Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

487 lines
12 KiB

/*
* Copyright (c) 2017 Linaro Limited
* Copyright (c) 2017 BayLibre, SAS.
* Copyright (c) 2019 Centaur Analytics, Inc
* Copyright (c) 2023 Google Inc
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#define DT_DRV_COMPAT st_stm32_flash_controller
#include <string.h>
#if defined(CONFIG_SOC_SERIES_STM32H5X)
#include <zephyr/cache.h>
#endif /* CONFIG_SOC_SERIES_STM32H5X */
#include <zephyr/drivers/flash.h>
#include <zephyr/drivers/flash/stm32_flash_api_extensions.h>
#include <zephyr/init.h>
#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_utils.h>
#include <zephyr/logging/log.h>
#include "flash_stm32.h"
LOG_MODULE_REGISTER(flash_stm32, CONFIG_FLASH_LOG_LEVEL);
/* Let's wait for double the max erase time to be sure that the operation is
* completed.
*/
#define STM32_FLASH_TIMEOUT \
(2 * DT_PROP(DT_INST(0, st_stm32_nv_flash), max_erase_time))
static const struct flash_parameters flash_stm32_parameters = {
.write_block_size = FLASH_STM32_WRITE_BLOCK_SIZE,
/* Some SoCs (L0/L1) use an EEPROM under the hood. Distinguish
* between them based on the presence of the PECR register. */
#if defined(FLASH_PECR_ERASE)
.erase_value = 0,
#else
.erase_value = 0xff,
#endif
};
bool __weak flash_stm32_valid_range(const struct device *dev, off_t offset,
uint32_t len, bool write)
{
if (write && !flash_stm32_valid_write(offset, len)) {
return false;
}
return flash_stm32_range_exists(dev, offset, len);
}
int __weak flash_stm32_check_configuration(void)
{
return 0;
}
#if !defined(CONFIG_SOC_SERIES_STM32WBX)
static int flash_stm32_check_status(const struct device *dev)
{
if (FLASH_STM32_REGS(dev)->FLASH_STM32_SR & FLASH_STM32_SR_ERRORS) {
LOG_DBG("Status: 0x%08lx",
(unsigned long)FLASH_STM32_REGS(dev)->FLASH_STM32_SR &
FLASH_STM32_SR_ERRORS);
/* Clear errors to unblock usage of the flash */
FLASH_STM32_REGS(dev)->FLASH_STM32_SR = FLASH_STM32_REGS(dev)->FLASH_STM32_SR &
FLASH_STM32_SR_ERRORS;
return -EIO;
}
return 0;
}
#endif /* CONFIG_SOC_SERIES_STM32WBX */
int flash_stm32_wait_flash_idle(const struct device *dev)
{
k_timepoint_t timeout = sys_timepoint_calc(K_MSEC(STM32_FLASH_TIMEOUT));
bool expired = false;
int rc;
uint32_t busy_flags;
rc = flash_stm32_check_status(dev);
if (rc < 0) {
return -EIO;
}
busy_flags = FLASH_STM32_SR_BUSY;
/* Some Series can't modify FLASH_CR reg while CFGBSY is set. Wait as well */
#if defined(FLASH_STM32_SR_CFGBSY)
busy_flags |= FLASH_STM32_SR_CFGBSY;
#endif
while ((FLASH_STM32_REGS(dev)->FLASH_STM32_SR & busy_flags)) {
if (expired) {
LOG_ERR("Timeout! val: %d ms", STM32_FLASH_TIMEOUT);
return -EIO;
}
/* Check if expired, but always read status register one more time.
* If the calling thread is pre-emptive we may have been scheduled out after reading
* the status register, and scheduled back after timeout has expired.
*/
expired = sys_timepoint_expired(timeout);
}
return 0;
}
static void flash_stm32_flush_caches(const struct device *dev,
off_t offset, size_t len)
{
#if defined(CONFIG_SOC_SERIES_STM32F0X) || defined(CONFIG_SOC_SERIES_STM32F3X) || \
defined(CONFIG_SOC_SERIES_STM32G0X) || defined(CONFIG_SOC_SERIES_STM32L5X) || \
defined(CONFIG_SOC_SERIES_STM32U3X) || defined(CONFIG_SOC_SERIES_STM32U5X) || \
defined(CONFIG_SOC_SERIES_STM32H5X)
ARG_UNUSED(dev);
ARG_UNUSED(offset);
ARG_UNUSED(len);
#elif defined(CONFIG_SOC_SERIES_STM32F4X) || \
defined(CONFIG_SOC_SERIES_STM32L4X) || \
defined(CONFIG_SOC_SERIES_STM32WBX) || \
defined(CONFIG_SOC_SERIES_STM32G4X)
ARG_UNUSED(offset);
ARG_UNUSED(len);
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
if (regs->ACR & FLASH_ACR_DCEN) {
regs->ACR &= ~FLASH_ACR_DCEN;
regs->ACR |= FLASH_ACR_DCRST;
regs->ACR &= ~FLASH_ACR_DCRST;
regs->ACR |= FLASH_ACR_DCEN;
}
#elif defined(CONFIG_SOC_SERIES_STM32F7X)
SCB_InvalidateDCache_by_Addr((uint32_t *)(FLASH_STM32_BASE_ADDRESS
+ offset), len);
#endif
}
static int flash_stm32_read(const struct device *dev, off_t offset,
void *data,
size_t len)
{
if (!flash_stm32_valid_range(dev, offset, len, false)) {
LOG_ERR("Read range invalid. Offset: %ld, len: %zu",
(long int) offset, len);
return -EINVAL;
}
if (!len) {
return 0;
}
LOG_DBG("Read offset: %ld, len: %zu", (long int) offset, len);
memcpy(data, (uint8_t *) FLASH_STM32_BASE_ADDRESS + offset, len);
return 0;
}
static int flash_stm32_erase(const struct device *dev, off_t offset,
size_t len)
{
int rc;
if (!flash_stm32_valid_range(dev, offset, len, true)) {
LOG_ERR("Erase range invalid. Offset: %ld, len: %zu",
(long int) offset, len);
return -EINVAL;
}
if (!len) {
return 0;
}
flash_stm32_sem_take(dev);
LOG_DBG("Erase offset: %ld, len: %zu", (long int) offset, len);
rc = flash_stm32_cr_lock(dev, false);
if (rc == 0) {
rc = flash_stm32_block_erase_loop(dev, offset, len);
}
flash_stm32_flush_caches(dev, offset, len);
int rc2 = flash_stm32_cr_lock(dev, true);
if (!rc) {
rc = rc2;
}
flash_stm32_sem_give(dev);
return rc;
}
static int flash_stm32_write(const struct device *dev, off_t offset,
const void *data, size_t len)
{
int rc;
if (!flash_stm32_valid_range(dev, offset, len, true)) {
LOG_ERR("Write range invalid. Offset: %ld, len: %zu",
(long int) offset, len);
return -EINVAL;
}
if (!len) {
return 0;
}
flash_stm32_sem_take(dev);
LOG_DBG("Write offset: %ld, len: %zu", (long int) offset, len);
rc = flash_stm32_cr_lock(dev, false);
if (rc == 0) {
rc = flash_stm32_write_range(dev, offset, data, len);
}
int rc2 = flash_stm32_cr_lock(dev, true);
if (!rc) {
rc = rc2;
}
flash_stm32_sem_give(dev);
return rc;
}
int flash_stm32_cr_lock(const struct device *dev, bool enable)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
int rc = 0;
if (enable) {
rc = flash_stm32_wait_flash_idle(dev);
if (rc) {
flash_stm32_sem_give(dev);
return rc;
}
}
#if defined(FLASH_SECURITY_NS)
if (enable) {
regs->NSCR |= FLASH_STM32_NSLOCK;
} else {
if (regs->NSCR & FLASH_STM32_NSLOCK) {
regs->NSKEYR = FLASH_KEY1;
regs->NSKEYR = FLASH_KEY2;
}
}
#elif defined(FLASH_CR_LOCK)
if (enable) {
regs->CR |= FLASH_CR_LOCK;
} else {
if (regs->CR & FLASH_CR_LOCK) {
regs->KEYR = FLASH_KEY1;
regs->KEYR = FLASH_KEY2;
}
}
#else
if (enable) {
regs->PECR |= FLASH_PECR_PRGLOCK;
regs->PECR |= FLASH_PECR_PELOCK;
} else {
if (regs->PECR & FLASH_PECR_PRGLOCK) {
LOG_DBG("Disabling write protection");
regs->PEKEYR = FLASH_PEKEY1;
regs->PEKEYR = FLASH_PEKEY2;
regs->PRGKEYR = FLASH_PRGKEY1;
regs->PRGKEYR = FLASH_PRGKEY2;
}
if (FLASH->PECR & FLASH_PECR_PRGLOCK) {
LOG_ERR("Unlock failed");
rc = -EIO;
}
}
#endif /* FLASH_SECURITY_NS */
if (enable) {
LOG_DBG("Enable write protection");
} else {
LOG_DBG("Disable write protection");
}
return rc;
}
#if defined(CONFIG_FLASH_EX_OP_ENABLED) && defined(CONFIG_FLASH_STM32_BLOCK_REGISTERS)
int flash_stm32_control_register_disable(const struct device *dev)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
#if defined(FLASH_CR_LOCK) /* F0, F1, F2, F3, F4, F7, L4, G0, G4, WB, WL */
/*
* Access to control register can be disabled by writing wrong key to
* the key register. Option register will remain disabled until reset.
* Writing wrong key causes a bus fault, so we need to set FAULTMASK to
* disable faults, and clear bus fault pending bit before enabling them
* again.
*/
regs->CR |= FLASH_CR_LOCK;
__set_FAULTMASK(1);
regs->KEYR = 0xffffffff;
/* Clear Bus Fault pending bit */
SCB->SHCSR &= ~SCB_SHCSR_BUSFAULTPENDED_Msk;
__set_FAULTMASK(0);
return 0;
#else
ARG_UNUSED(regs);
return -ENOTSUP;
#endif
}
int flash_stm32_option_bytes_disable(const struct device *dev)
{
FLASH_TypeDef *regs = FLASH_STM32_REGS(dev);
#if defined(FLASH_OPTCR_OPTLOCK) /* F2, F4, F7 */
/*
* Access to option register can be disabled by writing wrong key to
* the key register. Option register will remain disabled until reset.
* Writing wrong key causes a bus fault, so we need to set FAULTMASK to
* disable faults, and clear bus fault pending bit before enabling them
* again.
*/
regs->OPTCR |= FLASH_OPTCR_OPTLOCK;
__set_FAULTMASK(1);
regs->OPTKEYR = 0xffffffff;
/* Clear Bus Fault pending bit */
SCB->SHCSR &= ~SCB_SHCSR_BUSFAULTPENDED_Msk;
__set_FAULTMASK(0);
return 0;
#else
ARG_UNUSED(regs);
return -ENOTSUP;
#endif
}
#endif /* CONFIG_FLASH_STM32_BLOCK_REGISTERS */
static const struct flash_parameters *
flash_stm32_get_parameters(const struct device *dev)
{
ARG_UNUSED(dev);
return &flash_stm32_parameters;
}
/* Gives the total logical device size in bytes and return 0. */
static int flash_stm32_get_size(const struct device *dev, uint64_t *size)
{
ARG_UNUSED(dev);
#if defined(CONFIG_SOC_SERIES_STM32H5X)
/* Disable the ICACHE to ensure all memory accesses are non-cacheable.
* This is required on STM32H5, where the manufacturing flash must be
* accessed in non-cacheable mode - otherwise, a bus error occurs.
*/
cache_instr_disable();
#endif /* CONFIG_SOC_SERIES_STM32H5X */
*size = (uint64_t)LL_GetFlashSize() * 1024U;
#if defined(CONFIG_SOC_SERIES_STM32H5X)
/* Re-enable the ICACHE (unconditonally - it should always be turned on) */
cache_instr_enable();
#endif /* CONFIG_SOC_SERIES_STM32H5X */
return 0;
}
static struct flash_stm32_priv flash_data = {
.regs = (FLASH_TypeDef *) DT_INST_REG_ADDR(0),
/* Getting clocks information from device tree description depending
* on the presence of 'clocks' property.
*/
#if DT_INST_NODE_HAS_PROP(0, clocks)
.pclken = {
.enr = DT_INST_CLOCKS_CELL(0, bits),
.bus = DT_INST_CLOCKS_CELL(0, bus),
}
#endif
};
static DEVICE_API(flash, flash_stm32_api) = {
.erase = flash_stm32_erase,
.write = flash_stm32_write,
.read = flash_stm32_read,
.get_parameters = flash_stm32_get_parameters,
.get_size = flash_stm32_get_size,
#ifdef CONFIG_FLASH_PAGE_LAYOUT
.page_layout = flash_stm32_page_layout,
#endif
#ifdef CONFIG_FLASH_EX_OP_ENABLED
.ex_op = flash_stm32_ex_op,
#endif
};
static int stm32_flash_init(const struct device *dev)
{
int rc;
/* Below is applicable to F0, F1, F3, G0, G4, L1, L4, L5, U5 & WB55 series.
* For F2, F4, F7 series, this is not applicable.
*/
#if DT_INST_NODE_HAS_PROP(0, clocks)
struct flash_stm32_priv *p = FLASH_STM32_PRIV(dev);
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
/*
* On STM32 F0, F1, F3 & L1 series, flash interface clock source is
* always HSI, so statically enable HSI here.
*/
#if defined(CONFIG_SOC_SERIES_STM32F0X) || \
defined(CONFIG_SOC_SERIES_STM32F1X) || \
defined(CONFIG_SOC_SERIES_STM32F3X) || \
defined(CONFIG_SOC_SERIES_STM32L1X)
LL_RCC_HSI_Enable();
while (!LL_RCC_HSI_IsReady()) {
}
#endif
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
/* enable clock */
if (clock_control_on(clk, (clock_control_subsys_t)&p->pclken) != 0) {
LOG_ERR("Failed to enable clock");
return -EIO;
}
#endif
#ifdef CONFIG_SOC_SERIES_STM32WBX
LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_HSEM);
#endif /* CONFIG_SOC_SERIES_STM32WBX */
flash_stm32_sem_init(dev);
LOG_DBG("Flash @0x%x initialized. BS: %zu",
FLASH_STM32_BASE_ADDRESS,
flash_stm32_parameters.write_block_size);
/* Check Flash configuration */
rc = flash_stm32_check_configuration();
if (rc < 0) {
return rc;
}
#if ((CONFIG_FLASH_LOG_LEVEL >= LOG_LEVEL_DBG) && CONFIG_FLASH_PAGE_LAYOUT)
const struct flash_pages_layout *layout;
size_t layout_size;
flash_stm32_page_layout(dev, &layout, &layout_size);
for (size_t i = 0; i < layout_size; i++) {
LOG_DBG("Block %zu: bs: %zu count: %zu", i,
layout[i].pages_size, layout[i].pages_count);
}
#endif
return 0;
}
DEVICE_DT_INST_DEFINE(0, stm32_flash_init, NULL,
&flash_data, NULL, POST_KERNEL,
CONFIG_FLASH_INIT_PRIORITY, &flash_stm32_api);