Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1081 lines
35 KiB

/*
* Copyright (c) 2025 Advanced Micro Devices, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/i2c.h>
#include <zephyr/dt-bindings/i2c/i2c.h>
#include <zephyr/sys/util.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(i2c_cadence, CONFIG_I2C_LOG_LEVEL);
/* Register offsets for the I2C device. */
#define CDNS_I2C_CR_OFFSET 0x00 /* Control Register, RW */
#define CDNS_I2C_SR_OFFSET 0x04 /* Status Register, RO */
#define CDNS_I2C_ADDR_OFFSET 0x08 /* I2C Address Register, RW */
#define CDNS_I2C_DATA_OFFSET 0x0C /* I2C Data Register, RW */
#define CDNS_I2C_ISR_OFFSET 0x10 /* IRQ Status Register, RW */
#define CDNS_I2C_XFER_SIZE_OFFSET 0x14 /* Transfer Size Register, RW */
#define CDNS_I2C_TIME_OUT_OFFSET 0x1C /* Time Out Register, RW */
#define CDNS_I2C_IMR_OFFSET 0x20 /* IRQ Mask Register, RO */
#define CDNS_I2C_IER_OFFSET 0x24 /* IRQ Enable Register, WO */
#define CDNS_I2C_IDR_OFFSET 0x28 /* IRQ Disable Register, WO */
#define CDNS_I2C_GFR_OFFSET 0x2C /* Glitch Filter Register, RW */
/* Control Register Bit mask definitions */
#define CDNS_I2C_CR_HOLD BIT(4) /* Hold the I2C Bus */
#define CDNS_I2C_CR_ACK_EN BIT(3) /* Enables or disables acknowledgment */
#define CDNS_I2C_CR_NEA BIT(2) /* No Extended addressing */
#define CDNS_I2C_CR_MS BIT(1) /* 0 = Slave Mode, 1 = Master Mode */
#define CDNS_I2C_CR_RW BIT(0) /* Transfer Dir: 0 = Transmitter, 1 = Receiver */
#define CDNS_I2C_CR_CLR_FIFO BIT(6) /* Clears the FIFO on initialization */
/* Master Enable Mask */
#define CDNS_I2C_CR_MASTER_EN_MASK (CDNS_I2C_CR_ACK_EN | \
CDNS_I2C_CR_NEA | \
CDNS_I2C_CR_MS)
/* Dividers for clock generation */
#define CDNS_I2C_CR_DIVA_SHIFT 14U
#define CDNS_I2C_CR_DIVA_MASK ((uint32_t)3U << CDNS_I2C_CR_DIVA_SHIFT)
#define CDNS_I2C_CR_DIVB_SHIFT 8U
#define CDNS_I2C_CR_DIVB_MASK ((uint32_t)0x3f << CDNS_I2C_CR_DIVB_SHIFT)
/* Status Register Bit mask definitions */
#define CDNS_I2C_SR_BA BIT(8) /* Bus is available */
#define CDNS_I2C_SR_TXDV BIT(6) /* Transmit data is valid */
#define CDNS_I2C_SR_RXDV BIT(5) /* Received data is valid */
#define CDNS_I2C_SR_RXRW BIT(3) /* Read or Write operation */
/*
* I2C Address Register Bit mask definitions
* Normal addressing mode uses [6:0] bits.
* Extended addressing mode uses [9:0] bits.
* A write access to this register always initiates a transfer if the I2C is in master mode.
*/
#define CDNS_I2C_ADDR_MASK 0x000003FFU /* I2C Address Mask */
/*
* I2C Interrupt Registers Bit mask definitions
* All the four interrupt registers (Status/Mask/Enable/Disable) have the same bit definitions.
*/
#define CDNS_I2C_IXR_ARB_LOST BIT(9) /* Arbitration Lost Interrupt */
#define CDNS_I2C_IXR_RX_UNF BIT(7) /* RX FIFO Underflow Interrupt */
#define CDNS_I2C_IXR_TX_OVF BIT(6) /* TX FIFO Overflow Interrupt */
#define CDNS_I2C_IXR_RX_OVF BIT(5) /* RX FIFO Overflow Interrupt */
#define CDNS_I2C_IXR_SLV_RDY BIT(4) /* Slave Ready Interrupt */
#define CDNS_I2C_IXR_TO BIT(3) /* Timeout Interrupt */
#define CDNS_I2C_IXR_NACK BIT(2) /* NACK Interrupt */
#define CDNS_I2C_IXR_DATA BIT(1) /* Data Interrupt */
#define CDNS_I2C_IXR_COMP BIT(0) /* Transfer Complete Interrupt */
/* All Interrupt Mask */
#define CDNS_I2C_IXR_ALL_INTR_MASK (CDNS_I2C_IXR_ARB_LOST | \
CDNS_I2C_IXR_RX_UNF | \
CDNS_I2C_IXR_TX_OVF | \
CDNS_I2C_IXR_RX_OVF | \
CDNS_I2C_IXR_SLV_RDY | \
CDNS_I2C_IXR_TO | \
CDNS_I2C_IXR_NACK | \
CDNS_I2C_IXR_DATA | \
CDNS_I2C_IXR_COMP)
/* Error Interrupt Mask */
#define CDNS_I2C_IXR_ERR_INTR_MASK (CDNS_I2C_IXR_ARB_LOST | \
CDNS_I2C_IXR_RX_UNF | \
CDNS_I2C_IXR_TX_OVF | \
CDNS_I2C_IXR_RX_OVF | \
CDNS_I2C_IXR_NACK)
/* Enabled Interrupt Mask */
#define CDNS_I2C_ENABLED_INTR_MASK (CDNS_I2C_IXR_ARB_LOST | \
CDNS_I2C_IXR_RX_UNF | \
CDNS_I2C_IXR_TX_OVF | \
CDNS_I2C_IXR_RX_OVF | \
CDNS_I2C_IXR_NACK | \
CDNS_I2C_IXR_DATA | \
CDNS_I2C_IXR_COMP)
/* System clock frequency for I2C ticks */
#define CDNS_I2C_TICKS_PER_SEC CONFIG_SYS_CLOCK_TICKS_PER_SEC
/* Default timeout ticks for I2C operations */
#define CDNS_I2C_TIMEOUT_TICKS CDNS_I2C_TICKS_PER_SEC
#define CDNS_I2C_MAX_TRANSFER_SIZE 255U /* Maximum transfer size for I2C data */
/* Default transfer size */
#define CDNS_I2C_TRANSFER_SIZE_DEFAULT (CDNS_I2C_MAX_TRANSFER_SIZE - 3U)
/* Maximum dividers for I2C clock */
#define CDNS_I2C_DIVA_MAX 4U
#define CDNS_I2C_DIVB_MAX 64U
#define CDNS_I2C_CLK_DIV_FACTOR 22U
#define CDNS_I2C_TIMEOUT_MAX 0xFFU /* Maximum value for Timeout Register */
#define CDNS_I2C_POLL_US 100000U /* Polling interval in microseconds */
#define CDNS_I2C_TIMEOUT_US 500000U /* Timeout value for I2C operations */
/* Event flag for I2C transfer completion */
#define I2C_XFER_COMPLETION_EVENT BIT(0)
/**
* struct cdns_i2c_config - Cadence I2C device private constant structure
* @irq_config_func: function pointer to configure I2C IRQ
*/
struct cdns_i2c_config {
void (*irq_config_func)(void);
};
/**
* struct cdns_i2c_data - Cadence I2C device private data structure
* @membase: Base address of the I2C device.
* @ctrl_reg: Cached value of the control register.
* @input_clk: Input clock to I2C controller.
* @i2c_clk: Actual I2C clock speed.
* @fifo_depth: The depth of the transfer FIFO.
* @transfer_size: The maximum number of bytes in one transfer.
* @bus_hold_flag: Flag used in repeated start for clearing HOLD bit.
* @xfer_done: Transfer complete event.
* @err_status: Error status in Interrupt Status Register.
* @p_msg: Message pointer for I2C communication.
* @p_send_buf: Pointer to transmit buffer.
* @p_recv_buf: Pointer to receive buffer.
* @send_count: Number of bytes still expected to send.
* @recv_count: Number of bytes still expected to receive.
* @curr_recv_count: Number of bytes to be received in current transfer.
* @bus_mutex: Mutex for bus access synchronization
*/
struct cdns_i2c_data {
mem_addr_t membase;
uint32_t ctrl_reg;
uint32_t input_clk;
uint32_t i2c_clk;
uint32_t fifo_depth;
uint32_t transfer_size;
uint32_t bus_hold_flag;
struct k_event xfer_done;
uint32_t err_status;
struct i2c_msg *p_msg;
uint8_t *p_send_buf;
uint8_t *p_recv_buf;
uint32_t send_count;
uint32_t recv_count;
uint32_t curr_recv_count;
struct k_mutex bus_mutex;
};
/**
* cdns_i2c_writereg - Write a 32-bit value to a specific offset in the I2C register space.
* @i2c_bus: Pointer to the I2C data structure.
* @value: The 32-bit value to write to the register.
* @offset: The offset in the I2C register space where the value will be written.
*/
static inline void cdns_i2c_writereg(const struct cdns_i2c_data *i2c_bus,
uint32_t value, uintptr_t offset)
{
uintptr_t reg_address = (uintptr_t)(i2c_bus->membase) + offset;
sys_write32(value, reg_address);
}
/**
* cdns_i2c_readreg - Read a 32-bit value from a specific offset in the I2C register space.
* @i2c_bus: Pointer to the I2C data structure.
* @offset: The offset in the I2C register space from which the value will be read.
*
* Return: The 32-bit value read from the register.
*/
static inline uint32_t cdns_i2c_readreg(const struct cdns_i2c_data *i2c_bus, uintptr_t offset)
{
uintptr_t reg_address = (uintptr_t)(i2c_bus->membase) + offset;
return sys_read32(reg_address);
}
/**
* cdns_i2c_enable_peripheral - Enable the Cadence I2C controller
* @i2c_bus: Pointer to the device's private data structure for the I2C controller
*/
static void cdns_i2c_enable_peripheral(struct cdns_i2c_data *i2c_bus)
{
cdns_i2c_writereg(i2c_bus, i2c_bus->ctrl_reg, CDNS_I2C_CR_OFFSET);
/*
* Cadence I2C controller has a bug causing invalid reads after a timeout
* in master receiver mode. While the timeout feature is disabled,
* writing the max value to the timeout register reduces the issue.
*/
cdns_i2c_writereg(i2c_bus, CDNS_I2C_TIMEOUT_MAX, CDNS_I2C_TIME_OUT_OFFSET);
}
/**
* cdns_i2c_calc_divs - Calculate clock dividers for I2C frequency
* @f: Pointer to the I2C target frequency (input/output)
* @input_clk: Input clock frequency in Hz
* @a: Pointer to the first divider (output)
* @b: Pointer to the second divider (output)
*
* On entry, @f holds the target I2C frequency. On exit, @f will hold the
* actual I2C frequency generated by the calculated dividers.
*
* Return: 0 on success, negative errno otherwise.
*/
static int32_t cdns_i2c_calc_divs(uint32_t *f, uint32_t input_clk,
uint32_t *a, uint32_t *b)
{
uint32_t fscl = *f;
uint32_t best_fscl = *f;
uint32_t actual_fscl, temp;
uint32_t div_a, div_b;
uint32_t calc_div_a = 0, calc_div_b = 0;
uint32_t last_error, current_error;
int32_t ret = 0;
/* calculate initial estimate for divisor_a and divisor_b */
temp = input_clk / (CDNS_I2C_CLK_DIV_FACTOR * fscl);
/* Check if the calculated value is out of range */
if ((temp == 0U) || (temp > (CDNS_I2C_DIVA_MAX * CDNS_I2C_DIVB_MAX))) {
ret = -EINVAL;
goto out;
}
/* Initialize the last error to a large value (no error yet) */
last_error = UINT32_MAX;
/* Iterate over possible values for divisor_a */
for (div_a = 0; div_a < CDNS_I2C_DIVA_MAX; div_a++) {
/* Calculate the corresponding divisor_b for this div_a */
div_b = DIV_ROUND_UP(input_clk, CDNS_I2C_CLK_DIV_FACTOR * fscl * (div_a + 1U));
/* Skip invalid values of div_b */
if ((div_b < 1U) || (div_b > CDNS_I2C_DIVB_MAX)) {
continue;
}
/* Adjust div_b for zero-based indexing */
div_b--;
/* Calculate the actual fscl based on the current divisors */
actual_fscl = input_clk / (CDNS_I2C_CLK_DIV_FACTOR * (div_a + 1U) * (div_b + 1U));
/* Skip if the actual fscl exceeds the target fscl */
if (actual_fscl > fscl) {
continue;
}
/* Calculate the error between the target fscl and the actual fscl */
current_error = fscl - actual_fscl;
/* Update the best divisors if a smaller error is found */
if (last_error > current_error) {
calc_div_a = div_a;
calc_div_b = div_b;
best_fscl = actual_fscl;
last_error = current_error;
}
}
/* Set the output values */
*a = calc_div_a;
*b = calc_div_b;
*f = best_fscl;
out:
return ret;
}
/**
* cdns_i2c_setclk - Set the serial clock rate for the I2C device
* @i2c_bus: Pointer to the I2C data structure
* @req_i2c_speed: requested I2C clock frequency in Hz
*
* This function sets the serial clock rate for the I2C device by configuring
* the clock divisors in the device's control register. The device must be idle
* (i.e., not actively transferring data) before calling this function.
*
* The clock rate is determined by the following formula:
* Fscl = Fpclk / (22 * (divisor_a + 1) * (divisor_b + 1))
* Where:
* - Fscl is the desired I2C clock rate
* - Fpclk is the input clock frequency
* - divisor_a and divisor_b are the calculated divisors to achieve the desired clock rate
*
* The serial clock rate cannot exceed the input clock divided by 22. Common I2C clock
* rates are 100 KHz and 400 KHz.
*
* Return: 0 on success, negative error code on failure
*/
static int32_t cdns_i2c_setclk(struct cdns_i2c_data *i2c_bus, uint32_t req_i2c_speed)
{
uint32_t div_a, div_b;
uint32_t ctrl_reg;
int32_t ret = 0;
uint32_t fscl = req_i2c_speed;
/* Calculate the divider values */
ret = cdns_i2c_calc_divs(&fscl, i2c_bus->input_clk, &div_a, &div_b);
if (ret != 0) {
goto out;
}
i2c_bus->i2c_clk = fscl; /* Update true SCL value */
/* Set new divider values in the control register */
ctrl_reg = i2c_bus->ctrl_reg;
ctrl_reg &= ~(CDNS_I2C_CR_DIVA_MASK | CDNS_I2C_CR_DIVB_MASK);
ctrl_reg |= ((div_a << CDNS_I2C_CR_DIVA_SHIFT) |
(div_b << CDNS_I2C_CR_DIVB_SHIFT));
i2c_bus->ctrl_reg = ctrl_reg;
cdns_i2c_writereg(i2c_bus, ctrl_reg, CDNS_I2C_CR_OFFSET);
out:
return ret;
}
/**
* cdns_i2c_configure - Configures the I2C bus speed and initializes the I2C peripheral
* @dev: Pointer to the device structure representing the I2C bus
* @dev_config: Configuration value containing the desired I2C bus speed
*
* This function configures the I2C bus speed based on the value provided in @dev_config
* It then sets the appropriate clock for the I2C bus, verifies the clock is valid, and
* initializes the I2C peripheral. The configuration is saved to the device's data structure.
*
* Return: 0 on success, negative error value on failure
*/
static int32_t cdns_i2c_configure(const struct device *dev, uint32_t dev_config)
{
int32_t ret = 0;
struct cdns_i2c_data *i2c_bus = (struct cdns_i2c_data *)dev->data;
uint32_t i2c_speed = 0U;
(void)k_mutex_lock(&i2c_bus->bus_mutex, K_FOREVER);
/* Check requested I2C Speed */
switch (I2C_SPEED_GET(dev_config)) {
case I2C_SPEED_STANDARD:
i2c_speed = I2C_BITRATE_STANDARD; /* 100 KHz */
break;
case I2C_SPEED_FAST:
i2c_speed = I2C_BITRATE_FAST; /* 400 KHz */
break;
case I2C_SPEED_FAST_PLUS:
i2c_speed = I2C_BITRATE_FAST_PLUS; /* 1 MHz */
break;
default:
LOG_ERR("Unsupported I2C speed requested: %u", i2c_speed);
ret = -ERANGE;
goto out;
}
/* Set I2C Speed (SCL frequency) */
ret = cdns_i2c_setclk(i2c_bus, i2c_speed);
if (ret != 0) {
LOG_ERR("Invalid SCL clock: %u Hz", i2c_speed);
ret = -EIO;
goto out;
}
/* Enable the I2C peripheral */
i2c_bus->ctrl_reg |= CDNS_I2C_CR_MASTER_EN_MASK;
cdns_i2c_enable_peripheral(i2c_bus);
out:
(void)k_mutex_unlock(&i2c_bus->bus_mutex);
return ret;
}
/**
* cdns_i2c_get_config - Retrieve the current I2C configuration.
* @dev: Pointer to the device structure.
* @dev_config: Pointer to a variable where the configuration will be stored.
*
* Return: 0 on success, or a negative error code on failure.
*/
static int32_t cdns_i2c_get_config(const struct device *dev, uint32_t *dev_config)
{
int32_t ret = 0;
struct cdns_i2c_data *i2c_bus = (struct cdns_i2c_data *)dev->data;
uint32_t bus_speed = i2c_bus->i2c_clk;
uint32_t speed_cfg = 0U;
/* Retrieve Speed configuration from Actual Bus Speed */
if ((bus_speed > 0U) && (bus_speed <= I2C_BITRATE_STANDARD)) {
speed_cfg = I2C_SPEED_SET(I2C_SPEED_STANDARD);
} else if ((bus_speed > I2C_BITRATE_STANDARD) &&
(bus_speed <= I2C_BITRATE_FAST)) {
speed_cfg = I2C_SPEED_SET(I2C_SPEED_FAST);
} else if ((bus_speed > I2C_BITRATE_FAST) &&
(bus_speed <= I2C_BITRATE_FAST_PLUS)) {
speed_cfg = I2C_SPEED_SET(I2C_SPEED_FAST_PLUS);
} else {
ret = -ERANGE;
goto out;
}
/* Return current configuration */
*dev_config = (speed_cfg | I2C_MODE_CONTROLLER);
out:
return ret;
}
/**
* cdns_i2c_clear_bus_hold - Clear bus hold bit in the controller's register
* @i2c_bus: Pointer to the I2C controller driver data structure
*/
static void cdns_i2c_clear_bus_hold(struct cdns_i2c_data *i2c_bus)
{
uint32_t reg = cdns_i2c_readreg(i2c_bus, CDNS_I2C_CR_OFFSET);
if ((reg & CDNS_I2C_CR_HOLD) == CDNS_I2C_CR_HOLD) {
cdns_i2c_writereg(i2c_bus, reg & ~CDNS_I2C_CR_HOLD, CDNS_I2C_CR_OFFSET);
}
}
/**
* cdns_is_fifo_hold_quirk - Check if the FIFO hold quirk is triggered for I2C
* @i2c_bus: Pointer to the I2C controller driver data structure
* @hold_wrkaround: Boolean indicating if hold workarounds should be applied
*
* Return: True if the quirk condition is met, false otherwise.
*/
static inline bool cdns_is_fifo_hold_quirk(const struct cdns_i2c_data *i2c_bus,
bool hold_wrkaround)
{
return (hold_wrkaround && (i2c_bus->curr_recv_count == (i2c_bus->fifo_depth + 1U)));
}
/**
* cdns_i2c_master_handle_receive_interrupt - Handles I2C master receive interrupts
* @i2c_bus: Pointer to the I2C data structure
* @isr_status: Interrupt status, indicating the cause of the interrupt
*/
static void cdns_i2c_master_handle_receive_interrupt(struct cdns_i2c_data *i2c_bus,
uint32_t isr_status)
{
uint32_t transfer_size;
uint32_t xfer_size;
/* Handle reception interrupt (data available or transfer complete) */
if (((isr_status & CDNS_I2C_IXR_COMP) == 0U) && ((isr_status & CDNS_I2C_IXR_DATA) == 0U)) {
return;
}
/* Receiving Data: Keep reading as long as data is available */
while ((cdns_i2c_readreg(i2c_bus, CDNS_I2C_SR_OFFSET) & CDNS_I2C_SR_RXDV) != 0U) {
/* Ensure there's space to store received data */
if (i2c_bus->recv_count > 0U) {
*(i2c_bus->p_recv_buf) = (uint8_t)cdns_i2c_readreg(i2c_bus,
CDNS_I2C_DATA_OFFSET);
i2c_bus->p_recv_buf++;
i2c_bus->recv_count--;
i2c_bus->curr_recv_count--;
} else {
/* Handle receive buffer overflow or unexpected condition */
LOG_ERR("I2C receive buffer overflow. Transfer aborted!");
i2c_bus->err_status |= CDNS_I2C_IXR_TO;
break;
}
/* Handle issues with receiving more data than expected */
if (cdns_is_fifo_hold_quirk(i2c_bus,
i2c_bus->recv_count > i2c_bus->curr_recv_count)) {
break;
}
}
/* Workaround for large data receive in case of FIFO space issues */
if (cdns_is_fifo_hold_quirk(i2c_bus, i2c_bus->recv_count > i2c_bus->curr_recv_count)) {
transfer_size = i2c_bus->recv_count - i2c_bus->fifo_depth;
if (transfer_size > i2c_bus->transfer_size) {
xfer_size = i2c_bus->transfer_size;
} else {
xfer_size = transfer_size;
}
/* Busy-wait until FIFO has space for more data */
while (cdns_i2c_readreg(i2c_bus, CDNS_I2C_XFER_SIZE_OFFSET) !=
(i2c_bus->curr_recv_count - i2c_bus->fifo_depth)) {
}
/* Update the transfer size for the next batch of data */
cdns_i2c_writereg(i2c_bus, xfer_size, CDNS_I2C_XFER_SIZE_OFFSET);
i2c_bus->curr_recv_count = xfer_size + i2c_bus->fifo_depth;
}
/* Complete transfer if all data has been received and no more data is expected */
if (((isr_status & CDNS_I2C_IXR_COMP) == CDNS_I2C_IXR_COMP) &&
(i2c_bus->recv_count == 0U)) {
/* Release bus hold if no longer needed */
if (i2c_bus->bus_hold_flag == 0U) {
cdns_i2c_clear_bus_hold(i2c_bus);
}
/* Notify completion of the transfer */
(void)k_event_post(&i2c_bus->xfer_done, I2C_XFER_COMPLETION_EVENT);
}
}
/**
* cdns_i2c_master_handle_transmit_interrupt - Handles I2C master transmit interrupts
* @i2c_bus: Pointer to the I2C data structure
* @isr_status: Interrupt status, indicating the cause of the interrupt
*/
static void cdns_i2c_master_handle_transmit_interrupt(struct cdns_i2c_data *i2c_bus,
uint32_t isr_status)
{
uint32_t avail_bytes;
uint32_t bytes_to_send;
/* Handle transmission interrupt (data sent or transfer complete) */
if ((isr_status & CDNS_I2C_IXR_COMP) == 0U) {
return;
}
/* Sending data: Check if there is any data left to send */
if (i2c_bus->send_count > 0U) {
/* Calculate how many bytes can be sent based on FIFO availability */
avail_bytes = i2c_bus->fifo_depth - cdns_i2c_readreg(i2c_bus,
CDNS_I2C_XFER_SIZE_OFFSET);
if (i2c_bus->send_count > avail_bytes) {
bytes_to_send = avail_bytes;
} else {
bytes_to_send = i2c_bus->send_count;
}
/* Write data to the I2C data register */
while (bytes_to_send > 0U) {
cdns_i2c_writereg(i2c_bus, *(i2c_bus->p_send_buf), CDNS_I2C_DATA_OFFSET);
i2c_bus->p_send_buf++;
i2c_bus->send_count--;
bytes_to_send--;
}
} else {
/* If there is no data to send, signal transfer completion */
(void)k_event_post(&i2c_bus->xfer_done, I2C_XFER_COMPLETION_EVENT);
}
/* Clear bus hold if no more data is pending */
if ((i2c_bus->send_count == 0U) && (i2c_bus->bus_hold_flag == 0U)) {
cdns_i2c_clear_bus_hold(i2c_bus);
}
}
/**
* cdns_i2c_master_isr - Interrupt handler for the I2C device in master role
* @i2c_bus: Pointer to I2C device private data structure
*
* This function handles various interrupt events including data received,
* transfer complete, and error interrupts for the I2C master role.
*/
static void cdns_i2c_master_isr(struct cdns_i2c_data *i2c_bus)
{
uint32_t isr_status;
/* Read the interrupt status register */
isr_status = cdns_i2c_readreg(i2c_bus, CDNS_I2C_ISR_OFFSET);
/* Clear interrupt status */
cdns_i2c_writereg(i2c_bus, isr_status, CDNS_I2C_ISR_OFFSET);
/* Update the error status based on interrupt flags */
i2c_bus->err_status = isr_status & CDNS_I2C_IXR_ERR_INTR_MASK;
/* Handling NACK or arbitration lost interrupts */
if ((isr_status & (CDNS_I2C_IXR_NACK | CDNS_I2C_IXR_ARB_LOST)) != 0U) {
(void)k_event_post(&i2c_bus->xfer_done, I2C_XFER_COMPLETION_EVENT);
return;
}
/* Handle reception interrupt */
if (i2c_bus->p_recv_buf != NULL) {
cdns_i2c_master_handle_receive_interrupt(i2c_bus, isr_status);
}
/* Handle transmission interrupt */
if (i2c_bus->p_recv_buf == NULL) {
cdns_i2c_master_handle_transmit_interrupt(i2c_bus, isr_status);
}
}
/**
* cdns_i2c_isr - Interrupt handler for the I2C controller
* @dev: Pointer to I2C device
*/
static void cdns_i2c_isr(const struct device *dev)
{
struct cdns_i2c_data *i2c_bus = (struct cdns_i2c_data *)dev->data;
/* Handle the interrupt for master mode */
cdns_i2c_master_isr(i2c_bus);
}
/**
* cdns_i2c_mrecv - Prepare and start a master receive operation
* @i2c_bus: Pointer to the I2C data structure
* @msg_addr: The address of the slave device to receive data from
*/
static void cdns_i2c_mrecv(struct cdns_i2c_data *i2c_bus, uint16_t msg_addr)
{
uint32_t ctrl_reg;
uint32_t isr_status;
bool hold_clear = false;
uint32_t addr;
/* Initialize the receive buffer and count */
i2c_bus->p_recv_buf = i2c_bus->p_msg->buf;
i2c_bus->recv_count = i2c_bus->p_msg->len;
i2c_bus->curr_recv_count = i2c_bus->recv_count;
/* Prepare controller for master receive mode and clear FIFO */
ctrl_reg = cdns_i2c_readreg(i2c_bus, CDNS_I2C_CR_OFFSET);
ctrl_reg |= CDNS_I2C_CR_RW | CDNS_I2C_CR_CLR_FIFO;
/* Check if the message size exceeds FIFO depth, hold the bus if true */
if (i2c_bus->recv_count > i2c_bus->fifo_depth) {
ctrl_reg |= CDNS_I2C_CR_HOLD;
}
cdns_i2c_writereg(i2c_bus, ctrl_reg, CDNS_I2C_CR_OFFSET);
/* Clear the interrupts in interrupt status register */
isr_status = cdns_i2c_readreg(i2c_bus, CDNS_I2C_ISR_OFFSET);
cdns_i2c_writereg(i2c_bus, isr_status, CDNS_I2C_ISR_OFFSET);
/* Set transfer size register and enable interrupts */
if ((i2c_bus->recv_count) > (i2c_bus->transfer_size)) {
cdns_i2c_writereg(i2c_bus, i2c_bus->transfer_size,
CDNS_I2C_XFER_SIZE_OFFSET);
i2c_bus->curr_recv_count = i2c_bus->transfer_size;
} else {
cdns_i2c_writereg(i2c_bus, i2c_bus->recv_count, CDNS_I2C_XFER_SIZE_OFFSET);
}
/* Determine whether to clear the hold bit based on conditions */
if ((i2c_bus->bus_hold_flag == 0U) && (i2c_bus->recv_count <= i2c_bus->fifo_depth)) {
if ((ctrl_reg & CDNS_I2C_CR_HOLD) != 0U) {
hold_clear = true;
}
}
/* Mask address and prepare for I2C communication */
addr = msg_addr;
addr &= CDNS_I2C_ADDR_MASK;
/* Handle clearing of the hold bit */
if (hold_clear) {
ctrl_reg &= ~CDNS_I2C_CR_HOLD;
ctrl_reg &= ~CDNS_I2C_CR_CLR_FIFO;
/* Write the address and control register values */
cdns_i2c_writereg(i2c_bus, addr, CDNS_I2C_ADDR_OFFSET);
cdns_i2c_writereg(i2c_bus, ctrl_reg, CDNS_I2C_CR_OFFSET);
/* Read back to ensure write completion */
(void)cdns_i2c_readreg(i2c_bus, CDNS_I2C_CR_OFFSET);
} else {
/* Directly write the address if no need to clear the hold bit */
cdns_i2c_writereg(i2c_bus, addr, CDNS_I2C_ADDR_OFFSET);
}
/* Enable interrupts */
cdns_i2c_writereg(i2c_bus, CDNS_I2C_ENABLED_INTR_MASK, CDNS_I2C_IER_OFFSET);
}
/**
* cdns_i2c_msend - Prepare and start a master send operation
* @i2c_bus: Pointer to the I2C data structure
* @msg_addr: I2C address of the slave to communicate with
*/
static void cdns_i2c_msend(struct cdns_i2c_data *i2c_bus, uint16_t msg_addr)
{
uint32_t avail_bytes;
uint32_t bytes_to_send;
uint32_t ctrl_reg;
uint32_t isr_status;
/* Initialize send buffer and update send count */
i2c_bus->p_recv_buf = NULL;
i2c_bus->p_send_buf = i2c_bus->p_msg->buf;
i2c_bus->send_count = i2c_bus->p_msg->len;
/* Configure the controller in Master transmit mode and clear FIFO. */
ctrl_reg = cdns_i2c_readreg(i2c_bus, CDNS_I2C_CR_OFFSET);
ctrl_reg &= ~CDNS_I2C_CR_RW;
ctrl_reg |= CDNS_I2C_CR_CLR_FIFO;
/* Check if the message size exceeds FIFO depth, hold the bus if true */
if (i2c_bus->send_count > i2c_bus->fifo_depth) {
ctrl_reg |= CDNS_I2C_CR_HOLD;
}
cdns_i2c_writereg(i2c_bus, ctrl_reg, CDNS_I2C_CR_OFFSET);
/* Clear any previous interrupt flags */
isr_status = cdns_i2c_readreg(i2c_bus, CDNS_I2C_ISR_OFFSET);
cdns_i2c_writereg(i2c_bus, isr_status, CDNS_I2C_ISR_OFFSET);
/* Calculate available FIFO space and determine how many bytes to send */
avail_bytes = i2c_bus->fifo_depth - cdns_i2c_readreg(i2c_bus, CDNS_I2C_XFER_SIZE_OFFSET);
bytes_to_send = (i2c_bus->send_count > avail_bytes) ? avail_bytes : i2c_bus->send_count;
/* Send data to FIFO until all bytes are transmitted */
while (bytes_to_send > 0U) {
cdns_i2c_writereg(i2c_bus, (*(i2c_bus->p_send_buf)), CDNS_I2C_DATA_OFFSET);
(i2c_bus->p_send_buf)++;
i2c_bus->send_count--;
bytes_to_send--;
}
/* Clear the 'hold bus' flag if there's no more data and it's the last message */
if ((i2c_bus->bus_hold_flag == 0U) && (i2c_bus->send_count == 0U)) {
cdns_i2c_clear_bus_hold(i2c_bus);
}
/* Set the slave address to trigger operation. */
cdns_i2c_writereg(i2c_bus, ((uint32_t)msg_addr & CDNS_I2C_ADDR_MASK),
CDNS_I2C_ADDR_OFFSET);
/* Enable interrupts after data transmission starts */
cdns_i2c_writereg(i2c_bus, CDNS_I2C_ENABLED_INTR_MASK, CDNS_I2C_IER_OFFSET);
}
/**
* cdns_i2c_master_reset - Reset the I2C master interface
* @i2c_bus: Pointer to the i2c driver instance
*
* This function performs a full reset of the I2C master interface
* The reset ensures that the interface is returned to a known idle state.
*/
static void cdns_i2c_master_reset(struct cdns_i2c_data *i2c_bus)
{
uint32_t regval;
/* Disable the interrupts */
cdns_i2c_writereg(i2c_bus, CDNS_I2C_IXR_ALL_INTR_MASK, CDNS_I2C_IDR_OFFSET);
/* Clear the hold bit and flush FIFOs */
regval = cdns_i2c_readreg(i2c_bus, CDNS_I2C_CR_OFFSET);
regval &= ~CDNS_I2C_CR_HOLD;
regval |= CDNS_I2C_CR_CLR_FIFO;
cdns_i2c_writereg(i2c_bus, regval, CDNS_I2C_CR_OFFSET);
/* Reset transfer count register to zero */
cdns_i2c_writereg(i2c_bus, 0, CDNS_I2C_XFER_SIZE_OFFSET);
/* Clear the interrupt status register */
regval = cdns_i2c_readreg(i2c_bus, CDNS_I2C_ISR_OFFSET);
cdns_i2c_writereg(i2c_bus, regval, CDNS_I2C_ISR_OFFSET);
/* Clear the status register */
regval = cdns_i2c_readreg(i2c_bus, CDNS_I2C_SR_OFFSET);
cdns_i2c_writereg(i2c_bus, regval, CDNS_I2C_SR_OFFSET);
}
/**
* cdns_i2c_process_msg - Processes an I2C message on the specified I2C bus
* @i2c_bus: Pointer to the I2C data structure
* @msg: Pointer to the I2C message to be processed
* @addr: The 7-bit or 10-bit I2C address of the slave device
*
* Return: 0 on success, negative error code on failure.
*/
static int32_t cdns_i2c_process_msg(struct cdns_i2c_data *i2c_bus, struct i2c_msg *msg,
uint16_t addr)
{
int32_t ret = 0;
uint32_t reg;
k_timeout_t msg_timeout;
uint32_t events;
/* Initialize message processing state */
i2c_bus->p_msg = msg;
i2c_bus->err_status = 0U;
(void)k_event_clear(&i2c_bus->xfer_done, (uint32_t)I2C_XFER_COMPLETION_EVENT);
/* Handle 10-bit addressing mode */
reg = cdns_i2c_readreg(i2c_bus, CDNS_I2C_CR_OFFSET);
if ((msg->flags & I2C_MSG_ADDR_10_BITS) != 0U) {
/* Enable 10-bit address mode if not already enabled */
if ((reg & CDNS_I2C_CR_NEA) == CDNS_I2C_CR_NEA) {
cdns_i2c_writereg(i2c_bus,
reg & ~CDNS_I2C_CR_NEA,
CDNS_I2C_CR_OFFSET);
}
} else {
/* Disable 10-bit address mode if currently enabled */
if ((reg & CDNS_I2C_CR_NEA) == 0U) {
cdns_i2c_writereg(i2c_bus,
reg | CDNS_I2C_CR_NEA,
CDNS_I2C_CR_OFFSET);
}
}
/* Handle read/write flag and perform the appropriate action */
if ((msg->flags & I2C_MSG_READ) != 0U) {
cdns_i2c_mrecv(i2c_bus, addr); /* Receive data */
} else {
cdns_i2c_msend(i2c_bus, addr); /* Send data */
}
/* Calculate the minimal timeout based on message length */
msg_timeout.ticks = (((k_ticks_t)(msg->len) * 8)*(CDNS_I2C_TICKS_PER_SEC)) /
((k_ticks_t)(i2c_bus->i2c_clk));
msg_timeout.ticks += (CDNS_I2C_TICKS_PER_SEC / 2);
if (msg_timeout.ticks < CDNS_I2C_TIMEOUT_TICKS) {
msg_timeout.ticks = CDNS_I2C_TIMEOUT_TICKS;
}
/* Wait for the completion signal or timeout */
events = k_event_wait(&i2c_bus->xfer_done, (uint32_t)I2C_XFER_COMPLETION_EVENT,
false, msg_timeout);
if ((events & I2C_XFER_COMPLETION_EVENT) == 0U) {
/* Timeout occurred, reset the master */
cdns_i2c_master_reset(i2c_bus);
ret = -ETIMEDOUT;
goto out;
}
/* Disable interrupt masking for the current transfer */
cdns_i2c_writereg(i2c_bus, CDNS_I2C_IXR_ALL_INTR_MASK, CDNS_I2C_IDR_OFFSET);
/* If it is bus arbitration error, try again */
if ((i2c_bus->err_status & CDNS_I2C_IXR_ARB_LOST) == CDNS_I2C_IXR_ARB_LOST) {
ret = -EAGAIN;
}
out:
return ret;
}
/**
* cdns_i2c_wait_for_bus_free - Wait for the I2C bus to become free.
* @i2c_bus: Pointer to the I2C data structure that holds bus state information.
* @timeout_us: Maximum time (in microseconds) to wait for the bus to become free.
*
* This function waits for the I2C bus to become idle. It checks the bus state
* register periodically until the bus is free or the timeout occurs.
*
* Return: true if the bus is free within the timeout, false otherwise.
*/
static bool cdns_i2c_wait_for_bus_free(struct cdns_i2c_data *i2c_bus, uint32_t timeout_us)
{
bool ret_flag = false;
uint32_t reg;
/* Poll until the bus is free or the timeout is reached */
while (timeout_us > 0U) {
reg = cdns_i2c_readreg(i2c_bus, CDNS_I2C_SR_OFFSET);
if ((reg & CDNS_I2C_SR_BA) == 0U) {
/* Bus Available (BA) bit is cleared, the bus is free */
ret_flag = true;
break;
}
/* Wait for a small period before checking again */
(void)k_usleep((int32_t)CDNS_I2C_POLL_US);
timeout_us -= CDNS_I2C_POLL_US;
}
if (timeout_us == 0U) {
/* Timeout reached, bus not available */
ret_flag = false;
}
return ret_flag;
}
/**
* cdns_i2c_master_handle_repeated_start - Handle repeated start during I2C master transfer
* @i2c_bus: Pointer to the I2C data structure that holds bus state information
* @msgs: Array of I2C messages to be processed
* @num_msgs: Number of messages in the @msgs array
*
* Return: 0 on success
*/
static int32_t cdns_i2c_master_handle_repeated_start(struct cdns_i2c_data *i2c_bus,
struct i2c_msg *msgs, uint8_t num_msgs)
{
uint32_t reg;
(void)msgs;
(void)num_msgs;
/* Set the hold flag and register */
i2c_bus->bus_hold_flag = 1;
reg = cdns_i2c_readreg(i2c_bus, CDNS_I2C_CR_OFFSET);
reg |= CDNS_I2C_CR_HOLD;
cdns_i2c_writereg(i2c_bus, reg, CDNS_I2C_CR_OFFSET);
return 0;
}
/**
* cdns_i2c_master_handle_transfer_error - Handle errors during I2C master transfer.
* @i2c_bus: Pointer to the I2C data structure
*
* Return: -EIO or -ENXIO.
*/
static int32_t cdns_i2c_master_handle_transfer_error(struct cdns_i2c_data *i2c_bus)
{
int32_t ret;
/* Perform a reset of the I2C master to clear the error condition */
cdns_i2c_master_reset(i2c_bus);
if ((i2c_bus->err_status & CDNS_I2C_IXR_NACK) != 0U) {
ret = -ENXIO; /* No device found (NACK) */
} else {
ret = -EIO; /* General I/O error */
}
return ret;
}
/**
* cdns_i2c_master_transfer - Performs an I2C master transfer using the Cadence I2C controller.
* @dev: Pointer to the device structure representing the I2C controller.
* @msgs: Array of I2C message structures representing the messages to be sent/received.
* @num_msgs: Number of messages in the msgs array.
* @addr: The 7-bit or 10-bit I2C address of the slave device.
*
* Return: 0 on success, negative error code on failure.
*/
static int32_t cdns_i2c_master_transfer(const struct device *dev, struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr)
{
struct cdns_i2c_data *i2c_bus = (struct cdns_i2c_data *)dev->data;
int32_t ret = 0;
uint32_t count;
struct i2c_msg *msg_ptr = msgs;
(void)k_mutex_lock(&i2c_bus->bus_mutex, K_FOREVER);
/* Wait for the bus to be free */
if (cdns_i2c_wait_for_bus_free(i2c_bus, CDNS_I2C_TIMEOUT_US) == false) {
ret = -EAGAIN;
goto out;
}
/* Handle repeated start for multiple messages */
if (num_msgs > 1U) {
ret = cdns_i2c_master_handle_repeated_start(i2c_bus, msgs, num_msgs);
if (ret != 0) {
goto out;
}
}
/* Process each message individually */
for (count = 0; count < num_msgs; count++) {
/* Reset hold flag for the last message */
if (count == ((uint32_t)num_msgs - 1U)) {
i2c_bus->bus_hold_flag = 0;
}
/* Process the current message */
ret = cdns_i2c_process_msg(i2c_bus, msg_ptr, addr);
if (ret != 0) {
goto out;
}
/* Handle any errors during the transfer */
if ((i2c_bus->err_status) != 0U) {
ret = cdns_i2c_master_handle_transfer_error(i2c_bus);
if (ret != 0) {
goto out;
}
}
msg_ptr++;
}
out:
(void)k_mutex_unlock(&i2c_bus->bus_mutex);
return ret;
}
/**
* cdns_i2c_init - Initialize the Cadence I2C controller
* @dev: Pointer to the device
*
* Return: 0 on success, negative error code on failure.
*/
static int32_t cdns_i2c_init(const struct device *dev)
{
const struct cdns_i2c_config *config = (const struct cdns_i2c_config *)dev->config;
struct cdns_i2c_data *i2c_bus = (struct cdns_i2c_data *)dev->data;
int32_t ret;
(void)k_mutex_init(&i2c_bus->bus_mutex);
k_event_init(&i2c_bus->xfer_done);
/* Configure the control reg flags, transfer size */
i2c_bus->ctrl_reg = CDNS_I2C_CR_MASTER_EN_MASK;
i2c_bus->transfer_size = CDNS_I2C_TRANSFER_SIZE_DEFAULT;
/* Set the I2C clock frequency */
ret = cdns_i2c_setclk(i2c_bus, i2c_bus->i2c_clk);
if (ret != 0) {
LOG_ERR("Invalid SCL clock: %u Hz", i2c_bus->i2c_clk);
ret = -EINVAL;
goto out;
}
/* Configure IRQ */
config->irq_config_func();
/* Enable the I2C peripheral */
cdns_i2c_enable_peripheral(i2c_bus);
LOG_INF("%u KHz mmio %08lx", i2c_bus->i2c_clk/1000U, i2c_bus->membase);
out:
return ret;
}
/* I2C driver API structure for the Cadence I2C controller */
static DEVICE_API(i2c, cdns_i2c_driver_api) = {
.configure = cdns_i2c_configure,
.get_config = cdns_i2c_get_config,
.transfer = cdns_i2c_master_transfer,
#ifdef CONFIG_I2C_RTIO
.iodev_submit = i2c_iodev_submit_fallback,
#endif
};
#define CADENCE_I2C_INIT(n, compat) \
static void cdns_i2c_config_func_##compat##_##n(void); \
\
static const struct cdns_i2c_config cdns_i2c_config_##compat##_##n = { \
.irq_config_func = cdns_i2c_config_func_##compat##_##n, \
}; \
\
static struct cdns_i2c_data cdns_i2c_data_##compat##_##n = { \
.membase = DT_INST_REG_ADDR(n), \
.input_clk = DT_INST_PROP_BY_PHANDLE(n, clocks, clock_frequency), \
.i2c_clk = DT_INST_PROP(n, clock_frequency), \
.fifo_depth = DT_INST_PROP(n, fifo_depth), \
}; \
\
I2C_DEVICE_DT_INST_DEFINE(n, cdns_i2c_init, NULL, \
&cdns_i2c_data_##compat##_##n, \
&cdns_i2c_config_##compat##_##n, POST_KERNEL, \
CONFIG_I2C_INIT_PRIORITY, &cdns_i2c_driver_api); \
\
static void cdns_i2c_config_func_##compat##_##n(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), cdns_i2c_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
}
#define DT_DRV_COMPAT cdns_i2c
DT_INST_FOREACH_STATUS_OKAY_VARGS(CADENCE_I2C_INIT, DT_DRV_COMPAT)