You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1098 lines
32 KiB
1098 lines
32 KiB
/* |
|
* Copyright (c) 2021 Microchip Technology Inc. |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#define DT_DRV_COMPAT microchip_xec_pcr |
|
|
|
#include <soc.h> |
|
#include <zephyr/arch/cpu.h> |
|
#include <cmsis_core.h> |
|
#include <zephyr/drivers/clock_control.h> |
|
#include <zephyr/drivers/clock_control/mchp_xec_clock_control.h> |
|
#include <zephyr/drivers/pinctrl.h> |
|
#include <zephyr/dt-bindings/clock/mchp_xec_pcr.h> |
|
#include <zephyr/irq.h> |
|
#include <zephyr/logging/log.h> |
|
#include <zephyr/sys/barrier.h> |
|
LOG_MODULE_REGISTER(clock_control_xec, LOG_LEVEL_ERR); |
|
|
|
#define CLK32K_SIL_OSC_DELAY 256 |
|
#define CLK32K_PLL_LOCK_WAIT (16 * 1024) |
|
#define CLK32K_PIN_WAIT 4096 |
|
#define CLK32K_XTAL_WAIT (16 * 1024) |
|
#define CLK32K_XTAL_MON_WAIT (64 * 1024) |
|
#define XEC_CC_DFLT_PLL_LOCK_WAIT_MS 30 |
|
|
|
/* |
|
* Counter checks: |
|
* 32KHz period counter minimum for pass/fail: 16-bit |
|
* 32KHz period counter maximum for pass/fail: 16-bit |
|
* 32KHz duty cycle variation max for pass/fail: 16-bit |
|
* 32KHz valid count minimum: 8-bit |
|
* |
|
* 32768 Hz period is 30.518 us |
|
* HW count resolution is 48 MHz. |
|
* One 32KHz clock pulse = 1464.84 48 MHz counts. |
|
*/ |
|
#define CNT32K_TMIN 1435 |
|
#define CNT32K_TMAX 1495 |
|
#define CNT32K_DUTY_MAX 132 |
|
#define CNT32K_VAL_MIN 4 |
|
|
|
#define DEST_PLL 0 |
|
#define DEST_PERIPH 1 |
|
|
|
#define CLK32K_FLAG_CRYSTAL_SE BIT(0) |
|
#define CLK32K_FLAG_PIN_FB_CRYSTAL BIT(1) |
|
|
|
#define PCR_PERIPH_RESET_SPIN 8u |
|
|
|
#define XEC_CC_XTAL_EN_DELAY_MS_DFLT 300u |
|
#define HIBTIMER_MS_TO_CNT(x) ((uint32_t)(x) * 33U) |
|
|
|
#define HIBTIMER_10_MS 328u |
|
#define HIBTIMER_300_MS 9830u |
|
|
|
enum pll_clk32k_src { |
|
PLL_CLK32K_SRC_SO = MCHP_XEC_PLL_CLK32K_SRC_SIL_OSC, |
|
PLL_CLK32K_SRC_XTAL = MCHP_XEC_PLL_CLK32K_SRC_XTAL, |
|
PLL_CLK32K_SRC_PIN = MCHP_XEC_PLL_CLK32K_SRC_PIN, |
|
PLL_CLK32K_SRC_MAX, |
|
}; |
|
|
|
enum periph_clk32k_src { |
|
PERIPH_CLK32K_SRC_SO_SO = MCHP_XEC_PERIPH_CLK32K_SRC_SO_SO, |
|
PERIPH_CLK32K_SRC_XTAL_XTAL = MCHP_XEC_PERIPH_CLK32K_SRC_XTAL_XTAL, |
|
PERIPH_CLK32K_SRC_PIN_SO = MCHP_XEC_PERIPH_CLK32K_SRC_PIN_SO, |
|
PERIPH_CLK32K_SRC_PIN_XTAL = MCHP_XEC_PERIPH_CLK32K_SRC_PIN_XTAL, |
|
PERIPH_CLK32K_SRC_MAX |
|
}; |
|
|
|
enum clk32k_dest { CLK32K_DEST_PLL = 0, CLK32K_DEST_PERIPH, CLK32K_DEST_MAX }; |
|
|
|
/* PCR hardware registers for MEC15xx and MEC172x */ |
|
#define XEC_CC_PCR_MAX_SCR 5 |
|
|
|
struct pcr_hw_regs { |
|
volatile uint32_t SYS_SLP_CTRL; |
|
volatile uint32_t PROC_CLK_CTRL; |
|
volatile uint32_t SLOW_CLK_CTRL; |
|
volatile uint32_t OSC_ID; |
|
volatile uint32_t PWR_RST_STS; |
|
volatile uint32_t PWR_RST_CTRL; |
|
volatile uint32_t SYS_RST; |
|
volatile uint32_t TURBO_CLK; /* MEC172x only */ |
|
volatile uint32_t TEST20; |
|
uint32_t RSVD1[3]; |
|
volatile uint32_t SLP_EN[XEC_CC_PCR_MAX_SCR]; |
|
uint32_t RSVD2[3]; |
|
volatile uint32_t CLK_REQ[XEC_CC_PCR_MAX_SCR]; |
|
uint32_t RSVD3[3]; |
|
volatile uint32_t RST_EN[5]; |
|
volatile uint32_t RST_EN_LOCK; |
|
/* all registers below are MEC172x only */ |
|
volatile uint32_t VBAT_SRST; |
|
volatile uint32_t CLK32K_SRC_VTR; |
|
volatile uint32_t TEST90; |
|
uint32_t RSVD4[(0x00c0 - 0x0094) / 4]; |
|
volatile uint32_t CNT32K_PER; |
|
volatile uint32_t CNT32K_PULSE_HI; |
|
volatile uint32_t CNT32K_PER_MIN; |
|
volatile uint32_t CNT32K_PER_MAX; |
|
volatile uint32_t CNT32K_DV; |
|
volatile uint32_t CNT32K_DV_MAX; |
|
volatile uint32_t CNT32K_VALID; |
|
volatile uint32_t CNT32K_VALID_MIN; |
|
volatile uint32_t CNT32K_CTRL; |
|
volatile uint32_t CLK32K_MON_ISTS; |
|
volatile uint32_t CLK32K_MON_IEN; |
|
}; |
|
|
|
#define XEC_CC_PCR_RST_EN_UNLOCK 0xa6382d4cu |
|
#define XEC_CC_PCR_RST_EN_LOCK 0xa6382d4du |
|
|
|
#define XEC_CC_PCR_OSC_ID_PLL_LOCK BIT(8) |
|
#define XEC_CC_PCR_TURBO_CLK_96M BIT(2) |
|
|
|
#define XEC_CC_PCR_CLK32K_SRC_MSK 0x3u |
|
#define XEC_CC_PCR_CLK32K_SRC_SIL 0u |
|
#define XEC_CC_PCR_CLK32K_SRC_XTAL 1 |
|
#define XEC_CC_PCR_CLK32K_SRC_PIN 2 |
|
#define XEC_CC_PCR_CLK32K_SRC_OFF 3 |
|
|
|
#ifdef CONFIG_SOC_SERIES_MEC15XX |
|
#define XEC_CC_PCR3_CRYPTO_MASK (BIT(26) | BIT(27) | BIT(28)) |
|
#else |
|
#define XEC_CC_PCR3_CRYPTO_MASK BIT(26) |
|
#endif |
|
|
|
/* VBAT powered hardware registers related to clock configuration */ |
|
struct vbatr_hw_regs { |
|
volatile uint32_t PFRS; |
|
uint32_t RSVD1[1]; |
|
volatile uint32_t CLK32_SRC; |
|
uint32_t RSVD2[2]; |
|
volatile uint32_t CLK32_TRIM; |
|
uint32_t RSVD3[1]; |
|
volatile uint32_t CLK32_TRIM_CTRL; |
|
}; |
|
|
|
/* MEC152x VBAT CLK32_SRC register defines */ |
|
#define XEC_CC15_VBATR_USE_SIL_OSC 0u |
|
#define XEC_CC15_VBATR_USE_32KIN_PIN BIT(1) |
|
#define XEC_CC15_VBATR_USE_PAR_CRYSTAL BIT(2) |
|
#define XEC_CC15_VBATR_USE_SE_CRYSTAL (BIT(2) | BIT(3)) |
|
|
|
/* MEC150x special requirements */ |
|
#define XEC_CC15_GCFG_DID_DEV_ID_MEC150x 0x0020U |
|
#define XEC_CC15_TRIM_ENABLE_INT_OSCILLATOR 0x06U |
|
|
|
|
|
/* MEC172x VBAT CLK32_SRC register defines */ |
|
#define XEC_CC_VBATR_CS_SO_EN BIT(0) /* enable and start silicon OSC */ |
|
#define XEC_CC_VBATR_CS_XTAL_EN BIT(8) /* enable & start external crystal */ |
|
#define XEC_CC_VBATR_CS_XTAL_SE BIT(9) /* crystal XTAL2 used as 32KHz input */ |
|
#define XEC_CC_VBATR_CS_XTAL_DHC BIT(10) /* disable high XTAL startup current */ |
|
#define XEC_CC_VBATR_CS_XTAL_CNTR_MSK 0x1800u /* XTAL amplifier gain control */ |
|
#define XEC_CC_VBATR_CS_XTAL_CNTR_DG 0x0800u |
|
#define XEC_CC_VBATR_CS_XTAL_CNTR_RG 0x1000u |
|
#define XEC_CC_VBATR_CS_XTAL_CNTR_MG 0x1800u |
|
/* MEC172x Select source of peripheral 32KHz clock */ |
|
#define XEC_CC_VBATR_CS_PCS_POS 16 |
|
#define XEC_CC_VBATR_CS_PCS_MSK0 0x3u |
|
#define XEC_CC_VBATR_CS_PCS_MSK 0x30000u |
|
#define XEC_CC_VBATR_CS_PCS_VTR_VBAT_SO 0u /* VTR & VBAT use silicon OSC */ |
|
#define XEC_CC_VBATR_CS_PCS_VTR_VBAT_XTAL 0x10000u /* VTR & VBAT use crystal */ |
|
#define XEC_CC_VBATR_CS_PCS_VTR_PIN_SO 0x20000u /* VTR 32KHZ_IN, VBAT silicon OSC */ |
|
#define XEC_CC_VBATR_CS_PCS_VTR_PIN_XTAL 0x30000u /* VTR 32KHZ_IN, VBAT XTAL */ |
|
#define XEC_CC_VBATR_CS_DI32_VTR_OFF BIT(18) /* disable silicon OSC when VTR off */ |
|
|
|
enum vbr_clk32k_src { |
|
VBR_CLK32K_SRC_SO_SO = 0, |
|
VBR_CLK32K_SRC_XTAL_XTAL, |
|
VBR_CLK32K_SRC_PIN_SO, |
|
VBR_CLK32K_SRC_PIN_XTAL, |
|
VBR_CLK32K_SRC_MAX, |
|
}; |
|
|
|
/* GIRQ23 hardware registers */ |
|
#define XEC_CC_HTMR_0_GIRQ23_POS 16 |
|
|
|
/* Driver config */ |
|
struct xec_pcr_config { |
|
uintptr_t pcr_base; |
|
uintptr_t vbr_base; |
|
const struct pinctrl_dev_config *pcfg; |
|
uint16_t xtal_enable_delay_ms; |
|
uint16_t pll_lock_timeout_ms; |
|
uint16_t period_min; /* mix and max 32KHz period range */ |
|
uint16_t period_max; /* monitor values in units of 48MHz (20.8 ns) */ |
|
uint8_t core_clk_div; /* Cortex-M4 clock divider (CPU and NVIC) */ |
|
uint8_t xtal_se; /* External 32KHz square wave on XTAL2 pin */ |
|
uint8_t max_dc_va; /* 32KHz monitor maximum duty cycle variation */ |
|
uint8_t min_valid; /* minimum number of valid consecutive 32KHz pulses */ |
|
enum pll_clk32k_src pll_src; |
|
enum periph_clk32k_src periph_src; |
|
uint8_t clkmon_bypass; |
|
uint8_t dis_internal_osc; |
|
}; |
|
|
|
/* |
|
* Make sure PCR sleep enables are clear except for crypto |
|
* which do not have internal clock gating. |
|
*/ |
|
static void pcr_slp_init(struct pcr_hw_regs *pcr) |
|
{ |
|
pcr->SYS_SLP_CTRL = 0U; |
|
SCB->SCR &= ~BIT(2); |
|
|
|
for (int i = 0; i < XEC_CC_PCR_MAX_SCR; i++) { |
|
pcr->SLP_EN[i] = 0U; |
|
} |
|
|
|
pcr->SLP_EN[3] = XEC_CC_PCR3_CRYPTO_MASK; |
|
} |
|
|
|
/* MEC172x: |
|
* Check if PLL is locked with timeout provided by a peripheral clock domain |
|
* timer. We assume peripheral domain is still using internal silicon OSC as |
|
* its reference clock. Available peripheral timers using 32KHz are: |
|
* RTOS timer, hibernation timers, RTC, and week timer. We will use hibernation |
|
* timer 0 in 30.5 us tick mode. Maximum internal is 2 seconds. |
|
* A timer count value of 0 is interpreted as no timeout. |
|
* We use the hibernation timer GIRQ interrupt status bit instead of reading |
|
* the timer's count register due to race condition of HW taking at least |
|
* one 32KHz cycle to move pre-load into count register. |
|
* MEC15xx: |
|
* Hibernation timer is using the chosen 32KHz source. If the external 32KHz source |
|
* has a ramp up time, we make not get an accurate delay. This may only occur for |
|
* the parallel crystal. |
|
*/ |
|
static int pll_wait_lock_periph(struct pcr_hw_regs *const pcr, uint16_t ms) |
|
{ |
|
struct htmr_regs *htmr0 = (struct htmr_regs *)DT_REG_ADDR(DT_NODELABEL(hibtimer0)); |
|
struct girq_regs *girq23 = (struct girq_regs *)DT_REG_ADDR(DT_NODELABEL(girq23)); |
|
uint32_t hcount = HIBTIMER_MS_TO_CNT(ms); |
|
int rc = 0; |
|
|
|
htmr0->PRLD = 0; /* disable */ |
|
htmr0->CTRL = 0; /* 30.5 us units */ |
|
girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS); |
|
htmr0->PRLD = hcount; |
|
while (!(pcr->OSC_ID & MCHP_PCR_OSC_ID_PLL_LOCK)) { |
|
if (hcount) { |
|
if (girq23->SRC & BIT(XEC_CC_HTMR_0_GIRQ23_POS)) { |
|
rc = -ETIMEDOUT; |
|
} |
|
} |
|
} |
|
|
|
return rc; |
|
} |
|
|
|
static int periph_clk_src_using_pin(enum periph_clk32k_src src) |
|
{ |
|
switch (src) { |
|
case PERIPH_CLK32K_SRC_PIN_SO: |
|
case PERIPH_CLK32K_SRC_PIN_XTAL: |
|
return 1; |
|
default: |
|
return 0; |
|
} |
|
} |
|
|
|
#ifdef CONFIG_SOC_SERIES_MEC15XX |
|
/* MEC15xx uses the same 32KHz source for both PLL and Peripheral 32K clock domains. |
|
* We ignore the peripheral clock source. |
|
* If XTAL is selected (parallel) or single-ended the external 32KHz MUST stay on |
|
* even when VTR goes off. |
|
* If PIN(32KHZ_IN pin) as the external source, hardware can auto-switch to internal |
|
* silicon OSC if the signal on the 32KHZ_PIN goes away. |
|
* We ignore th |
|
*/ |
|
static int soc_clk32_init(const struct device *dev, |
|
enum pll_clk32k_src pll_clk_src, |
|
enum periph_clk32k_src periph_clk_src, |
|
uint32_t flags) |
|
{ |
|
const struct xec_pcr_config * const devcfg = dev->config; |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
|
struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base; |
|
uint32_t cken = 0U; |
|
int rc = 0; |
|
|
|
if (MCHP_DEVICE_ID() == XEC_CC15_GCFG_DID_DEV_ID_MEC150x) { |
|
if (MCHP_REVISION_ID() == MCHP_GCFG_REV_B0) { |
|
vbr->CLK32_TRIM_CTRL = XEC_CC15_TRIM_ENABLE_INT_OSCILLATOR; |
|
} |
|
} |
|
|
|
switch (pll_clk_src) { |
|
case PLL_CLK32K_SRC_SO: |
|
cken = XEC_CC15_VBATR_USE_SIL_OSC; |
|
break; |
|
case PLL_CLK32K_SRC_XTAL: |
|
if (flags & CLK32K_FLAG_CRYSTAL_SE) { |
|
cken = XEC_CC15_VBATR_USE_SE_CRYSTAL; |
|
} else { |
|
cken = XEC_CC15_VBATR_USE_PAR_CRYSTAL; |
|
} |
|
break; |
|
case PLL_CLK32K_SRC_PIN: /* 32KHZ_IN pin falls back to Silicon OSC */ |
|
cken = XEC_CC15_VBATR_USE_32KIN_PIN; |
|
break; |
|
default: /* do not touch HW */ |
|
return -EINVAL; |
|
} |
|
|
|
if ((vbr->CLK32_SRC & 0xffU) != cken) { |
|
vbr->CLK32_SRC = cken; |
|
} |
|
|
|
rc = pll_wait_lock_periph(pcr, devcfg->xtal_enable_delay_ms); |
|
|
|
return rc; |
|
} |
|
#else |
|
|
|
static int periph_clk_src_using_si(enum periph_clk32k_src src) |
|
{ |
|
switch (src) { |
|
case PERIPH_CLK32K_SRC_SO_SO: |
|
case PERIPH_CLK32K_SRC_PIN_SO: |
|
return 1; |
|
default: |
|
return 0; |
|
} |
|
} |
|
|
|
static int periph_clk_src_using_xtal(enum periph_clk32k_src src) |
|
{ |
|
switch (src) { |
|
case PERIPH_CLK32K_SRC_XTAL_XTAL: |
|
case PERIPH_CLK32K_SRC_PIN_XTAL: |
|
return 1; |
|
default: |
|
return 0; |
|
} |
|
} |
|
|
|
static bool is_sil_osc_enabled(struct vbatr_hw_regs *vbr) |
|
{ |
|
if (vbr->CLK32_SRC & XEC_CC_VBATR_CS_SO_EN) { |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
static void enable_sil_osc(struct vbatr_hw_regs *vbr) |
|
{ |
|
vbr->CLK32_SRC |= XEC_CC_VBATR_CS_SO_EN; |
|
} |
|
|
|
/* In early Zephyr initialization we don't have timer services. Also, the SoC |
|
* may be running on its ring oscillator (+/- 50% accuracy). Configuring the |
|
* SoC's clock subsystem requires wait/delays. We implement a simple delay |
|
* by writing to a read-only hardware register in the PCR block. |
|
*/ |
|
static uint32_t spin_delay(struct pcr_hw_regs *pcr, uint32_t cnt) |
|
{ |
|
uint32_t n; |
|
|
|
for (n = 0U; n < cnt; n++) { |
|
pcr->OSC_ID = n; |
|
} |
|
|
|
return n; |
|
} |
|
|
|
/* |
|
* This routine checks if the PLL is locked to its input source. Minimum lock |
|
* time is 3.3 ms. Lock time can be larger when the source is an external |
|
* crystal. Crystal cold start times may vary greatly based on many factors. |
|
* Crystals do not like being power cycled. |
|
*/ |
|
static int pll_wait_lock(struct pcr_hw_regs *const pcr, uint32_t wait_cnt) |
|
{ |
|
while (!(pcr->OSC_ID & MCHP_PCR_OSC_ID_PLL_LOCK)) { |
|
if (wait_cnt == 0) { |
|
return -ETIMEDOUT; |
|
} |
|
--wait_cnt; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* caller has enabled internal silicon 32 KHz oscillator */ |
|
static void hib_timer_delay(uint32_t hib_timer_count) |
|
{ |
|
struct htmr_regs *htmr0 = (struct htmr_regs *)DT_REG_ADDR(DT_NODELABEL(hibtimer0)); |
|
struct girq_regs *girq23 = (struct girq_regs *)DT_REG_ADDR(DT_NODELABEL(girq23)); |
|
uint32_t hcnt; |
|
|
|
while (hib_timer_count) { |
|
|
|
hcnt = hib_timer_count; |
|
if (hcnt > UINT16_MAX) { |
|
hcnt -= UINT16_MAX; |
|
} |
|
|
|
htmr0->PRLD = 0; /* disable */ |
|
while (htmr0->PRLD != 0) { |
|
; |
|
} |
|
htmr0->CTRL = 0; /* 32k time base */ |
|
/* clear hibernation timer 0 status */ |
|
girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS); |
|
htmr0->PRLD = hib_timer_count; |
|
if (hib_timer_count == 0) { |
|
return; |
|
} |
|
|
|
while ((girq23->SRC & BIT(XEC_CC_HTMR_0_GIRQ23_POS)) == 0) { |
|
; |
|
} |
|
|
|
htmr0->PRLD = 0; /* disable */ |
|
while (htmr0->PRLD != 0) { |
|
; |
|
} |
|
girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS); |
|
|
|
hib_timer_count -= hcnt; |
|
} |
|
} |
|
|
|
/* Turn off crystal when we are not using it */ |
|
static int disable_32k_crystal(const struct device *dev) |
|
{ |
|
const struct xec_pcr_config * const devcfg = dev->config; |
|
struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base; |
|
uint32_t vbcs = vbr->CLK32_SRC; |
|
|
|
vbcs &= ~(XEC_CC_VBATR_CS_XTAL_EN | XEC_CC_VBATR_CS_XTAL_SE | XEC_CC_VBATR_CS_XTAL_DHC); |
|
vbr->CLK32_SRC = vbcs; |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* Start external 32 KHz crystal. |
|
* Assumes peripheral clocks source is Silicon OSC. |
|
* If current configuration matches desired crystal configuration do nothing. |
|
* NOTE: Crystal requires ~300 ms to stabilize. |
|
*/ |
|
static int enable_32k_crystal(const struct device *dev, uint32_t flags) |
|
{ |
|
const struct xec_pcr_config * const devcfg = dev->config; |
|
struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base; |
|
uint32_t vbcs = vbr->CLK32_SRC; |
|
uint32_t cfg = MCHP_VBATR_CS_XTAL_EN; |
|
|
|
if (flags & CLK32K_FLAG_CRYSTAL_SE) { |
|
cfg |= MCHP_VBATR_CS_XTAL_SE; |
|
} |
|
|
|
if ((vbcs & cfg) == cfg) { |
|
return 0; |
|
} |
|
|
|
/* Configure crystal connection before enabling the crystal. */ |
|
vbr->CLK32_SRC &= ~(MCHP_VBATR_CS_XTAL_SE | MCHP_VBATR_CS_XTAL_DHC | |
|
MCHP_VBATR_CS_XTAL_CNTR_MSK); |
|
if (flags & CLK32K_FLAG_CRYSTAL_SE) { |
|
vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_SE; |
|
} |
|
|
|
/* Set crystal gain */ |
|
vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_CNTR_DG; |
|
|
|
/* enable crystal */ |
|
vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_EN; |
|
/* wait for crystal stabilization */ |
|
hib_timer_delay(HIBTIMER_MS_TO_CNT(devcfg->xtal_enable_delay_ms)); |
|
/* turn off crystal high startup current */ |
|
vbr->CLK32_SRC |= MCHP_VBATR_CS_XTAL_DHC; |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* Use PCR clock monitor hardware to test crystal output. |
|
* Requires crystal to have stabilized after enable. |
|
* When enabled the clock monitor hardware measures high/low, edges, and |
|
* duty cycle and compares to programmed limits. |
|
*/ |
|
static int check_32k_crystal(const struct device *dev) |
|
{ |
|
const struct xec_pcr_config * const devcfg = dev->config; |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
|
struct htmr_regs *htmr0 = (struct htmr_regs *)DT_REG_ADDR(DT_NODELABEL(hibtimer0)); |
|
struct girq_regs *girq23 = (struct girq_regs *)DT_REG_ADDR(DT_NODELABEL(girq23)); |
|
uint32_t status = 0; |
|
int rc = 0; |
|
|
|
htmr0->PRLD = 0; |
|
htmr0->CTRL = 0; |
|
girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS); |
|
|
|
pcr->CNT32K_CTRL = 0U; |
|
pcr->CLK32K_MON_IEN = 0U; |
|
pcr->CLK32K_MON_ISTS = MCHP_PCR_CLK32M_ISTS_MASK; |
|
|
|
pcr->CNT32K_PER_MIN = devcfg->period_min; |
|
pcr->CNT32K_PER_MAX = devcfg->period_max; |
|
pcr->CNT32K_DV_MAX = devcfg->max_dc_va; |
|
pcr->CNT32K_VALID_MIN = devcfg->min_valid; |
|
|
|
pcr->CNT32K_CTRL = |
|
MCHP_PCR_CLK32M_CTRL_PER_EN | MCHP_PCR_CLK32M_CTRL_DC_EN | |
|
MCHP_PCR_CLK32M_CTRL_VAL_EN | MCHP_PCR_CLK32M_CTRL_CLR_CNT; |
|
|
|
rc = -ETIMEDOUT; |
|
htmr0->PRLD = HIBTIMER_10_MS; |
|
status = pcr->CLK32K_MON_ISTS; |
|
|
|
while ((girq23->SRC & BIT(XEC_CC_HTMR_0_GIRQ23_POS)) == 0) { |
|
if (status == (MCHP_PCR_CLK32M_ISTS_PULSE_RDY | |
|
MCHP_PCR_CLK32M_ISTS_PASS_PER | |
|
MCHP_PCR_CLK32M_ISTS_PASS_DC | |
|
MCHP_PCR_CLK32M_ISTS_VALID)) { |
|
rc = 0; |
|
break; |
|
} |
|
|
|
if (status & (MCHP_PCR_CLK32M_ISTS_FAIL | |
|
MCHP_PCR_CLK32M_ISTS_STALL)) { |
|
rc = -EBUSY; |
|
break; |
|
} |
|
|
|
status = pcr->CLK32K_MON_ISTS; |
|
} |
|
|
|
pcr->CNT32K_CTRL = 0u; |
|
htmr0->PRLD = 0; |
|
girq23->SRC = BIT(XEC_CC_HTMR_0_GIRQ23_POS); |
|
|
|
return rc; |
|
} |
|
|
|
/* |
|
* Set the clock source for either PLL or Peripheral-32K clock domain. |
|
* The source must be a stable 32 KHz input: internal silicon oscillator, |
|
* external crystal dual-ended crystal, 50% duty cycle waveform on XTAL2 only, |
|
* or a 50% duty cycles waveform on the 32KHZ_PIN. |
|
* NOTE: 32KHZ_PIN is an alternate function of a chip specific GPIO. |
|
* Signal on 32KHZ_PIN may go off when VTR rail go down. MEC172x can automatically |
|
* switch to silicon OSC or XTAL. At this time we do not support fall back to XTAL |
|
* when using 32KHZ_PIN. |
|
* !!! IMPORTANT !!! Fall back from 32KHZ_PIN to SO/XTAL is only for the Peripheral |
|
* Clock domain. If the PLL is configured to use 32KHZ_PIN as its source then the |
|
* PLL will shutdown and the PLL clock domain should switch to the ring oscillator. |
|
* This means the PLL clock domain clock will not longer be accurate and may cause |
|
* FW malfunction(s). |
|
*/ |
|
|
|
static void connect_pll_32k(const struct device *dev, enum pll_clk32k_src src, uint32_t flags) |
|
{ |
|
const struct xec_pcr_config * const devcfg = dev->config; |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
|
uint32_t pcr_clk_sel; |
|
|
|
switch (src) { |
|
case PLL_CLK32K_SRC_XTAL: |
|
pcr_clk_sel = MCHP_PCR_VTR_32K_SRC_XTAL; |
|
break; |
|
case PLL_CLK32K_SRC_PIN: |
|
pcr_clk_sel = MCHP_PCR_VTR_32K_SRC_PIN; |
|
break; |
|
default: /* default to silicon OSC */ |
|
pcr_clk_sel = MCHP_PCR_VTR_32K_SRC_SILOSC; |
|
break; |
|
} |
|
|
|
pcr->CLK32K_SRC_VTR = pcr_clk_sel; |
|
} |
|
|
|
static void connect_periph_32k(const struct device *dev, enum periph_clk32k_src src, uint32_t flags) |
|
{ |
|
const struct xec_pcr_config * const devcfg = dev->config; |
|
struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base; |
|
uint32_t vbr_clk_sel = vbr->CLK32_SRC & ~(MCHP_VBATR_CS_PCS_MSK); |
|
|
|
switch (src) { |
|
case PERIPH_CLK32K_SRC_XTAL_XTAL: |
|
vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_VBAT_XTAL; |
|
break; |
|
case PERIPH_CLK32K_SRC_PIN_SO: |
|
vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_PIN_SO; |
|
break; |
|
case PERIPH_CLK32K_SRC_PIN_XTAL: |
|
vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_PIN_XTAL; |
|
break; |
|
default: /* default to silicon OSC for VTR/VBAT */ |
|
vbr_clk_sel |= MCHP_VBATR_CS_PCS_VTR_VBAT_SO; |
|
break; |
|
} |
|
|
|
vbr->CLK32_SRC = vbr_clk_sel; |
|
} |
|
|
|
/* two bit field in PCR VTR 32KHz source register */ |
|
enum pll_clk32k_src get_pll_32k_source(const struct device *dev) |
|
{ |
|
const struct xec_pcr_config * const devcfg = dev->config; |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
|
enum pll_clk32k_src src = PLL_CLK32K_SRC_MAX; |
|
|
|
switch (pcr->CLK32K_SRC_VTR & XEC_CC_PCR_CLK32K_SRC_MSK) { |
|
case XEC_CC_PCR_CLK32K_SRC_SIL: |
|
src = PLL_CLK32K_SRC_SO; |
|
break; |
|
case XEC_CC_PCR_CLK32K_SRC_XTAL: |
|
src = PLL_CLK32K_SRC_XTAL; |
|
break; |
|
case XEC_CC_PCR_CLK32K_SRC_PIN: |
|
src = PLL_CLK32K_SRC_PIN; |
|
break; |
|
default: |
|
src = PLL_CLK32K_SRC_MAX; |
|
break; |
|
} |
|
|
|
return src; |
|
} |
|
|
|
/* two bit field in VBAT source 32KHz register */ |
|
enum periph_clk32k_src get_periph_32k_source(const struct device *dev) |
|
{ |
|
const struct xec_pcr_config * const devcfg = dev->config; |
|
struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base; |
|
enum periph_clk32k_src src = PERIPH_CLK32K_SRC_MAX; |
|
uint32_t temp; |
|
|
|
temp = (vbr->CLK32_SRC & XEC_CC_VBATR_CS_PCS_MSK) >> XEC_CC_VBATR_CS_PCS_POS; |
|
if (temp == VBR_CLK32K_SRC_SO_SO) { |
|
src = PERIPH_CLK32K_SRC_SO_SO; |
|
} else if (temp == VBR_CLK32K_SRC_XTAL_XTAL) { |
|
src = PERIPH_CLK32K_SRC_XTAL_XTAL; |
|
} else if (temp == VBR_CLK32K_SRC_PIN_SO) { |
|
src = PERIPH_CLK32K_SRC_PIN_SO; |
|
} else { |
|
src = PERIPH_CLK32K_SRC_PIN_XTAL; |
|
} |
|
|
|
return src; |
|
} |
|
|
|
/* |
|
* MEC172x has two 32 KHz clock domains |
|
* PLL domain: 32 KHz clock input for PLL to produce 96 MHz and 48 MHz clocks |
|
* Peripheral domain: 32 KHz clock for subset of peripherals. |
|
* Each domain 32 KHz clock input can be from one of the following sources: |
|
* Internal Silicon oscillator: +/- 2% |
|
* External Crystal connected as parallel or single ended |
|
* External 32KHZ_PIN 50% duty cycle waveform with fall back to either |
|
* Silicon OSC or crystal when 32KHZ_PIN signal goes away or VTR power rail |
|
* goes off. |
|
* At chip reset the PLL is held in reset and the +/- 50% ring oscillator is |
|
* the main clock. |
|
* If no VBAT reset occurs the VBAT 32 KHz source register maintains its state. |
|
*/ |
|
static int soc_clk32_init(const struct device *dev, |
|
enum pll_clk32k_src pll_src, |
|
enum periph_clk32k_src periph_src, |
|
uint32_t flags) |
|
{ |
|
const struct xec_pcr_config * const devcfg = dev->config; |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
|
struct vbatr_hw_regs *const vbr = (struct vbatr_hw_regs *)devcfg->vbr_base; |
|
int rc = 0; |
|
|
|
/* disable PCR 32K monitor and clear counters */ |
|
pcr->CNT32K_CTRL = MCHP_PCR_CLK32M_CTRL_CLR_CNT; |
|
pcr->CLK32K_MON_ISTS = MCHP_PCR_CLK32M_ISTS_MASK; |
|
pcr->CLK32K_MON_IEN = 0; |
|
|
|
if (!is_sil_osc_enabled(vbr)) { |
|
enable_sil_osc(vbr); |
|
spin_delay(pcr, CLK32K_SIL_OSC_DELAY); |
|
} |
|
|
|
/* Default to 32KHz Silicon OSC for PLL and peripherals */ |
|
connect_pll_32k(dev, PLL_CLK32K_SRC_SO, 0); |
|
connect_periph_32k(dev, PERIPH_CLK32K_SRC_SO_SO, 0); |
|
|
|
rc = pll_wait_lock(pcr, CLK32K_PLL_LOCK_WAIT); |
|
if (rc) { |
|
LOG_ERR("XEC clock control: MEC172x lock timeout for internal 32K OSC"); |
|
return rc; |
|
} |
|
|
|
/* If crystal input required, enable and check. Single-ended 32KHz square wave |
|
* on XTAL pin is also handled here. |
|
*/ |
|
if ((pll_src == PLL_CLK32K_SRC_XTAL) || periph_clk_src_using_xtal(periph_src)) { |
|
enable_32k_crystal(dev, flags); |
|
if (!devcfg->clkmon_bypass) { |
|
rc = check_32k_crystal(dev); |
|
if (rc) { |
|
/* disable crystal */ |
|
vbr->CLK32_SRC &= ~(MCHP_VBATR_CS_XTAL_EN); |
|
LOG_ERR("XEC clock control: MEC172x XTAL check failed: %d", rc); |
|
return rc; |
|
} |
|
} |
|
} else { |
|
disable_32k_crystal(dev); |
|
} |
|
|
|
/* Do PLL first so we can use a peripheral timer still on silicon OSC */ |
|
if (pll_src != PLL_CLK32K_SRC_SO) { |
|
connect_pll_32k(dev, pll_src, flags); |
|
rc = pll_wait_lock_periph(pcr, devcfg->pll_lock_timeout_ms); |
|
} |
|
|
|
if (periph_src != PERIPH_CLK32K_SRC_SO_SO) { |
|
connect_periph_32k(dev, periph_src, flags); |
|
} |
|
|
|
/* Configuration requests disabling internal silicon OSC. */ |
|
if (devcfg->dis_internal_osc) { |
|
if ((get_pll_32k_source(dev) != PLL_CLK32K_SRC_SO) |
|
&& !periph_clk_src_using_si(get_periph_32k_source(dev))) { |
|
vbr->CLK32_SRC &= ~(XEC_CC_VBATR_CS_SO_EN); |
|
} |
|
} |
|
|
|
/* Configuration requests disabling internal silicon OSC. */ |
|
if (devcfg->dis_internal_osc) { |
|
if ((get_pll_32k_source(dev) != PLL_CLK32K_SRC_SO) |
|
&& !periph_clk_src_using_si(get_periph_32k_source(dev))) { |
|
vbr->CLK32_SRC &= ~(XEC_CC_VBATR_CS_SO_EN); |
|
} |
|
} |
|
|
|
return rc; |
|
} |
|
#endif |
|
|
|
/* |
|
* MEC172x Errata document DS80000913C |
|
* Programming the PCR clock divider that divides the clock input to the ARM |
|
* Cortex-M4 may cause a clock glitch. The recommended work-around is to |
|
* issue four NOP instruction before and after the write to the PCR processor |
|
* clock control register. The final four NOP instructions are followed by |
|
* data and instruction barriers to flush the Cortex-M4's pipeline. |
|
* NOTE: Zephyr provides inline functions for Cortex-Mx NOP but not for |
|
* data and instruction barrier instructions. Caller's should only invoke this |
|
* function with interrupts locked. |
|
*/ |
|
static void xec_clock_control_core_clock_divider_set(uint8_t clkdiv) |
|
{ |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0); |
|
|
|
arch_nop(); |
|
arch_nop(); |
|
arch_nop(); |
|
arch_nop(); |
|
pcr->PROC_CLK_CTRL = (uint32_t)clkdiv; |
|
arch_nop(); |
|
arch_nop(); |
|
arch_nop(); |
|
arch_nop(); |
|
barrier_dsync_fence_full(); |
|
barrier_isync_fence_full(); |
|
} |
|
|
|
/* |
|
* PCR peripheral sleep enable allows the clocks to a specific peripheral to |
|
* be gated off if the peripheral is not requesting a clock. |
|
* slp_idx = zero based index into 32-bit PCR sleep enable registers. |
|
* slp_pos = bit position in the register |
|
* slp_en if non-zero set the bit else clear the bit |
|
*/ |
|
int z_mchp_xec_pcr_periph_sleep(uint8_t slp_idx, uint8_t slp_pos, |
|
uint8_t slp_en) |
|
{ |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0); |
|
|
|
if ((slp_idx >= MCHP_MAX_PCR_SCR_REGS) || (slp_pos >= 32)) { |
|
return -EINVAL; |
|
} |
|
|
|
if (slp_en) { |
|
pcr->SLP_EN[slp_idx] |= BIT(slp_pos); |
|
} else { |
|
pcr->SLP_EN[slp_idx] &= ~BIT(slp_pos); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* Most peripherals have a write only reset bit in the PCR reset enable registers. |
|
* The layout of these registers is identical to the PCR sleep enable registers. |
|
* Reset enables are protected by a lock register. |
|
*/ |
|
int z_mchp_xec_pcr_periph_reset(uint8_t slp_idx, uint8_t slp_pos) |
|
{ |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0); |
|
|
|
if ((slp_idx >= MCHP_MAX_PCR_SCR_REGS) || (slp_pos >= 32)) { |
|
return -EINVAL; |
|
} |
|
|
|
uint32_t lock = irq_lock(); |
|
|
|
pcr->RST_EN_LOCK = XEC_CC_PCR_RST_EN_UNLOCK; |
|
pcr->RST_EN[slp_idx] = BIT(slp_pos); |
|
pcr->RST_EN_LOCK = XEC_CC_PCR_RST_EN_LOCK; |
|
|
|
irq_unlock(lock); |
|
|
|
return 0; |
|
} |
|
|
|
/* clock control driver API implementation */ |
|
|
|
static int xec_cc_on(const struct device *dev, |
|
clock_control_subsys_t sub_system, |
|
bool turn_on) |
|
{ |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0); |
|
struct mchp_xec_pcr_clk_ctrl *cc = (struct mchp_xec_pcr_clk_ctrl *)sub_system; |
|
uint16_t pcr_idx = 0; |
|
uint16_t bitpos = 0; |
|
|
|
if (!cc) { |
|
return -EINVAL; |
|
} |
|
|
|
switch (MCHP_XEC_CLK_SRC_GET(cc->pcr_info)) { |
|
case MCHP_XEC_PCR_CLK_CORE: |
|
case MCHP_XEC_PCR_CLK_BUS: |
|
break; |
|
case MCHP_XEC_PCR_CLK_CPU: |
|
if (cc->pcr_info & MCHP_XEC_CLK_CPU_MASK) { |
|
uint32_t lock = irq_lock(); |
|
|
|
xec_clock_control_core_clock_divider_set( |
|
cc->pcr_info & MCHP_XEC_CLK_CPU_MASK); |
|
|
|
irq_unlock(lock); |
|
} else { |
|
return -EINVAL; |
|
} |
|
break; |
|
case MCHP_XEC_PCR_CLK_PERIPH: |
|
case MCHP_XEC_PCR_CLK_PERIPH_FAST: |
|
pcr_idx = MCHP_XEC_PCR_SCR_GET_IDX(cc->pcr_info); |
|
bitpos = MCHP_XEC_PCR_SCR_GET_BITPOS(cc->pcr_info); |
|
|
|
if (pcr_idx >= MCHP_MAX_PCR_SCR_REGS) { |
|
return -EINVAL; |
|
} |
|
|
|
if (turn_on) { |
|
pcr->SLP_EN[pcr_idx] &= ~BIT(bitpos); |
|
} else { |
|
pcr->SLP_EN[pcr_idx] |= BIT(bitpos); |
|
} |
|
break; |
|
case MCHP_XEC_PCR_CLK_PERIPH_SLOW: |
|
if (turn_on) { |
|
pcr->SLOW_CLK_CTRL = |
|
cc->pcr_info & MCHP_XEC_CLK_SLOW_MASK; |
|
} else { |
|
pcr->SLOW_CLK_CTRL = 0; |
|
} |
|
break; |
|
default: |
|
return -EINVAL; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/* |
|
* Turn on requested clock source. |
|
* Core, CPU, and Bus clocks are always on except in deep sleep state. |
|
* Peripheral clocks can be gated off if the peripheral's PCR sleep enable |
|
* is set and the peripheral indicates it does not need a clock by clearing |
|
* its PCR CLOCK_REQ read-only status. |
|
* Peripheral slow clock my be turned on by writing a non-zero divider value |
|
* to its PCR control register. |
|
*/ |
|
static int xec_clock_control_on(const struct device *dev, |
|
clock_control_subsys_t sub_system) |
|
{ |
|
return xec_cc_on(dev, sub_system, true); |
|
} |
|
|
|
/* |
|
* Turn off clock source. |
|
* Core, CPU, and Bus clocks are always on except in deep sleep when PLL is |
|
* turned off. Exception is 32 KHz clock. |
|
* Peripheral clocks are gated off when the peripheral's sleep enable is set |
|
* and the peripheral indicates is no longer needs a clock by de-asserting |
|
* its read-only PCR CLOCK_REQ bit. |
|
* Peripheral slow clock can be turned off by writing 0 to its control register. |
|
*/ |
|
static inline int xec_clock_control_off(const struct device *dev, |
|
clock_control_subsys_t sub_system) |
|
{ |
|
return xec_cc_on(dev, sub_system, false); |
|
} |
|
|
|
/* MEC172x and future SoC's implement a turbo clock mode where |
|
* ARM Core, QMSPI, and PK use turbo clock. All other peripherals |
|
* use AHB clock or the slow clock. |
|
*/ |
|
static uint32_t get_turbo_clock(const struct device *dev) |
|
{ |
|
#ifdef CONFIG_SOC_SERIES_MEC15XX |
|
ARG_UNUSED(dev); |
|
|
|
return MHZ(48); |
|
#else |
|
const struct xec_pcr_config * const devcfg = dev->config; |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
|
|
|
if (pcr->TURBO_CLK & XEC_CC_PCR_TURBO_CLK_96M) { |
|
return MHZ(96); |
|
} |
|
|
|
return MHZ(48); |
|
#endif |
|
} |
|
|
|
/* |
|
* MEC172x clock subsystem: |
|
* Two main clock domains: PLL and Peripheral-32K. Each domain's 32 KHz source |
|
* can be selected from one of three inputs: |
|
* internal silicon OSC +/- 2% accuracy |
|
* external crystal connected parallel or single ended |
|
* external 32 KHz 50% duty cycle waveform on 32KHZ_IN pin. |
|
* PLL domain supplies 96 MHz, 48 MHz, and other high speed clocks to all |
|
* peripherals except those in the Peripheral-32K clock domain. The slow clock |
|
* is derived from the 48 MHz produced by the PLL. |
|
* ARM Cortex-M4 core input: 96MHz |
|
* AHB clock input: 48 MHz |
|
* Fast AHB peripherals: 96 MHz internal and 48 MHz AHB interface. |
|
* Slow clock peripherals: PWM, TACH, PROCHOT |
|
* Peripheral-32K domain peripherals: |
|
* WDT, RTC, RTOS timer, hibernation timers, week timer |
|
* |
|
* Peripherals using both PLL and 32K clock domains: |
|
* BBLED, RPMFAN |
|
*/ |
|
static int xec_clock_control_get_subsys_rate(const struct device *dev, |
|
clock_control_subsys_t sub_system, |
|
uint32_t *rate) |
|
{ |
|
const struct xec_pcr_config * const devcfg = dev->config; |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
|
uint32_t bus = (uint32_t)sub_system; |
|
uint32_t temp = 0; |
|
uint32_t ahb_clock = MHZ(48); |
|
uint32_t turbo_clock = get_turbo_clock(dev); |
|
|
|
switch (bus) { |
|
case MCHP_XEC_PCR_CLK_CORE: |
|
case MCHP_XEC_PCR_CLK_PERIPH_FAST: |
|
*rate = turbo_clock; |
|
break; |
|
case MCHP_XEC_PCR_CLK_CPU: |
|
/* if PCR PROC_CLK_CTRL is 0 the chip is not running */ |
|
*rate = turbo_clock / pcr->PROC_CLK_CTRL; |
|
break; |
|
case MCHP_XEC_PCR_CLK_BUS: |
|
case MCHP_XEC_PCR_CLK_PERIPH: |
|
*rate = ahb_clock; |
|
break; |
|
case MCHP_XEC_PCR_CLK_PERIPH_SLOW: |
|
temp = pcr->SLOW_CLK_CTRL; |
|
if (temp) { |
|
*rate = ahb_clock / temp; |
|
} else { |
|
*rate = 0; /* slow clock off */ |
|
} |
|
break; |
|
default: |
|
*rate = 0; |
|
return -EINVAL; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
#if defined(CONFIG_PM) |
|
void mchp_xec_clk_ctrl_sys_sleep_enable(bool is_deep) |
|
{ |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0); |
|
uint32_t sys_sleep_mode = MCHP_PCR_SYS_SLP_CTRL_SLP_ALL; |
|
|
|
if (is_deep) { |
|
sys_sleep_mode |= MCHP_PCR_SYS_SLP_CTRL_SLP_HEAVY; |
|
} |
|
|
|
SCB->SCR |= BIT(2); |
|
pcr->SYS_SLP_CTRL = sys_sleep_mode; |
|
} |
|
|
|
void mchp_xec_clk_ctrl_sys_sleep_disable(void) |
|
{ |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)DT_INST_REG_ADDR_BY_IDX(0, 0); |
|
pcr->SYS_SLP_CTRL = 0; |
|
SCB->SCR &= ~BIT(2); |
|
} |
|
#endif |
|
|
|
/* Clock controller driver registration */ |
|
static DEVICE_API(clock_control, xec_clock_control_api) = { |
|
.on = xec_clock_control_on, |
|
.off = xec_clock_control_off, |
|
.get_rate = xec_clock_control_get_subsys_rate, |
|
}; |
|
|
|
static int xec_clock_control_init(const struct device *dev) |
|
{ |
|
const struct xec_pcr_config * const devcfg = dev->config; |
|
struct pcr_hw_regs *const pcr = (struct pcr_hw_regs *)devcfg->pcr_base; |
|
enum pll_clk32k_src pll_clk_src = devcfg->pll_src; |
|
enum periph_clk32k_src periph_clk_src = devcfg->periph_src; |
|
uint32_t clk_flags = 0U; |
|
int rc = 0; |
|
|
|
if (devcfg->xtal_se) { |
|
clk_flags |= CLK32K_FLAG_CRYSTAL_SE; |
|
} |
|
|
|
pcr_slp_init(pcr); |
|
|
|
rc = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT); |
|
if ((pll_clk_src == PLL_CLK32K_SRC_PIN) || periph_clk_src_using_pin(periph_clk_src)) { |
|
if (rc) { |
|
LOG_ERR("XEC clock control: PINCTRL apply error %d", rc); |
|
pll_clk_src = PLL_CLK32K_SRC_SO; |
|
periph_clk_src = PERIPH_CLK32K_SRC_SO_SO; |
|
clk_flags = 0U; |
|
} |
|
} |
|
|
|
/* sleep used as debug */ |
|
rc = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP); |
|
if ((rc != 0) && (rc != -ENOENT)) { |
|
LOG_ERR("XEC clock control: PINCTRL debug apply error %d", rc); |
|
} |
|
|
|
rc = soc_clk32_init(dev, pll_clk_src, periph_clk_src, clk_flags); |
|
if (rc) { |
|
LOG_ERR("XEC clock control: init error %d", rc); |
|
} |
|
|
|
xec_clock_control_core_clock_divider_set(devcfg->core_clk_div); |
|
|
|
return rc; |
|
} |
|
|
|
#define XEC_PLL_32K_SRC(i) \ |
|
(enum pll_clk32k_src)DT_INST_PROP_OR(i, pll_32k_src, PLL_CLK32K_SRC_SO) |
|
|
|
#define XEC_PERIPH_32K_SRC(i) \ |
|
(enum periph_clk32k_src)DT_INST_PROP_OR(0, periph_32k_src, PERIPH_CLK32K_SRC_SO_SO) |
|
|
|
PINCTRL_DT_INST_DEFINE(0); |
|
|
|
const struct xec_pcr_config pcr_xec_config = { |
|
.pcr_base = DT_INST_REG_ADDR_BY_IDX(0, 0), |
|
.vbr_base = DT_INST_REG_ADDR_BY_IDX(0, 1), |
|
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0), |
|
.xtal_enable_delay_ms = |
|
(uint16_t)DT_INST_PROP_OR(0, xtal_enable_delay_ms, XEC_CC_XTAL_EN_DELAY_MS_DFLT), |
|
.pll_lock_timeout_ms = |
|
(uint16_t)DT_INST_PROP_OR(0, pll_lock_timeout_ms, XEC_CC_DFLT_PLL_LOCK_WAIT_MS), |
|
.period_min = (uint16_t)DT_INST_PROP_OR(0, clk32kmon_period_min, CNT32K_TMIN), |
|
.period_max = (uint16_t)DT_INST_PROP_OR(0, clk32kmon_period_max, CNT32K_TMAX), |
|
.core_clk_div = (uint8_t)DT_INST_PROP_OR(0, core_clk_div, CONFIG_SOC_MEC_PROC_CLK_DIV), |
|
.xtal_se = (uint8_t)DT_INST_PROP_OR(0, xtal_single_ended, 0), |
|
.max_dc_va = (uint8_t)DT_INST_PROP_OR(0, clk32kmon_duty_cycle_var_max, CNT32K_DUTY_MAX), |
|
.min_valid = (uint8_t)DT_INST_PROP_OR(0, clk32kmon_valid_min, CNT32K_VAL_MIN), |
|
.pll_src = XEC_PLL_32K_SRC(0), |
|
.periph_src = XEC_PERIPH_32K_SRC(0), |
|
.clkmon_bypass = (uint8_t)DT_INST_PROP_OR(0, clkmon_bypass, 0), |
|
.dis_internal_osc = (uint8_t)DT_INST_PROP_OR(0, internal_osc_disable, 0), |
|
}; |
|
|
|
DEVICE_DT_INST_DEFINE(0, |
|
xec_clock_control_init, |
|
NULL, |
|
NULL, &pcr_xec_config, |
|
PRE_KERNEL_1, |
|
CONFIG_CLOCK_CONTROL_INIT_PRIORITY, |
|
&xec_clock_control_api);
|
|
|