Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

762 lines
20 KiB

/*
* Copyright (c) 2021 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/audio/dmic.h>
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#include <soc.h>
#include <dmm.h>
#include <nrfx_pdm.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(dmic_nrfx_pdm, CONFIG_AUDIO_DMIC_LOG_LEVEL);
#if CONFIG_SOC_SERIES_NRF54HX
#define DMIC_NRFX_CLOCK_FREQ MHZ(16)
#define DMIC_NRFX_CLOCK_FACTOR 8192
#define DMIC_NRFX_AUDIO_CLOCK_FREQ DT_PROP_OR(DT_NODELABEL(audiopll), frequency, 0)
#else
#define DMIC_NRFX_CLOCK_FREQ MHZ(32)
#define DMIC_NRFX_CLOCK_FACTOR 4096
#define DMIC_NRFX_AUDIO_CLOCK_FREQ DT_PROP_OR(DT_NODELABEL(aclk), clock_frequency, \
DT_PROP_OR(DT_NODELABEL(clock), hfclkaudio_frequency, 0))
#endif
struct dmic_nrfx_pdm_drv_data {
const nrfx_pdm_t *pdm;
#if CONFIG_CLOCK_CONTROL_NRF
struct onoff_manager *clk_mgr;
#elif CONFIG_CLOCK_CONTROL_NRFS_AUDIOPLL
const struct device *audiopll_dev;
#endif
struct onoff_client clk_cli;
struct k_mem_slab *mem_slab;
uint32_t block_size;
struct k_msgq mem_slab_queue;
struct k_msgq rx_queue;
bool request_clock : 1;
bool configured : 1;
volatile bool active;
volatile bool stopping;
};
struct dmic_nrfx_pdm_drv_cfg {
nrfx_pdm_event_handler_t event_handler;
nrfx_pdm_config_t nrfx_def_cfg;
const struct pinctrl_dev_config *pcfg;
enum clock_source {
PCLK32M,
PCLK32M_HFXO,
ACLK
} clk_src;
void *mem_reg;
};
static void free_buffer(struct dmic_nrfx_pdm_drv_data *drv_data, void *buffer)
{
k_mem_slab_free(drv_data->mem_slab, buffer);
LOG_DBG("Freed buffer %p", buffer);
}
static void stop_pdm(struct dmic_nrfx_pdm_drv_data *drv_data)
{
drv_data->stopping = true;
nrfx_pdm_stop(drv_data->pdm);
}
static int request_clock(struct dmic_nrfx_pdm_drv_data *drv_data)
{
if (!drv_data->request_clock) {
return 0;
}
#if CONFIG_CLOCK_CONTROL_NRF
return onoff_request(drv_data->clk_mgr, &drv_data->clk_cli);
#elif CONFIG_CLOCK_CONTROL_NRFS_AUDIOPLL
return nrf_clock_control_request(drv_data->audiopll_dev, NULL, &drv_data->clk_cli);
#else
return -ENOTSUP;
#endif
}
static int release_clock(struct dmic_nrfx_pdm_drv_data *drv_data)
{
if (!drv_data->request_clock) {
return 0;
}
#if CONFIG_CLOCK_CONTROL_NRF
return onoff_release(drv_data->clk_mgr);
#elif CONFIG_CLOCK_CONTROL_NRFS_AUDIOPLL
return nrf_clock_control_release(drv_data->audiopll_dev, NULL);
#else
return -ENOTSUP;
#endif
}
static void event_handler(const struct device *dev, const nrfx_pdm_evt_t *evt)
{
struct dmic_nrfx_pdm_drv_data *drv_data = dev->data;
const struct dmic_nrfx_pdm_drv_cfg *drv_cfg = dev->config;
int ret;
bool stop = false;
void *mem_slab_buffer;
if (evt->buffer_requested) {
void *buffer;
nrfx_err_t err;
ret = k_mem_slab_alloc(drv_data->mem_slab, &mem_slab_buffer, K_NO_WAIT);
if (ret < 0) {
LOG_ERR("Failed to allocate buffer: %d", ret);
stop = true;
} else {
ret = dmm_buffer_in_prepare(drv_cfg->mem_reg, mem_slab_buffer,
drv_data->block_size, &buffer);
if (ret < 0) {
LOG_ERR("Failed to prepare buffer: %d", ret);
free_buffer(drv_data, mem_slab_buffer);
stop_pdm(drv_data);
return;
}
ret = k_msgq_put(&drv_data->mem_slab_queue, &mem_slab_buffer, K_NO_WAIT);
if (ret < 0) {
LOG_ERR("Unable to put mem slab in queue");
free_buffer(drv_data, mem_slab_buffer);
stop_pdm(drv_data);
return;
}
err = nrfx_pdm_buffer_set(drv_data->pdm, buffer, drv_data->block_size / 2);
if (err != NRFX_SUCCESS) {
LOG_ERR("Failed to set buffer: 0x%08x", err);
stop = true;
}
}
}
if (drv_data->stopping) {
if (evt->buffer_released) {
ret = k_msgq_get(&drv_data->mem_slab_queue, &mem_slab_buffer, K_NO_WAIT);
if (ret < 0) {
LOG_ERR("No buffers to free");
return;
}
ret = dmm_buffer_in_release(drv_cfg->mem_reg, mem_slab_buffer,
drv_data->block_size, evt->buffer_released);
if (ret < 0) {
LOG_ERR("Failed to release buffer: %d", ret);
free_buffer(drv_data, mem_slab_buffer);
return;
}
free_buffer(drv_data, mem_slab_buffer);
}
if (drv_data->active) {
drv_data->active = false;
ret = release_clock(drv_data);
if (ret < 0) {
LOG_ERR("Failed to release clock: %d", ret);
return;
}
}
} else if (evt->buffer_released) {
ret = k_msgq_get(&drv_data->mem_slab_queue, &mem_slab_buffer, K_NO_WAIT);
if (ret < 0) {
LOG_ERR("No buffers to free");
stop_pdm(drv_data);
return;
}
ret = dmm_buffer_in_release(drv_cfg->mem_reg, mem_slab_buffer,
drv_data->block_size, evt->buffer_released);
if (ret < 0) {
LOG_ERR("Failed to release buffer: %d", ret);
free_buffer(drv_data, mem_slab_buffer);
stop_pdm(drv_data);
return;
}
ret = k_msgq_put(&drv_data->rx_queue,
&mem_slab_buffer,
K_NO_WAIT);
if (ret < 0) {
LOG_ERR("No room in RX queue");
stop = true;
free_buffer(drv_data, mem_slab_buffer);
} else {
LOG_DBG("Queued buffer %p", evt->buffer_released);
}
}
if (stop) {
stop_pdm(drv_data);
}
}
static bool is_in_freq_range(uint32_t freq, const struct dmic_cfg *pdm_cfg)
{
return freq >= pdm_cfg->io.min_pdm_clk_freq && freq <= pdm_cfg->io.max_pdm_clk_freq;
}
static bool is_better(uint32_t freq,
uint8_t ratio,
uint32_t req_rate,
uint32_t *best_diff,
uint32_t *best_rate,
uint32_t *best_freq)
{
uint32_t act_rate = freq / ratio;
uint32_t diff = act_rate >= req_rate ? (act_rate - req_rate)
: (req_rate - act_rate);
LOG_DBG("Freq %u, ratio %u, act_rate %u", freq, ratio, act_rate);
if (diff < *best_diff) {
*best_diff = diff;
*best_rate = act_rate;
*best_freq = freq;
return true;
}
return false;
}
static bool check_pdm_frequencies(const struct dmic_nrfx_pdm_drv_cfg *drv_cfg,
nrfx_pdm_config_t *config,
const struct dmic_cfg *pdm_cfg,
uint8_t ratio,
uint32_t *best_diff,
uint32_t *best_rate,
uint32_t *best_freq)
{
uint32_t req_rate = pdm_cfg->streams[0].pcm_rate;
bool better_found = false;
const uint32_t src_freq =
(NRF_PDM_HAS_SELECTABLE_CLOCK && drv_cfg->clk_src == ACLK)
? DMIC_NRFX_AUDIO_CLOCK_FREQ
: DMIC_NRFX_CLOCK_FREQ;
#if NRF_PDM_HAS_PRESCALER
uint32_t req_freq = req_rate * ratio;
uint32_t prescaler = src_freq / req_freq;
uint32_t act_freq = src_freq / prescaler;
if (is_in_freq_range(act_freq, pdm_cfg) &&
is_better(act_freq, ratio, req_rate, best_diff, best_rate, best_freq)) {
config->prescaler = prescaler;
better_found = true;
}
/* Stop if an exact rate match is found. */
if (*best_diff == 0) {
return true;
}
/* Prescaler value is rounded down by default,
* thus value rounded up should be checked as well.
*/
prescaler += 1;
act_freq = src_freq / prescaler;
if (is_in_freq_range(act_freq, pdm_cfg) &&
is_better(act_freq, ratio, req_rate, best_diff, best_rate, best_freq)) {
config->prescaler = prescaler;
better_found = true;
}
#else
if (IS_ENABLED(CONFIG_SOC_SERIES_NRF53X) || IS_ENABLED(CONFIG_SOC_SERIES_NRF54HX)) {
uint32_t req_freq = req_rate * ratio;
/* As specified in the nRF5340 PS:
*
* PDMCLKCTRL = 4096 * floor(f_pdm * 1048576 /
* (f_source + f_pdm / 2))
* f_actual = f_source / floor(1048576 * 4096 / PDMCLKCTRL)
*/
uint32_t clk_factor = (uint32_t)((req_freq * 1048576ULL) /
(src_freq + req_freq / 2));
uint32_t act_freq = src_freq / (1048576 / clk_factor);
if (is_in_freq_range(act_freq, pdm_cfg) &&
is_better(act_freq, ratio, req_rate, best_diff, best_rate, best_freq)) {
config->clock_freq = clk_factor * DMIC_NRFX_CLOCK_FACTOR;
better_found = true;
}
} else { /* -> !IS_ENABLED(CONFIG_SOC_SERIES_NRF53X)) */
static const struct {
uint32_t freq_val;
nrf_pdm_freq_t freq_enum;
} freqs[] = {
{ 1000000, NRF_PDM_FREQ_1000K },
{ 1032000, NRF_PDM_FREQ_1032K },
{ 1067000, NRF_PDM_FREQ_1067K },
#if defined(PDM_PDMCLKCTRL_FREQ_1231K)
{ 1231000, NRF_PDM_FREQ_1231K },
#endif
#if defined(PDM_PDMCLKCTRL_FREQ_1280K)
{ 1280000, NRF_PDM_FREQ_1280K },
#endif
#if defined(PDM_PDMCLKCTRL_FREQ_1333K)
{ 1333000, NRF_PDM_FREQ_1333K }
#endif
};
for (int i = 0; i < ARRAY_SIZE(freqs); ++i) {
uint32_t freq_val = freqs[i].freq_val;
if (freq_val < pdm_cfg->io.min_pdm_clk_freq) {
continue;
}
if (freq_val > pdm_cfg->io.max_pdm_clk_freq) {
break;
}
if (is_better(freq_val, ratio, req_rate,
best_diff, best_rate, best_freq)) {
config->clock_freq = freqs[i].freq_enum;
/* Stop if an exact rate match is found. */
if (*best_diff == 0) {
return true;
}
better_found = true;
}
/* Since frequencies are in ascending order, stop
* checking next ones for the current ratio after
* resulting PCM rate goes above the one requested.
*/
if ((freq_val / ratio) > req_rate) {
break;
}
}
}
#endif /* NRF_PDM_HAS_PRESCALER */
return better_found;
}
/* Finds clock settings that give the PCM output rate closest to that requested,
* taking into account the hardware limitations.
*/
static bool find_suitable_clock(const struct dmic_nrfx_pdm_drv_cfg *drv_cfg,
nrfx_pdm_config_t *config,
const struct dmic_cfg *pdm_cfg)
{
uint32_t best_diff = UINT32_MAX;
uint32_t best_rate;
uint32_t best_freq;
#if NRF_PDM_HAS_RATIO_CONFIG
static const struct {
uint8_t ratio_val;
nrf_pdm_ratio_t ratio_enum;
} ratios[] = {
#if defined(PDM_RATIO_RATIO_Ratio32)
{ 32, NRF_PDM_RATIO_32X },
#endif
#if defined(PDM_RATIO_RATIO_Ratio48)
{ 48, NRF_PDM_RATIO_48X },
#endif
#if defined(PDM_RATIO_RATIO_Ratio50)
{ 50, NRF_PDM_RATIO_50X },
#endif
{ 64, NRF_PDM_RATIO_64X },
{ 80, NRF_PDM_RATIO_80X },
#if defined(PDM_RATIO_RATIO_Ratio96)
{ 96, NRF_PDM_RATIO_96X },
#endif
#if defined(PDM_RATIO_RATIO_Ratio100)
{ 100, NRF_PDM_RATIO_100X },
#endif
#if defined(PDM_RATIO_RATIO_Ratio128)
{ 128, NRF_PDM_RATIO_128X }
#endif
};
for (int r = 0; best_diff != 0 && r < ARRAY_SIZE(ratios); ++r) {
uint8_t ratio = ratios[r].ratio_val;
if (check_pdm_frequencies(drv_cfg, config, pdm_cfg, ratio,
&best_diff, &best_rate, &best_freq)) {
config->ratio = ratios[r].ratio_enum;
/* Look no further if a configuration giving the exact
* PCM rate is found.
*/
if (best_diff == 0) {
break;
}
}
}
#else
uint8_t ratio = 64;
(void)check_pdm_frequencies(drv_cfg, config, pdm_cfg, ratio,
&best_diff, &best_rate, &best_freq);
#endif
if (best_diff == UINT32_MAX) {
return false;
}
LOG_INF("PDM clock frequency: %u, actual PCM rate: %u",
best_freq, best_rate);
return true;
}
static int dmic_nrfx_pdm_configure(const struct device *dev,
struct dmic_cfg *config)
{
struct dmic_nrfx_pdm_drv_data *drv_data = dev->data;
const struct dmic_nrfx_pdm_drv_cfg *drv_cfg = dev->config;
struct pdm_chan_cfg *channel = &config->channel;
struct pcm_stream_cfg *stream = &config->streams[0];
uint32_t def_map, alt_map;
nrfx_pdm_config_t nrfx_cfg;
nrfx_err_t err;
if (drv_data->active) {
LOG_ERR("Cannot configure device while it is active");
return -EBUSY;
}
/*
* This device supports only one stream and can be configured to return
* 16-bit samples for two channels (Left+Right samples) or one channel
* (only Left samples). Left and Right samples can be optionally swapped
* by changing the PDM_CLK edge on which the sampling is done
* Provide the valid channel maps for both the above configurations
* (to inform the requester what is available) and check if what is
* requested can be actually configured.
*/
if (channel->req_num_chan == 1) {
def_map = dmic_build_channel_map(0, 0, PDM_CHAN_LEFT);
alt_map = dmic_build_channel_map(0, 0, PDM_CHAN_RIGHT);
channel->act_num_chan = 1;
} else {
def_map = dmic_build_channel_map(0, 0, PDM_CHAN_LEFT)
| dmic_build_channel_map(1, 0, PDM_CHAN_RIGHT);
alt_map = dmic_build_channel_map(0, 0, PDM_CHAN_RIGHT)
| dmic_build_channel_map(1, 0, PDM_CHAN_LEFT);
channel->act_num_chan = 2;
}
channel->act_num_streams = 1;
channel->act_chan_map_hi = 0;
if (channel->req_num_streams != 1 ||
channel->req_num_chan > 2 ||
channel->req_num_chan < 1 ||
(channel->req_chan_map_lo != def_map &&
channel->req_chan_map_lo != alt_map) ||
channel->req_chan_map_hi != channel->act_chan_map_hi) {
LOG_ERR("Requested configuration is not supported");
return -EINVAL;
}
/* If either rate or width is 0, the stream is to be disabled. */
if (stream->pcm_rate == 0 || stream->pcm_width == 0) {
if (drv_data->configured) {
nrfx_pdm_uninit(drv_data->pdm);
drv_data->configured = false;
}
return 0;
}
if (stream->pcm_width != 16) {
LOG_ERR("Only 16-bit samples are supported");
return -EINVAL;
}
nrfx_cfg = drv_cfg->nrfx_def_cfg;
nrfx_cfg.mode = channel->req_num_chan == 1
? NRF_PDM_MODE_MONO
: NRF_PDM_MODE_STEREO;
if (channel->req_chan_map_lo == def_map) {
nrfx_cfg.edge = NRF_PDM_EDGE_LEFTFALLING;
channel->act_chan_map_lo = def_map;
} else {
nrfx_cfg.edge = NRF_PDM_EDGE_LEFTRISING;
channel->act_chan_map_lo = alt_map;
}
#if NRF_PDM_HAS_SELECTABLE_CLOCK
nrfx_cfg.mclksrc = drv_cfg->clk_src == ACLK
? NRF_PDM_MCLKSRC_ACLK
: NRF_PDM_MCLKSRC_PCLK32M;
#endif
if (!find_suitable_clock(drv_cfg, &nrfx_cfg, config)) {
LOG_ERR("Cannot find suitable PDM clock configuration.");
return -EINVAL;
}
if (drv_data->configured) {
nrfx_pdm_uninit(drv_data->pdm);
drv_data->configured = false;
}
err = nrfx_pdm_init(drv_data->pdm, &nrfx_cfg, drv_cfg->event_handler);
if (err != NRFX_SUCCESS) {
LOG_ERR("Failed to initialize PDM: 0x%08x", err);
return -EIO;
}
drv_data->block_size = stream->block_size;
drv_data->mem_slab = stream->mem_slab;
/* Unless the PCLK32M source is used with the HFINT oscillator
* (which is always available without any additional actions),
* it is required to request the proper clock to be running
* before starting the transfer itself.
* Targets using CLKSELECT register to select clock source
* do not need to request audio clock.
*/
drv_data->request_clock = (drv_cfg->clk_src != PCLK32M && !NRF_PDM_HAS_CLKSELECT);
drv_data->configured = true;
return 0;
}
static int start_transfer(struct dmic_nrfx_pdm_drv_data *drv_data)
{
nrfx_err_t err;
int ret;
err = nrfx_pdm_start(drv_data->pdm);
if (err == NRFX_SUCCESS) {
return 0;
}
LOG_ERR("Failed to start PDM: 0x%08x", err);
ret = -EIO;
ret = release_clock(drv_data);
if (ret < 0) {
LOG_ERR("Failed to release clock: %d", ret);
return ret;
}
drv_data->active = false;
return ret;
}
static void clock_started_callback(struct onoff_manager *mgr,
struct onoff_client *cli,
uint32_t state,
int res)
{
struct dmic_nrfx_pdm_drv_data *drv_data =
CONTAINER_OF(cli, struct dmic_nrfx_pdm_drv_data, clk_cli);
/* The driver can turn out to be inactive at this point if the STOP
* command was triggered before the clock has started. Do not start
* the actual transfer in such case.
*/
if (!drv_data->active) {
int ret = release_clock(drv_data);
if (ret < 0) {
LOG_ERR("Failed to release clock: %d", ret);
return;
}
} else {
(void)start_transfer(drv_data);
}
}
static int trigger_start(const struct device *dev)
{
struct dmic_nrfx_pdm_drv_data *drv_data = dev->data;
int ret;
drv_data->active = true;
/* If it is required to use certain HF clock, request it to be running
* first. If not, start the transfer directly.
*/
if (drv_data->request_clock) {
sys_notify_init_callback(&drv_data->clk_cli.notify,
clock_started_callback);
ret = request_clock(drv_data);
if (ret < 0) {
drv_data->active = false;
LOG_ERR("Failed to request clock: %d", ret);
return -EIO;
}
} else {
ret = start_transfer(drv_data);
if (ret < 0) {
return ret;
}
}
return 0;
}
static int dmic_nrfx_pdm_trigger(const struct device *dev,
enum dmic_trigger cmd)
{
struct dmic_nrfx_pdm_drv_data *drv_data = dev->data;
switch (cmd) {
case DMIC_TRIGGER_PAUSE:
case DMIC_TRIGGER_STOP:
if (drv_data->active) {
drv_data->stopping = true;
nrfx_pdm_stop(drv_data->pdm);
}
break;
case DMIC_TRIGGER_RELEASE:
case DMIC_TRIGGER_START:
if (!drv_data->configured) {
LOG_ERR("Device is not configured");
return -EIO;
} else if (!drv_data->active) {
drv_data->stopping = false;
return trigger_start(dev);
}
break;
default:
LOG_ERR("Invalid command: %d", cmd);
return -EINVAL;
}
return 0;
}
static int dmic_nrfx_pdm_read(const struct device *dev,
uint8_t stream,
void **buffer, size_t *size, int32_t timeout)
{
struct dmic_nrfx_pdm_drv_data *drv_data = dev->data;
int ret;
ARG_UNUSED(stream);
if (!drv_data->configured) {
LOG_ERR("Device is not configured");
return -EIO;
}
ret = k_msgq_get(&drv_data->rx_queue, buffer, SYS_TIMEOUT_MS(timeout));
if (ret != 0) {
LOG_DBG("No audio data to be read");
} else {
LOG_DBG("Released buffer %p", *buffer);
*size = drv_data->block_size;
}
return ret;
}
static void init_clock_manager(const struct device *dev)
{
#if CONFIG_CLOCK_CONTROL_NRF
clock_control_subsys_t subsys;
struct dmic_nrfx_pdm_drv_data *drv_data = dev->data;
#if NRF_CLOCK_HAS_HFCLKAUDIO
const struct dmic_nrfx_pdm_drv_cfg *drv_cfg = dev->config;
if (drv_cfg->clk_src == ACLK) {
subsys = CLOCK_CONTROL_NRF_SUBSYS_HFAUDIO;
} else
#endif
{
subsys = CLOCK_CONTROL_NRF_SUBSYS_HF;
}
drv_data->clk_mgr = z_nrf_clock_control_get_onoff(subsys);
__ASSERT_NO_MSG(drv_data->clk_mgr != NULL);
#elif CONFIG_CLOCK_CONTROL_NRFS_AUDIOPLL
struct dmic_nrfx_pdm_drv_data *drv_data = dev->data;
drv_data->audiopll_dev = DEVICE_DT_GET(DT_NODELABEL(audiopll));
#endif
}
static const struct _dmic_ops dmic_ops = {
.configure = dmic_nrfx_pdm_configure,
.trigger = dmic_nrfx_pdm_trigger,
.read = dmic_nrfx_pdm_read,
};
#define PDM(idx) DT_NODELABEL(pdm##idx)
#define PDM_CLK_SRC(idx) DT_STRING_TOKEN(PDM(idx), clock_source)
#define PDM_NRFX_DEVICE(idx) \
static void *rx_msgs##idx[DT_PROP(PDM(idx), queue_size)]; \
static void *mem_slab_msgs##idx[DT_PROP(PDM(idx), queue_size)]; \
static struct dmic_nrfx_pdm_drv_data dmic_nrfx_pdm_data##idx; \
static const nrfx_pdm_t dmic_nrfx_pdm##idx = NRFX_PDM_INSTANCE(idx); \
static int pdm_nrfx_init##idx(const struct device *dev) \
{ \
IRQ_CONNECT(DT_IRQN(PDM(idx)), DT_IRQ(PDM(idx), priority), \
nrfx_isr, nrfx_pdm_##idx##_irq_handler, 0); \
const struct dmic_nrfx_pdm_drv_cfg *drv_cfg = dev->config; \
int err = pinctrl_apply_state(drv_cfg->pcfg, \
PINCTRL_STATE_DEFAULT); \
if (err < 0) { \
return err; \
} \
dmic_nrfx_pdm_data##idx.pdm = &dmic_nrfx_pdm##idx; \
k_msgq_init(&dmic_nrfx_pdm_data##idx.rx_queue, \
(char *)rx_msgs##idx, sizeof(void *), \
ARRAY_SIZE(rx_msgs##idx)); \
k_msgq_init(&dmic_nrfx_pdm_data##idx.mem_slab_queue, \
(char *)mem_slab_msgs##idx, sizeof(void *), \
ARRAY_SIZE(mem_slab_msgs##idx)); \
init_clock_manager(dev); \
return 0; \
} \
static void event_handler##idx(const nrfx_pdm_evt_t *evt) \
{ \
event_handler(DEVICE_DT_GET(PDM(idx)), evt); \
} \
PINCTRL_DT_DEFINE(PDM(idx)); \
static const struct dmic_nrfx_pdm_drv_cfg dmic_nrfx_pdm_cfg##idx = { \
.event_handler = event_handler##idx, \
.nrfx_def_cfg = NRFX_PDM_DEFAULT_CONFIG(0, 0), \
.nrfx_def_cfg.skip_gpio_cfg = true, \
.nrfx_def_cfg.skip_psel_cfg = true, \
.pcfg = PINCTRL_DT_DEV_CONFIG_GET(PDM(idx)), \
.clk_src = PDM_CLK_SRC(idx), \
.mem_reg = DMM_DEV_TO_REG(PDM(idx)), \
}; \
BUILD_ASSERT(PDM_CLK_SRC(idx) != ACLK || \
NRF_PDM_HAS_SELECTABLE_CLOCK, \
"Clock source ACLK is not available."); \
BUILD_ASSERT(PDM_CLK_SRC(idx) != ACLK || \
DT_NODE_HAS_PROP(DT_NODELABEL(clock), \
hfclkaudio_frequency) || \
DT_NODE_HAS_PROP(DT_NODELABEL(aclk), \
clock_frequency) || \
DT_NODE_HAS_PROP(DT_NODELABEL(audiopll), \
frequency), \
"Clock source ACLK requires the hfclkaudio-frequency " \
"property to be defined in the nordic,nrf-clock node " \
"or clock-frequency property to be defined in aclk node" \
"or frequency property to be defined in audiopll node"); \
DEVICE_DT_DEFINE(PDM(idx), pdm_nrfx_init##idx, NULL, \
&dmic_nrfx_pdm_data##idx, &dmic_nrfx_pdm_cfg##idx, \
POST_KERNEL, CONFIG_AUDIO_DMIC_INIT_PRIORITY, \
&dmic_ops);
#ifdef CONFIG_HAS_HW_NRF_PDM0
PDM_NRFX_DEVICE(0);
#endif
#ifdef CONFIG_HAS_HW_NRF_PDM20
PDM_NRFX_DEVICE(20);
#endif
#ifdef CONFIG_HAS_HW_NRF_PDM21
PDM_NRFX_DEVICE(21);
#endif