##index, \
.sda_output_delay = DT_INST_PROP(index, sda_output_delay), \
}; \
static struct sci_b_i2c_data sci_b_i2c_data_##index = { \
.i2c_config = \
{ \
.channel = DT_INST_PROP(index, channel), \
.slave = 0, \
.rate = I2C_MASTER_RATE_STANDARD, \
.addr_mode = I2C_MASTER_ADDR_MODE_7BIT, \
.ipl = DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, priority), \
.rxi_irq = DT_IRQ_BY_NAME(DT_INST_PARENT(index), rxi, irq), \
.txi_irq = DT_IRQ_BY_NAME(DT_INST_PARENT(index), txi, irq), \
.tei_irq = DT_IRQ_BY_NAME(DT_INST_PARENT(index), tei, irq), \
.p_callback = renesas_ra_sci_b_i2c_callback, \
.p_context = DEVICE_DT_GET(DT_DRV_INST(index)), \
}, \
.ext_cfg = \
{ \
.clock_settings.snfr_value = \
DT_INST_PROP(index, noise_filter_clock_select), \
.clock_settings.bitrate_modulation = DT_INST_NODE_HAS_PROP( \
DT_DRV_INST(index), bit_rate_modulation), \
.clock_settings.clock_source = SCI_B_I2C_CLOCK_SOURCE_SCISPICLK, \
}, \
SCI_B_I2C_DTC_INIT(index)}; \
I2C_DEVICE_DT_INST_DEFINE(index, renesas_ra_sci_b_i2c_init, NULL, &sci_b_i2c_data_##index, \
&sci_b_i2c_config_##index, POST_KERNEL, \
CONFIG_I2C_INIT_PRIORITY, &renesas_ra_sci_b_i2c_driver_api);
DT_INST_FOREACH_STATUS_OKAY(SCI_B_I2C_RA_INIT)