Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

537 lines
13 KiB

/*
* Copyright (c) 2025 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <soc.h>
#include <stm32_ll_i2c.h>
#include <stm32_ll_rcc.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/i2c/rtio.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/kernel.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/sys/util.h>
#define LOG_LEVEL CONFIG_I2C_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(i2c_ll_stm32_v1_rtio);
#include "i2c_ll_stm32.h"
#include "i2c-priv.h"
#define I2C_REQUEST_WRITE 0x00
#define I2C_REQUEST_READ 0x01
#define HEADER 0xF0
static void i2c_stm32_disable_transfer_interrupts(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
LL_I2C_DisableIT_TX(i2c);
LL_I2C_DisableIT_RX(i2c);
LL_I2C_DisableIT_EVT(i2c);
LL_I2C_DisableIT_BUF(i2c);
LL_I2C_DisableIT_ERR(i2c);
}
static void i2c_stm32_enable_transfer_interrupts(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
LL_I2C_EnableIT_ERR(i2c);
LL_I2C_EnableIT_EVT(i2c);
LL_I2C_EnableIT_BUF(i2c);
}
static void i2c_stm32_generate_start_condition(I2C_TypeDef *i2c)
{
uint16_t cr1 = LL_I2C_ReadReg(i2c, CR1);
if ((cr1 & I2C_CR1_STOP) != 0) {
LOG_DBG("%s: START while STOP active!", __func__);
LL_I2C_WriteReg(i2c, CR1, cr1 & ~I2C_CR1_STOP);
}
LL_I2C_GenerateStartCondition(i2c);
}
static void i2c_stm32_master_mode_end(const struct device *dev, int status)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
struct i2c_rtio *ctx = data->ctx;
I2C_TypeDef *i2c = cfg->i2c;
i2c_stm32_disable_transfer_interrupts(dev);
#if defined(CONFIG_I2C_TARGET)
data->master_active = false;
if (data->slave_attached) {
i2c_stm32_enable_transfer_interrupts(dev);
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_ACK);
return;
}
#endif
LL_I2C_Disable(i2c);
if ((data->xfer_len == 0U) && i2c_rtio_complete(ctx, status)) {
i2c_stm32_start(dev);
}
}
static void handle_sb(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
uint16_t saddr = data->slave_address;
uint8_t slave;
if ((data->xfer_flags & I2C_MSG_ADDR_10_BITS) != 0) {
slave = ((saddr & 0x0300) >> 7) & 0xFF;
slave |= HEADER;
if (data->is_restart == 0U) {
data->is_restart = 1U;
} else {
slave |= I2C_REQUEST_READ;
data->is_restart = 0U;
}
LL_I2C_TransmitData8(i2c, slave);
} else {
slave = (saddr << 1) & 0xFF;
if ((data->xfer_flags & I2C_MSG_READ) != 0) {
LL_I2C_TransmitData8(i2c, slave | I2C_REQUEST_READ);
if (data->xfer_len == 2) {
LL_I2C_EnableBitPOS(i2c);
}
} else {
LL_I2C_TransmitData8(i2c, slave | I2C_REQUEST_WRITE);
}
}
}
static void handle_addr(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
if ((data->xfer_flags & I2C_MSG_ADDR_10_BITS) != 0) {
if (((data->xfer_flags & I2C_MSG_READ) != 0) && (data->is_restart != 0)) {
data->is_restart = 0U;
LL_I2C_ClearFlag_ADDR(i2c);
i2c_stm32_generate_start_condition(i2c);
return;
}
}
if ((data->xfer_flags & I2C_MSG_READ) == 0) {
LL_I2C_ClearFlag_ADDR(i2c);
return;
}
/* According to STM32F1 errata we need to handle these corner cases in
* a specific way.
* Please ref to STM32F10xxC/D/E I2C peripheral Errata sheet 2.14.1
*/
if ((data->xfer_len == 0U) && IS_ENABLED(CONFIG_SOC_SERIES_STM32F1X)) {
LL_I2C_GenerateStopCondition(i2c);
} else if (data->xfer_len == 1U) {
/* Single byte reception: enable NACK and clear POS */
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK);
#ifdef CONFIG_SOC_SERIES_STM32F1X
LL_I2C_ClearFlag_ADDR(i2c);
LL_I2C_GenerateStopCondition(i2c);
#endif
} else if (data->xfer_len == 2U) {
#ifdef CONFIG_SOC_SERIES_STM32F1X
LL_I2C_ClearFlag_ADDR(i2c);
#endif
/* 2-byte reception: enable NACK and set POS */
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK);
LL_I2C_EnableBitPOS(i2c);
}
LL_I2C_ClearFlag_ADDR(i2c);
}
static void handle_txe(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
if (data->xfer_len != 0) {
data->xfer_len--;
if (data->xfer_len == 0U) {
/*
* This is the last byte to transmit disable Buffer
* interrupt and wait for a BTF interrupt
*/
LL_I2C_DisableIT_BUF(i2c);
}
LL_I2C_TransmitData8(i2c, *data->xfer_buf);
data->xfer_buf++;
} else {
if ((data->xfer_flags & I2C_MSG_STOP) != 0) {
LL_I2C_GenerateStopCondition(i2c);
}
if (LL_I2C_IsActiveFlag_BTF(i2c)) {
/* Read DR to clear BTF flag */
LL_I2C_ReceiveData8(i2c);
}
i2c_stm32_master_mode_end(dev, 0);
}
}
static void handle_rxne(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
switch (data->xfer_len) {
case 0:
if ((data->xfer_flags & I2C_MSG_STOP) != 0) {
LL_I2C_GenerateStopCondition(i2c);
}
i2c_stm32_master_mode_end(dev, 0);
break;
case 1:
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK);
LL_I2C_DisableBitPOS(i2c);
/* Single byte reception */
if ((data->xfer_flags & I2C_MSG_STOP) != 0) {
LL_I2C_GenerateStopCondition(i2c);
}
LL_I2C_DisableIT_BUF(i2c);
data->xfer_len--;
*data->xfer_buf = LL_I2C_ReceiveData8(i2c);
data->xfer_buf++;
i2c_stm32_master_mode_end(dev, 0);
break;
case 2:
/*
* 2-byte reception for N > 3 has already set the NACK
* bit, and must not set the POS bit. See pg. 854 in
* the F4 reference manual (RM0090).
*/
if (data->msg_len > 2) {
break;
}
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK);
LL_I2C_EnableBitPOS(i2c);
__fallthrough;
case 3:
/*
* 2-byte, 3-byte reception and for N-2, N-1,
* N when N > 3
*/
LL_I2C_DisableIT_BUF(i2c);
break;
default:
/* N byte reception when N > 3 */
data->xfer_len--;
*data->xfer_buf = LL_I2C_ReceiveData8(i2c);
data->xfer_buf++;
}
}
static void handle_btf(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
if ((data->xfer_flags & I2C_MSG_READ) == 0) {
handle_txe(dev);
} else {
uint32_t counter = 0U;
switch (data->xfer_len) {
case 2:
/*
* Stop condition must be generated before reading the
* last two bytes.
*/
if (data->xfer_flags & I2C_MSG_STOP) {
LL_I2C_GenerateStopCondition(i2c);
}
for (counter = 2U; counter > 0; counter--) {
data->xfer_len--;
*data->xfer_buf = LL_I2C_ReceiveData8(i2c);
data->xfer_buf++;
}
i2c_stm32_master_mode_end(dev, 0);
break;
case 3:
/* Set NACK before reading N-2 byte*/
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK);
data->xfer_len--;
*data->xfer_buf = LL_I2C_ReceiveData8(i2c);
data->xfer_buf++;
break;
default:
handle_rxne(dev);
}
}
}
#if defined(CONFIG_I2C_TARGET)
static void i2c_stm32_target_event(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
const struct i2c_target_callbacks *target_cb =
data->slave_cfg->callbacks;
if (LL_I2C_IsActiveFlag_TXE(i2c) && LL_I2C_IsActiveFlag_BTF(i2c)) {
uint8_t val;
target_cb->read_processed(data->slave_cfg, &val);
LL_I2C_TransmitData8(i2c, val);
return;
}
if (LL_I2C_IsActiveFlag_RXNE(i2c)) {
uint8_t val = LL_I2C_ReceiveData8(i2c);
if (target_cb->write_received(data->slave_cfg, val)) {
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK);
}
return;
}
if (LL_I2C_IsActiveFlag_AF(i2c)) {
LL_I2C_ClearFlag_AF(i2c);
}
if (LL_I2C_IsActiveFlag_STOP(i2c)) {
LL_I2C_ClearFlag_STOP(i2c);
target_cb->stop(data->slave_cfg);
/* Prepare to ACK next transmissions address byte */
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_ACK);
}
if (LL_I2C_IsActiveFlag_ADDR(i2c)) {
uint32_t dir = LL_I2C_GetTransferDirection(i2c);
if (dir == LL_I2C_DIRECTION_READ) {
target_cb->write_requested(data->slave_cfg);
LL_I2C_EnableIT_RX(i2c);
} else {
uint8_t val;
target_cb->read_requested(data->slave_cfg, &val);
LL_I2C_TransmitData8(i2c, val);
LL_I2C_EnableIT_TX(i2c);
}
i2c_stm32_enable_transfer_interrupts(dev);
}
}
/* Attach and start I2C as target */
int i2c_stm32_target_register(const struct device *dev, struct i2c_target_config *config)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
uint32_t bitrate_cfg;
int ret;
if (config == NULL) {
return -EINVAL;
}
if (data->slave_attached) {
return -EBUSY;
}
if (data->master_active) {
return -EBUSY;
}
bitrate_cfg = i2c_map_dt_bitrate(cfg->bitrate);
ret = i2c_stm32_runtime_configure(dev, bitrate_cfg);
if (ret < 0) {
LOG_ERR("i2c: failure initializing");
return ret;
}
data->slave_cfg = config;
LL_I2C_Enable(i2c);
if (data->slave_cfg->flags == I2C_TARGET_FLAGS_ADDR_10_BITS) {
return -ENOTSUP;
}
LL_I2C_SetOwnAddress1(i2c, config->address << 1U, LL_I2C_OWNADDRESS1_7BIT);
data->slave_attached = true;
LOG_DBG("i2c: target registered");
i2c_stm32_enable_transfer_interrupts(dev);
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_ACK);
return 0;
}
int i2c_stm32_target_unregister(const struct device *dev, struct i2c_target_config *config)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
if (!data->slave_attached) {
return -EINVAL;
}
if (data->master_active) {
return -EBUSY;
}
i2c_stm32_disable_transfer_interrupts(dev);
LL_I2C_ClearFlag_AF(i2c);
LL_I2C_ClearFlag_STOP(i2c);
LL_I2C_ClearFlag_ADDR(i2c);
LL_I2C_Disable(i2c);
data->slave_attached = false;
LOG_DBG("i2c: target unregistered");
return 0;
}
#endif /* defined(CONFIG_I2C_TARGET) */
void i2c_stm32_event(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
#if defined(CONFIG_I2C_TARGET)
if (data->slave_attached && !data->master_active) {
i2c_stm32_target_event(dev);
return;
}
#endif
if (LL_I2C_IsActiveFlag_SB(i2c)) {
handle_sb(dev);
} else if (LL_I2C_IsActiveFlag_ADD10(i2c)) {
LL_I2C_TransmitData8(i2c, data->slave_address);
} else if (LL_I2C_IsActiveFlag_ADDR(i2c)) {
handle_addr(dev);
} else if (LL_I2C_IsActiveFlag_BTF(i2c)) {
handle_btf(dev);
} else if (LL_I2C_IsActiveFlag_TXE(i2c) && ((data->xfer_flags & I2C_MSG_READ) == 0)) {
handle_txe(dev);
} else if (LL_I2C_IsActiveFlag_RXNE(i2c) && ((data->xfer_flags & I2C_MSG_READ) != 0)) {
handle_rxne(dev);
}
}
int i2c_stm32_error(const struct device *dev)
{
const struct i2c_stm32_config *cfg = dev->config;
I2C_TypeDef *i2c = cfg->i2c;
#if defined(CONFIG_I2C_TARGET)
struct i2c_stm32_data *data = dev->data;
if (data->slave_attached && !data->master_active) {
/* No need for a target error function right now. */
return 0;
}
#endif
if (LL_I2C_IsActiveFlag_AF(i2c)) {
LL_I2C_ClearFlag_AF(i2c);
LL_I2C_GenerateStopCondition(i2c);
goto error;
}
if (LL_I2C_IsActiveFlag_ARLO(i2c)) {
LL_I2C_ClearFlag_ARLO(i2c);
goto error;
}
if (LL_I2C_IsActiveFlag_BERR(i2c)) {
LL_I2C_ClearFlag_BERR(i2c);
goto error;
}
return 0;
error:
i2c_stm32_master_mode_end(dev, -EIO);
return -EIO;
}
int i2c_stm32_msg_start(const struct device *dev, uint8_t flags,
uint8_t *buf, size_t buf_len, uint16_t i2c_addr)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
data->xfer_buf = buf;
data->xfer_len = buf_len;
data->xfer_flags = flags;
data->msg_len = buf_len;
data->is_restart = 0;
data->slave_address = i2c_addr;
#if defined(CONFIG_I2C_TARGET)
data->master_active = true;
#endif
LL_I2C_Enable(i2c);
LL_I2C_DisableBitPOS(i2c);
LL_I2C_AcknowledgeNextData(i2c, LL_I2C_ACK);
if ((flags & I2C_MSG_RESTART) != 0U) {
i2c_stm32_generate_start_condition(i2c);
}
i2c_stm32_enable_transfer_interrupts(dev);
if (flags & I2C_MSG_READ) {
LL_I2C_EnableIT_RX(i2c);
} else {
LL_I2C_EnableIT_TX(i2c);
}
return 0;
}
int i2c_stm32_configure_timing(const struct device *dev, uint32_t clock)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
switch (I2C_SPEED_GET(data->dev_config)) {
case I2C_SPEED_STANDARD:
LL_I2C_ConfigSpeed(i2c, clock, 100000, LL_I2C_DUTYCYCLE_2);
break;
case I2C_SPEED_FAST:
LL_I2C_ConfigSpeed(i2c, clock, 400000, LL_I2C_DUTYCYCLE_2);
break;
default:
return -EINVAL;
}
return 0;
}