Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

715 lines
20 KiB

/*
* Copyright (c) 2018 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#include <nrfx_saadc.h>
#include <zephyr/dt-bindings/adc/nrf-saadc-v3.h>
#include <zephyr/dt-bindings/adc/nrf-saadc-nrf54l.h>
#include <zephyr/dt-bindings/adc/nrf-saadc-haltium.h>
#include <zephyr/linker/devicetree_regions.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(adc_nrfx_saadc, CONFIG_ADC_LOG_LEVEL);
#define DT_DRV_COMPAT nordic_nrf_saadc
#if (NRF_SAADC_HAS_AIN_AS_PIN)
#if defined(CONFIG_NRF_PLATFORM_HALTIUM)
static const uint32_t saadc_psels[NRF_SAADC_AIN13 + 1] = {
[NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1),
[NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 1),
[NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 1),
[NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1),
[NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1),
[NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1),
[NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1),
[NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1),
[NRF_SAADC_AIN8] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 9),
[NRF_SAADC_AIN9] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 9),
[NRF_SAADC_AIN10] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 9),
[NRF_SAADC_AIN11] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 9),
[NRF_SAADC_AIN12] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 9),
[NRF_SAADC_AIN13] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 9),
};
#elif defined(CONFIG_SOC_NRF54L05) || defined(CONFIG_SOC_NRF54L10) || defined(CONFIG_SOC_NRF54L15)
static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = {
[NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1),
[NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1),
[NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1),
[NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1),
[NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(11U, 1),
[NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(12U, 1),
[NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(13U, 1),
[NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(14U, 1),
[NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD,
[NRF_SAADC_AVDD] = NRF_SAADC_INPUT_AVDD,
[NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD,
};
#elif defined(NRF54LM20A_ENGA_XXAA)
static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = {
[NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1),
[NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(31U, 1),
[NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(30U, 1),
[NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(29U, 1),
[NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1),
[NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1),
[NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1),
[NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1),
[NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD,
[NRF_SAADC_AVDD] = NRF_SAADC_INPUT_AVDD,
[NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD,
};
#elif defined(NRF54LV10A_ENGA_XXAA)
static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = {
[NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1),
[NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 1),
[NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 1),
[NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1),
[NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1),
[NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(10U, 1),
[NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(11U, 1),
[NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(12U, 1),
[NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD,
[NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD,
};
#endif
#else
BUILD_ASSERT((NRF_SAADC_AIN0 == NRF_SAADC_INPUT_AIN0) &&
(NRF_SAADC_AIN1 == NRF_SAADC_INPUT_AIN1) &&
(NRF_SAADC_AIN2 == NRF_SAADC_INPUT_AIN2) &&
(NRF_SAADC_AIN3 == NRF_SAADC_INPUT_AIN3) &&
(NRF_SAADC_AIN4 == NRF_SAADC_INPUT_AIN4) &&
(NRF_SAADC_AIN5 == NRF_SAADC_INPUT_AIN5) &&
(NRF_SAADC_AIN6 == NRF_SAADC_INPUT_AIN6) &&
(NRF_SAADC_AIN7 == NRF_SAADC_INPUT_AIN7) &&
#if defined(SAADC_CH_PSELP_PSELP_VDDHDIV5)
(NRF_SAADC_VDDHDIV5 == NRF_SAADC_INPUT_VDDHDIV5) &&
#endif
#if defined(SAADC_CH_PSELP_PSELP_VDD)
(NRF_SAADC_VDD == NRF_SAADC_INPUT_VDD) &&
#endif
1,
"Definitions from nrf-adc.h do not match those from nrf_saadc.h");
#endif
#if defined(CONFIG_NRF_PLATFORM_HALTIUM)
#include <dmm.h>
/* Haltium devices always use bounce buffers in RAM */
static uint16_t adc_samples_buffer[SAADC_CH_NUM] DMM_MEMORY_SECTION(DT_NODELABEL(adc));
#define ADC_BUFFER_IN_RAM
#endif /* defined(CONFIG_NRF_PLATFORM_HALTIUM) */
struct driver_data {
struct adc_context ctx;
uint8_t single_ended_channels;
nrf_saadc_value_t *buffer; /* Pointer to the buffer with converted samples. */
uint8_t active_channel_cnt;
#if defined(ADC_BUFFER_IN_RAM)
void *samples_buffer;
void *user_buffer;
#endif
};
static struct driver_data m_data = {
ADC_CONTEXT_INIT_TIMER(m_data, ctx),
ADC_CONTEXT_INIT_LOCK(m_data, ctx),
ADC_CONTEXT_INIT_SYNC(m_data, ctx),
#if defined(ADC_BUFFER_IN_RAM)
.samples_buffer = adc_samples_buffer,
#endif
};
/* Forward declaration */
static void event_handler(const nrfx_saadc_evt_t *event);
/* Helper function to convert acquisition time to register TACQ value. */
static int acq_time_set(nrf_saadc_channel_config_t *ch_cfg, uint16_t acquisition_time)
{
#if NRF_SAADC_HAS_ACQTIME_ENUM
switch (acquisition_time) {
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 3):
ch_cfg->acq_time = NRF_SAADC_ACQTIME_3US;
break;
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 5):
ch_cfg->acq_time = NRF_SAADC_ACQTIME_5US;
break;
case ADC_ACQ_TIME_DEFAULT:
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 10):
ch_cfg->acq_time = NRF_SAADC_ACQTIME_10US;
break;
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 15):
ch_cfg->acq_time = NRF_SAADC_ACQTIME_15US;
break;
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 20):
ch_cfg->acq_time = NRF_SAADC_ACQTIME_20US;
break;
case ADC_ACQ_TIME_MAX:
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 40):
ch_cfg->acq_time = NRF_SAADC_ACQTIME_40US;
break;
default:
LOG_ERR("Selected ADC acquisition time is not valid");
return -EINVAL;
}
#else
#define MINIMUM_ACQ_TIME_IN_NS 125
#define DEFAULT_ACQ_TIME_IN_NS 10000
nrf_saadc_acqtime_t tacq = 0;
uint16_t acq_time =
(acquisition_time == ADC_ACQ_TIME_DEFAULT
? DEFAULT_ACQ_TIME_IN_NS
: (ADC_ACQ_TIME_VALUE(acquisition_time) *
(ADC_ACQ_TIME_UNIT(acquisition_time) == ADC_ACQ_TIME_MICROSECONDS
? 1000
: 1)));
tacq = (nrf_saadc_acqtime_t)(acq_time / MINIMUM_ACQ_TIME_IN_NS) - 1;
if ((tacq > NRF_SAADC_ACQTIME_MAX) || (acq_time < MINIMUM_ACQ_TIME_IN_NS)) {
LOG_ERR("Selected ADC acquisition time is not valid");
return -EINVAL;
} else {
ch_cfg->acq_time = tacq;
}
#endif
LOG_DBG("ADC acquisition_time: %d", acquisition_time);
return 0;
}
static int input_assign(nrf_saadc_input_t *pin_p,
nrf_saadc_input_t *pin_n,
const struct adc_channel_cfg *channel_cfg)
{
#if (NRF_SAADC_HAS_AIN_AS_PIN)
if (channel_cfg->input_positive > ARRAY_SIZE(saadc_psels) ||
channel_cfg->input_positive < NRF_SAADC_AIN0) {
LOG_ERR("Invalid analog positive input number: %d", channel_cfg->input_positive);
return -EINVAL;
}
*pin_p = saadc_psels[channel_cfg->input_positive];
if (channel_cfg->differential) {
if (channel_cfg->input_negative > ARRAY_SIZE(saadc_psels) ||
channel_cfg->input_negative < NRF_SAADC_AIN0 ||
(IS_ENABLED(CONFIG_NRF_PLATFORM_HALTIUM) &&
(channel_cfg->input_positive > NRF_SAADC_AIN7) !=
(channel_cfg->input_negative > NRF_SAADC_AIN7))) {
LOG_ERR("Invalid analog negative input number: %d",
channel_cfg->input_negative);
return -EINVAL;
}
*pin_n = saadc_psels[channel_cfg->input_negative];
} else {
*pin_n = NRF_SAADC_INPUT_DISABLED;
}
#else
*pin_p = channel_cfg->input_positive;
*pin_n = channel_cfg->differential ? channel_cfg->input_negative
: NRF_SAADC_INPUT_DISABLED;
#endif
LOG_DBG("ADC positive input: %d", *pin_p);
LOG_DBG("ADC negative input: %d", *pin_n);
return 0;
}
static int gain_set(nrf_saadc_channel_config_t *ch_cfg, enum adc_gain gain)
{
#if NRF_SAADC_HAS_CH_GAIN
switch (gain) {
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_6)
case ADC_GAIN_1_6:
ch_cfg->gain = NRF_SAADC_GAIN1_6;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_5)
case ADC_GAIN_1_5:
ch_cfg->gain = NRF_SAADC_GAIN1_5;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_4) || defined(SAADC_CH_CONFIG_GAIN_Gain2_8)
case ADC_GAIN_1_4:
ch_cfg->gain = NRF_SAADC_GAIN1_4;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain2_7)
case ADC_GAIN_2_7:
ch_cfg->gain = NRF_SAADC_GAIN2_7;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_3) || defined(SAADC_CH_CONFIG_GAIN_Gain2_6)
case ADC_GAIN_1_3:
ch_cfg->gain = NRF_SAADC_GAIN1_3;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain2_5)
case ADC_GAIN_2_5:
ch_cfg->gain = NRF_SAADC_GAIN2_5;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain1_2) || defined(SAADC_CH_CONFIG_GAIN_Gain2_4)
case ADC_GAIN_1_2:
ch_cfg->gain = NRF_SAADC_GAIN1_2;
break;
#endif
#if defined(SAADC_CH_CONFIG_GAIN_Gain2_3)
case ADC_GAIN_2_3:
ch_cfg->gain = NRF_SAADC_GAIN2_3;
break;
#endif
case ADC_GAIN_1:
ch_cfg->gain = NRF_SAADC_GAIN1;
break;
case ADC_GAIN_2:
ch_cfg->gain = NRF_SAADC_GAIN2;
break;
#if defined(SAADC_CH_CONFIG_GAIN_Gain4)
case ADC_GAIN_4:
ch_cfg->gain = NRF_SAADC_GAIN4;
break;
#endif
default:
#else
if (ch_cfg->gain != ADC_GAIN_1) {
#endif /* defined(NRF_SAADC_HAS_CH_GAIN) */
LOG_ERR("Selected ADC gain is not valid");
return -EINVAL;
}
return 0;
}
static int reference_set(nrf_saadc_channel_config_t *ch_cfg, enum adc_reference reference)
{
switch (reference) {
#if defined(SAADC_CH_CONFIG_REFSEL_Internal)
case ADC_REF_INTERNAL:
ch_cfg->reference = NRF_SAADC_REFERENCE_INTERNAL;
break;
#endif
#if defined(SAADC_CH_CONFIG_REFSEL_VDD1_4)
case ADC_REF_VDD_1_4:
ch_cfg->reference = NRF_SAADC_REFERENCE_VDD4;
break;
#endif
#if defined(SAADC_CH_CONFIG_REFSEL_External)
case ADC_REF_EXTERNAL0:
ch_cfg->reference = NRF_SAADC_REFERENCE_EXTERNAL;
break;
#endif
default:
LOG_ERR("Selected ADC reference is not valid");
return -EINVAL;
}
return 0;
}
/* Implementation of the ADC driver API function: adc_channel_setup. */
static int adc_nrfx_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
int err;
nrf_saadc_channel_config_t *ch_cfg;
nrfx_saadc_channel_t cfg = {
.channel_config = {
#if NRF_SAADC_HAS_CH_CONFIG_RES
.resistor_p = NRF_SAADC_RESISTOR_DISABLED,
.resistor_n = NRF_SAADC_RESISTOR_DISABLED,
#endif
#if NRF_SAADC_HAS_CH_BURST
.burst = NRF_SAADC_BURST_DISABLED,
#endif
},
.channel_index = channel_cfg->channel_id,
};
if (channel_cfg->channel_id >= SAADC_CH_NUM) {
LOG_ERR("Invalid channel ID: %d", channel_cfg->channel_id);
return -EINVAL;
}
ch_cfg = &cfg.channel_config;
err = input_assign(&cfg.pin_p, &cfg.pin_n, channel_cfg);
if (err != 0) {
return err;
}
err = gain_set(ch_cfg, channel_cfg->gain);
if (err != 0) {
return err;
}
err = reference_set(ch_cfg, channel_cfg->reference);
if (err != 0) {
return err;
}
err = acq_time_set(ch_cfg, channel_cfg->acquisition_time);
if (err != 0) {
return err;
}
/* Store channel mode to allow correcting negative readings in single-ended mode
* after ADC sequence ends.
*/
if (channel_cfg->differential) {
ch_cfg->mode = NRF_SAADC_MODE_DIFFERENTIAL;
m_data.single_ended_channels &= ~BIT(channel_cfg->channel_id);
} else {
ch_cfg->mode = NRF_SAADC_MODE_SINGLE_ENDED;
m_data.single_ended_channels |= BIT(channel_cfg->channel_id);
}
nrfx_err_t ret = nrfx_saadc_channel_config(&cfg);
if (ret != NRFX_SUCCESS) {
LOG_ERR("Cannot configure channel %d: %d", channel_cfg->channel_id, ret);
return -EINVAL;
}
return 0;
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
if (ctx->sequence.calibrate) {
nrfx_saadc_offset_calibrate(event_handler);
} else {
nrfx_err_t ret = nrfx_saadc_mode_trigger();
if (ret != NRFX_SUCCESS) {
LOG_ERR("Cannot start sampling: 0x%08x", ret);
adc_context_complete(&m_data.ctx, -EIO);
}
}
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat)
{
if (!repeat) {
#if defined(ADC_BUFFER_IN_RAM)
m_data.user_buffer = (uint16_t *)m_data.user_buffer + m_data.active_channel_cnt;
#else
nrf_saadc_value_t *buffer = (uint16_t *)m_data.buffer + m_data.active_channel_cnt;
nrfx_saadc_buffer_set(buffer, m_data.active_channel_cnt);
#endif
}
}
static int get_resolution(const struct adc_sequence *sequence, nrf_saadc_resolution_t *resolution)
{
switch (sequence->resolution) {
case 8:
*resolution = NRF_SAADC_RESOLUTION_8BIT;
break;
case 10:
*resolution = NRF_SAADC_RESOLUTION_10BIT;
break;
case 12:
*resolution = NRF_SAADC_RESOLUTION_12BIT;
break;
case 14:
*resolution = NRF_SAADC_RESOLUTION_14BIT;
break;
default:
LOG_ERR("ADC resolution value %d is not valid", sequence->resolution);
return -EINVAL;
}
return 0;
}
static int get_oversampling(const struct adc_sequence *sequence, uint8_t active_channel_cnt,
nrf_saadc_oversample_t *oversampling)
{
if ((active_channel_cnt > 1) && (sequence->oversampling > 0)) {
LOG_ERR(
"Oversampling is supported for single channel only");
return -EINVAL;
}
switch (sequence->oversampling) {
case 0:
*oversampling = NRF_SAADC_OVERSAMPLE_DISABLED;
break;
case 1:
*oversampling = NRF_SAADC_OVERSAMPLE_2X;
break;
case 2:
*oversampling = NRF_SAADC_OVERSAMPLE_4X;
break;
case 3:
*oversampling = NRF_SAADC_OVERSAMPLE_8X;
break;
case 4:
*oversampling = NRF_SAADC_OVERSAMPLE_16X;
break;
case 5:
*oversampling = NRF_SAADC_OVERSAMPLE_32X;
break;
case 6:
*oversampling = NRF_SAADC_OVERSAMPLE_64X;
break;
case 7:
*oversampling = NRF_SAADC_OVERSAMPLE_128X;
break;
case 8:
*oversampling = NRF_SAADC_OVERSAMPLE_256X;
break;
default:
LOG_ERR("Oversampling value %d is not valid", sequence->oversampling);
return -EINVAL;
}
return 0;
}
static int check_buffer_size(const struct adc_sequence *sequence, uint8_t active_channel_cnt)
{
size_t needed_buffer_size;
needed_buffer_size = NRFX_SAADC_SAMPLES_TO_BYTES(active_channel_cnt);
if (sequence->options) {
needed_buffer_size *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed_buffer_size) {
LOG_ERR("Provided buffer is too small (%u/%u)",
sequence->buffer_size, needed_buffer_size);
return -ENOMEM;
}
return 0;
}
static bool has_single_ended(const struct adc_sequence *sequence)
{
return sequence->channels & m_data.single_ended_channels;
}
static void correct_single_ended(const struct adc_sequence *sequence)
{
uint16_t channel_bit = BIT(0);
uint8_t selected_channels = sequence->channels;
uint8_t single_ended_channels = m_data.single_ended_channels;
int16_t *sample = (int16_t *)m_data.buffer;
while (channel_bit <= single_ended_channels) {
if (channel_bit & selected_channels) {
if ((channel_bit & single_ended_channels) && (*sample < 0)) {
*sample = 0;
}
sample++;
}
channel_bit <<= 1;
}
}
static int start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
nrfx_err_t nrfx_err;
int error;
uint32_t selected_channels = sequence->channels;
nrf_saadc_resolution_t resolution;
nrf_saadc_oversample_t oversampling;
uint8_t active_channel_cnt = 0U;
uint8_t channel_id = 0U;
/* Signal an error if channel selection is invalid (no channels or
* a non-existing one is selected).
*/
if (!selected_channels ||
(selected_channels & ~BIT_MASK(SAADC_CH_NUM))) {
LOG_ERR("Invalid selection of channels");
return -EINVAL;
}
do {
if (selected_channels & BIT(channel_id)) {
/* Signal an error if a selected channel has not been configured yet. */
if (0 == (nrfx_saadc_channels_configured_get() & BIT(channel_id))) {
LOG_ERR("Channel %u not configured", channel_id);
return -EINVAL;
}
++active_channel_cnt;
}
} while (++channel_id < SAADC_CH_NUM);
if (active_channel_cnt == 0) {
LOG_ERR("No channel configured");
return -EINVAL;
}
error = get_resolution(sequence, &resolution);
if (error) {
return error;
}
error = get_oversampling(sequence, active_channel_cnt, &oversampling);
if (error) {
return error;
}
nrfx_err = nrfx_saadc_simple_mode_set(selected_channels,
resolution,
oversampling,
event_handler);
if (nrfx_err != NRFX_SUCCESS) {
return -EINVAL;
}
error = check_buffer_size(sequence, active_channel_cnt);
if (error) {
return error;
}
m_data.active_channel_cnt = active_channel_cnt;
#if defined(ADC_BUFFER_IN_RAM)
m_data.user_buffer = sequence->buffer;
nrfx_saadc_buffer_set(m_data.samples_buffer, active_channel_cnt);
#else
/* Buffer is filled in chunks, each chunk composed of number of samples equal to number
* of active channels. Buffer pointer is advanced and reloaded after each chunk.
*/
nrfx_saadc_buffer_set(sequence->buffer, active_channel_cnt);
#endif
adc_context_start_read(&m_data.ctx, sequence);
return adc_context_wait_for_completion(&m_data.ctx);
}
/* Implementation of the ADC driver API function: adc_read. */
static int adc_nrfx_read(const struct device *dev,
const struct adc_sequence *sequence)
{
int error;
adc_context_lock(&m_data.ctx, false, NULL);
error = start_read(dev, sequence);
adc_context_release(&m_data.ctx, error);
return error;
}
#ifdef CONFIG_ADC_ASYNC
/* Implementation of the ADC driver API function: adc_read_async. */
static int adc_nrfx_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
int error;
adc_context_lock(&m_data.ctx, true, async);
error = start_read(dev, sequence);
adc_context_release(&m_data.ctx, error);
return error;
}
#endif /* CONFIG_ADC_ASYNC */
static void event_handler(const nrfx_saadc_evt_t *event)
{
nrfx_err_t err;
if (event->type == NRFX_SAADC_EVT_DONE) {
m_data.buffer = event->data.done.p_buffer;
if (has_single_ended(&m_data.ctx.sequence)) {
correct_single_ended(&m_data.ctx.sequence);
}
#if defined(ADC_BUFFER_IN_RAM)
memcpy(m_data.user_buffer, m_data.samples_buffer,
NRFX_SAADC_SAMPLES_TO_BYTES(m_data.active_channel_cnt));
#endif
adc_context_on_sampling_done(&m_data.ctx, DEVICE_DT_INST_GET(0));
} else if (event->type == NRFX_SAADC_EVT_CALIBRATEDONE) {
err = nrfx_saadc_mode_trigger();
if (err != NRFX_SUCCESS) {
LOG_ERR("Cannot start sampling: 0x%08x", err);
adc_context_complete(&m_data.ctx, -EIO);
}
}
}
static int init_saadc(const struct device *dev)
{
nrfx_err_t err;
/* The priority value passed here is ignored (see nrfx_glue.h). */
err = nrfx_saadc_init(0);
if (err != NRFX_SUCCESS) {
LOG_ERR("Failed to initialize device: %s", dev->name);
return -EIO;
}
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), nrfx_isr, nrfx_saadc_irq_handler, 0);
adc_context_unlock_unconditionally(&m_data.ctx);
return 0;
}
static DEVICE_API(adc, adc_nrfx_driver_api) = {
.channel_setup = adc_nrfx_channel_setup,
.read = adc_nrfx_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_nrfx_read_async,
#endif
#if defined(NRF54LV10A_ENGA_XXAA)
.ref_internal = 1300,
#elif defined(CONFIG_SOC_COMPATIBLE_NRF54LX)
.ref_internal = 900,
#elif defined(CONFIG_NRF_PLATFORM_HALTIUM)
.ref_internal = 1024,
#else
.ref_internal = 600,
#endif
};
#if defined(CONFIG_NRF_PLATFORM_HALTIUM)
/* AIN8-AIN14 inputs are on 3v3 GPIO port and they cannot be mixed with other
* analog inputs (from 1v8 ports) in differential mode.
*/
#define CH_IS_3V3(val) (val >= NRF_SAADC_AIN8)
#define MIXED_3V3_1V8_INPUTS(node) \
(DT_NODE_HAS_PROP(node, zephyr_input_negative) && \
(CH_IS_3V3(DT_PROP_OR(node, zephyr_input_negative, 0)) != \
CH_IS_3V3(DT_PROP_OR(node, zephyr_input_positive, 0))))
#else
#define MIXED_3V3_1V8_INPUTS(node) false
#endif
#define VALIDATE_CHANNEL_CONFIG(node) \
BUILD_ASSERT(MIXED_3V3_1V8_INPUTS(node) == false, \
"1v8 inputs cannot be mixed with 3v3 inputs");
/* Validate configuration of all channels. */
DT_FOREACH_CHILD(DT_DRV_INST(0), VALIDATE_CHANNEL_CONFIG)
DEVICE_DT_INST_DEFINE(0, init_saadc, NULL, NULL, NULL, POST_KERNEL,
CONFIG_ADC_INIT_PRIORITY, &adc_nrfx_driver_api);