You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
478 lines
12 KiB
478 lines
12 KiB
/* |
|
* Copyright (c) 2019 Intel Corporation. |
|
* Copyright (c) 2023 Microchip Technology Inc. |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#define DT_DRV_COMPAT microchip_xec_adc |
|
|
|
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL |
|
#include <zephyr/logging/log.h> |
|
LOG_MODULE_REGISTER(adc_mchp_xec); |
|
|
|
#include <zephyr/drivers/adc.h> |
|
#ifdef CONFIG_SOC_SERIES_MEC172X |
|
#include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h> |
|
#endif |
|
#include <zephyr/drivers/pinctrl.h> |
|
#include <zephyr/pm/device.h> |
|
#include <zephyr/pm/policy.h> |
|
#include <soc.h> |
|
#include <errno.h> |
|
#include <zephyr/irq.h> |
|
|
|
#define ADC_CONTEXT_USES_KERNEL_TIMER |
|
#include "adc_context.h" |
|
|
|
#define XEC_ADC_VREF_ANALOG 3300 |
|
|
|
/* ADC Control Register */ |
|
#define XEC_ADC_CTRL_SINGLE_DONE_STATUS BIT(7) |
|
#define XEC_ADC_CTRL_REPEAT_DONE_STATUS BIT(6) |
|
#define XER_ADC_CTRL_SOFT_RESET BIT(4) |
|
#define XEC_ADC_CTRL_POWER_SAVER_DIS BIT(3) |
|
#define XEC_ADC_CTRL_START_REPEAT BIT(2) |
|
#define XEC_ADC_CTRL_START_SINGLE BIT(1) |
|
#define XEC_ADC_CTRL_ACTIVATE BIT(0) |
|
|
|
/* ADC implements two interrupt signals: |
|
* One-shot(single) conversion of a set of channels |
|
* Repeat conversion of a set of channels |
|
* Channel sets for single and repeat may be different. |
|
*/ |
|
enum adc_pm_policy_state_flag { |
|
ADC_PM_POLICY_STATE_SINGLE_FLAG, |
|
ADC_PM_POLICY_STATE_REPEAT_FLAG, |
|
ADC_PM_POLICY_STATE_FLAG_COUNT, |
|
}; |
|
|
|
#define XEC_ADC_MAX_HW_CHAN 16 |
|
#define XEC_ADC_CFG_CHANNELS DT_INST_PROP(0, channels) |
|
|
|
struct adc_xec_regs { |
|
uint32_t control_reg; |
|
uint32_t delay_reg; |
|
uint32_t status_reg; |
|
uint32_t single_reg; |
|
uint32_t repeat_reg; |
|
uint32_t channel_read_reg[XEC_ADC_CFG_CHANNELS]; |
|
uint32_t unused[10 + (XEC_ADC_MAX_HW_CHAN - XEC_ADC_CFG_CHANNELS)]; |
|
uint32_t config_reg; |
|
uint32_t vref_channel_reg; |
|
uint32_t vref_control_reg; |
|
uint32_t sar_control_reg; |
|
}; |
|
|
|
struct adc_xec_config { |
|
struct adc_xec_regs *regs; |
|
|
|
uint8_t girq_single; |
|
uint8_t girq_single_pos; |
|
uint8_t girq_repeat; |
|
uint8_t girq_repeat_pos; |
|
uint8_t pcr_regidx; |
|
uint8_t pcr_bitpos; |
|
const struct pinctrl_dev_config *pcfg; |
|
}; |
|
|
|
struct adc_xec_data { |
|
struct adc_context ctx; |
|
const struct device *adc_dev; |
|
uint16_t *buffer; |
|
uint16_t *repeat_buffer; |
|
#ifdef CONFIG_PM_DEVICE |
|
ATOMIC_DEFINE(pm_policy_state_flag, ADC_PM_POLICY_STATE_FLAG_COUNT); |
|
#endif |
|
}; |
|
|
|
#ifdef CONFIG_PM_DEVICE |
|
static void adc_xec_pm_policy_state_lock_get(struct adc_xec_data *data, |
|
enum adc_pm_policy_state_flag flag) |
|
{ |
|
if (atomic_test_and_set_bit(data->pm_policy_state_flag, flag) == 0) { |
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
|
} |
|
} |
|
|
|
static void adc_xec_pm_policy_state_lock_put(struct adc_xec_data *data, |
|
enum adc_pm_policy_state_flag flag) |
|
{ |
|
if (atomic_test_and_clear_bit(data->pm_policy_state_flag, flag) == 1) { |
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); |
|
} |
|
} |
|
#endif |
|
|
|
static void adc_context_start_sampling(struct adc_context *ctx) |
|
{ |
|
struct adc_xec_data *data = CONTAINER_OF(ctx, struct adc_xec_data, ctx); |
|
const struct device *adc_dev = data->adc_dev; |
|
const struct adc_xec_config * const devcfg = adc_dev->config; |
|
struct adc_xec_regs *regs = devcfg->regs; |
|
|
|
data->repeat_buffer = data->buffer; |
|
|
|
#ifdef CONFIG_PM_DEVICE |
|
adc_xec_pm_policy_state_lock_get(data, ADC_PM_POLICY_STATE_SINGLE_FLAG); |
|
#endif |
|
regs->single_reg = ctx->sequence.channels; |
|
regs->control_reg |= XEC_ADC_CTRL_START_SINGLE; |
|
} |
|
|
|
static void adc_context_update_buffer_pointer(struct adc_context *ctx, |
|
bool repeat_sampling) |
|
{ |
|
struct adc_xec_data *data = CONTAINER_OF(ctx, struct adc_xec_data, ctx); |
|
|
|
if (repeat_sampling) { |
|
data->buffer = data->repeat_buffer; |
|
} |
|
} |
|
|
|
static int adc_xec_channel_setup(const struct device *dev, |
|
const struct adc_channel_cfg *channel_cfg) |
|
{ |
|
const struct adc_xec_config *const cfg = dev->config; |
|
struct adc_xec_regs * const regs = cfg->regs; |
|
uint32_t areg; |
|
|
|
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) { |
|
return -EINVAL; |
|
} |
|
|
|
if (channel_cfg->channel_id >= XEC_ADC_CFG_CHANNELS) { |
|
return -EINVAL; |
|
} |
|
|
|
if (channel_cfg->gain != ADC_GAIN_1) { |
|
return -EINVAL; |
|
} |
|
|
|
/* Setup VREF */ |
|
areg = regs->vref_channel_reg; |
|
areg &= ~MCHP_ADC_CH_VREF_SEL_MASK(channel_cfg->channel_id); |
|
|
|
if (channel_cfg->reference == ADC_REF_INTERNAL) { |
|
areg |= MCHP_ADC_CH_VREF_SEL_PAD(channel_cfg->channel_id); |
|
} else if (channel_cfg->reference == ADC_REF_EXTERNAL0) { |
|
areg |= MCHP_ADC_CH_VREF_SEL_GPIO(channel_cfg->channel_id); |
|
} else { |
|
return -EINVAL; |
|
} |
|
|
|
regs->vref_channel_reg = areg; |
|
|
|
/* Differential mode? */ |
|
areg = regs->sar_control_reg; |
|
areg &= ~BIT(MCHP_ADC_SAR_CTRL_SELDIFF_POS); |
|
if (channel_cfg->differential != 0) { |
|
areg |= MCHP_ADC_SAR_CTRL_SELDIFF_EN; |
|
} |
|
regs->sar_control_reg = areg; |
|
|
|
return 0; |
|
} |
|
|
|
static bool adc_xec_validate_buffer_size(const struct adc_sequence *sequence) |
|
{ |
|
int chan_count = 0; |
|
size_t buff_need; |
|
uint32_t chan_mask; |
|
|
|
for (chan_mask = 0x80; chan_mask != 0; chan_mask >>= 1) { |
|
if (chan_mask & sequence->channels) { |
|
chan_count++; |
|
} |
|
} |
|
|
|
buff_need = chan_count * sizeof(uint16_t); |
|
|
|
if (sequence->options) { |
|
buff_need *= 1 + sequence->options->extra_samplings; |
|
} |
|
|
|
if (buff_need > sequence->buffer_size) { |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
static int adc_xec_start_read(const struct device *dev, |
|
const struct adc_sequence *sequence) |
|
{ |
|
const struct adc_xec_config *const cfg = dev->config; |
|
struct adc_xec_regs * const regs = cfg->regs; |
|
struct adc_xec_data * const data = dev->data; |
|
uint32_t sar_ctrl; |
|
|
|
if (sequence->channels & ~BIT_MASK(XEC_ADC_CFG_CHANNELS)) { |
|
LOG_ERR("Incorrect channels, bitmask 0x%x", sequence->channels); |
|
return -EINVAL; |
|
} |
|
|
|
if (sequence->channels == 0UL) { |
|
LOG_ERR("No channel selected"); |
|
return -EINVAL; |
|
} |
|
|
|
if (!adc_xec_validate_buffer_size(sequence)) { |
|
LOG_ERR("Incorrect buffer size"); |
|
return -ENOMEM; |
|
} |
|
|
|
/* Setup ADC resolution */ |
|
sar_ctrl = regs->sar_control_reg; |
|
sar_ctrl &= ~(MCHP_ADC_SAR_CTRL_RES_MASK | |
|
(1 << MCHP_ADC_SAR_CTRL_SHIFTD_POS)); |
|
|
|
if (sequence->resolution == 12) { |
|
sar_ctrl |= MCHP_ADC_SAR_CTRL_RES_12_BITS; |
|
} else if (sequence->resolution == 10) { |
|
sar_ctrl |= MCHP_ADC_SAR_CTRL_RES_10_BITS; |
|
sar_ctrl |= MCHP_ADC_SAR_CTRL_SHIFTD_EN; |
|
} else { |
|
return -EINVAL; |
|
} |
|
|
|
regs->sar_control_reg = sar_ctrl; |
|
|
|
data->buffer = sequence->buffer; |
|
|
|
adc_context_start_read(&data->ctx, sequence); |
|
|
|
return adc_context_wait_for_completion(&data->ctx); |
|
} |
|
|
|
static int adc_xec_read(const struct device *dev, |
|
const struct adc_sequence *sequence) |
|
{ |
|
struct adc_xec_data * const data = dev->data; |
|
int error; |
|
|
|
adc_context_lock(&data->ctx, false, NULL); |
|
error = adc_xec_start_read(dev, sequence); |
|
adc_context_release(&data->ctx, error); |
|
|
|
return error; |
|
} |
|
|
|
#ifdef CONFIG_ADC_ASYNC |
|
static int adc_xec_read_async(const struct device *dev, |
|
const struct adc_sequence *sequence, |
|
struct k_poll_signal *async) |
|
{ |
|
struct adc_xec_data * const data = dev->data; |
|
int error; |
|
|
|
adc_context_lock(&data->ctx, true, async); |
|
error = adc_xec_start_read(dev, sequence); |
|
adc_context_release(&data->ctx, error); |
|
|
|
return error; |
|
} |
|
#endif /* CONFIG_ADC_ASYNC */ |
|
|
|
static void xec_adc_get_sample(const struct device *dev) |
|
{ |
|
const struct adc_xec_config *const cfg = dev->config; |
|
struct adc_xec_regs * const regs = cfg->regs; |
|
struct adc_xec_data * const data = dev->data; |
|
uint32_t idx; |
|
uint32_t channels = regs->status_reg; |
|
uint32_t ch_status = channels; |
|
uint32_t bit; |
|
|
|
/* |
|
* Using the enabled channel bit set, from |
|
* lowest channel number to highest, find out |
|
* which channel is enabled and copy the ADC |
|
* values from hardware registers to the data |
|
* buffer. |
|
*/ |
|
bit = find_lsb_set(channels); |
|
while (bit != 0) { |
|
idx = bit - 1; |
|
|
|
*data->buffer = (uint16_t)regs->channel_read_reg[idx]; |
|
data->buffer++; |
|
|
|
channels &= ~BIT(idx); |
|
bit = find_lsb_set(channels); |
|
} |
|
|
|
/* Clear the status register */ |
|
regs->status_reg = ch_status; |
|
} |
|
|
|
#ifdef CONFIG_SOC_SERIES_MEC172X |
|
static inline void adc_xec_girq_clr(uint8_t girq_idx, uint8_t girq_posn) |
|
{ |
|
mchp_xec_ecia_girq_src_clr(girq_idx, girq_posn); |
|
} |
|
|
|
static inline void adc_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn) |
|
{ |
|
mchp_xec_ecia_girq_src_en(girq_idx, girq_posn); |
|
} |
|
|
|
static inline void adc_xec_girq_dis(uint8_t girq_idx, uint8_t girq_posn) |
|
{ |
|
mchp_xec_ecia_girq_src_dis(girq_idx, girq_posn); |
|
} |
|
#else |
|
|
|
static inline void adc_xec_girq_clr(uint8_t girq_idx, uint8_t girq_posn) |
|
{ |
|
MCHP_GIRQ_SRC(girq_idx) = BIT(girq_posn); |
|
} |
|
|
|
static inline void adc_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn) |
|
{ |
|
MCHP_GIRQ_ENSET(girq_idx) = BIT(girq_posn); |
|
} |
|
|
|
static inline void adc_xec_girq_dis(uint8_t girq_idx, uint8_t girq_posn) |
|
{ |
|
MCHP_GIRQ_ENCLR(girq_idx) = MCHP_KBC_IBF_GIRQ; |
|
} |
|
#endif |
|
|
|
static void adc_xec_single_isr(const struct device *dev) |
|
{ |
|
const struct adc_xec_config *const cfg = dev->config; |
|
struct adc_xec_regs * const regs = cfg->regs; |
|
struct adc_xec_data * const data = dev->data; |
|
uint32_t ctrl; |
|
|
|
/* Clear START_SINGLE bit and clear SINGLE_DONE_STATUS */ |
|
ctrl = regs->control_reg; |
|
ctrl &= ~XEC_ADC_CTRL_START_SINGLE; |
|
ctrl |= XEC_ADC_CTRL_SINGLE_DONE_STATUS; |
|
regs->control_reg = ctrl; |
|
|
|
/* Also clear GIRQ source status bit */ |
|
adc_xec_girq_clr(cfg->girq_single, cfg->girq_single_pos); |
|
|
|
xec_adc_get_sample(dev); |
|
|
|
#ifdef CONFIG_PM_DEVICE |
|
adc_xec_pm_policy_state_lock_put(data, ADC_PM_POLICY_STATE_SINGLE_FLAG); |
|
#endif |
|
|
|
adc_context_on_sampling_done(&data->ctx, dev); |
|
|
|
LOG_DBG("ADC ISR triggered."); |
|
} |
|
|
|
|
|
#ifdef CONFIG_PM_DEVICE |
|
static int adc_xec_pm_action(const struct device *dev, enum pm_device_action action) |
|
{ |
|
const struct adc_xec_config *const devcfg = dev->config; |
|
struct adc_xec_regs * const adc_regs = devcfg->regs; |
|
int ret; |
|
|
|
switch (action) { |
|
case PM_DEVICE_ACTION_RESUME: |
|
ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT); |
|
/* ADC activate */ |
|
adc_regs->control_reg |= XEC_ADC_CTRL_ACTIVATE; |
|
break; |
|
case PM_DEVICE_ACTION_SUSPEND: |
|
/* ADC deactivate */ |
|
adc_regs->control_reg &= ~(XEC_ADC_CTRL_ACTIVATE); |
|
/* If application does not want to turn off ADC pins it will |
|
* not define pinctrl-1 for this node. |
|
*/ |
|
ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP); |
|
if (ret == -ENOENT) { /* pinctrl-1 does not exist. */ |
|
ret = 0; |
|
} |
|
break; |
|
default: |
|
ret = -ENOTSUP; |
|
} |
|
|
|
return ret; |
|
} |
|
#endif /* CONFIG_PM_DEVICE */ |
|
|
|
static DEVICE_API(adc, adc_xec_api) = { |
|
.channel_setup = adc_xec_channel_setup, |
|
.read = adc_xec_read, |
|
#if defined(CONFIG_ADC_ASYNC) |
|
.read_async = adc_xec_read_async, |
|
#endif |
|
.ref_internal = XEC_ADC_VREF_ANALOG, |
|
}; |
|
|
|
/* ADC Config Register */ |
|
#define XEC_ADC_CFG_CLK_VAL(clk_time) ( \ |
|
(clk_time << MCHP_ADC_CFG_CLK_LO_TIME_POS) | \ |
|
(clk_time << MCHP_ADC_CFG_CLK_HI_TIME_POS)) |
|
|
|
static int adc_xec_init(const struct device *dev) |
|
{ |
|
const struct adc_xec_config *const cfg = dev->config; |
|
struct adc_xec_regs * const regs = cfg->regs; |
|
struct adc_xec_data * const data = dev->data; |
|
int ret; |
|
|
|
data->adc_dev = dev; |
|
|
|
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); |
|
if (ret != 0) { |
|
LOG_ERR("XEC ADC V2 pinctrl setup failed (%d)", ret); |
|
return ret; |
|
} |
|
|
|
regs->config_reg = XEC_ADC_CFG_CLK_VAL(DT_INST_PROP(0, clktime)); |
|
|
|
regs->control_reg = XEC_ADC_CTRL_ACTIVATE |
|
| XEC_ADC_CTRL_POWER_SAVER_DIS |
|
| XEC_ADC_CTRL_SINGLE_DONE_STATUS |
|
| XEC_ADC_CTRL_REPEAT_DONE_STATUS; |
|
|
|
adc_xec_girq_dis(cfg->girq_repeat, cfg->girq_repeat_pos); |
|
adc_xec_girq_clr(cfg->girq_repeat, cfg->girq_repeat_pos); |
|
adc_xec_girq_dis(cfg->girq_single, cfg->girq_single_pos); |
|
adc_xec_girq_clr(cfg->girq_single, cfg->girq_single_pos); |
|
adc_xec_girq_en(cfg->girq_single, cfg->girq_single_pos); |
|
|
|
IRQ_CONNECT(DT_INST_IRQN(0), |
|
DT_INST_IRQ(0, priority), |
|
adc_xec_single_isr, DEVICE_DT_INST_GET(0), 0); |
|
irq_enable(DT_INST_IRQN(0)); |
|
|
|
adc_context_unlock_unconditionally(&data->ctx); |
|
|
|
return 0; |
|
} |
|
|
|
PINCTRL_DT_INST_DEFINE(0); |
|
|
|
static struct adc_xec_config adc_xec_dev_cfg_0 = { |
|
.regs = (struct adc_xec_regs *)(DT_INST_REG_ADDR(0)), |
|
.girq_single = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 0)), |
|
.girq_single_pos = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 1)), |
|
.girq_repeat = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 2)), |
|
.girq_repeat_pos = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 3)), |
|
.pcr_regidx = (uint8_t)(DT_INST_PROP_BY_IDX(0, pcrs, 0)), |
|
.pcr_bitpos = (uint8_t)(DT_INST_PROP_BY_IDX(0, pcrs, 1)), |
|
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0), |
|
}; |
|
|
|
static struct adc_xec_data adc_xec_dev_data_0 = { |
|
ADC_CONTEXT_INIT_TIMER(adc_xec_dev_data_0, ctx), |
|
ADC_CONTEXT_INIT_LOCK(adc_xec_dev_data_0, ctx), |
|
ADC_CONTEXT_INIT_SYNC(adc_xec_dev_data_0, ctx), |
|
}; |
|
|
|
PM_DEVICE_DT_INST_DEFINE(0, adc_xec_pm_action); |
|
|
|
DEVICE_DT_INST_DEFINE(0, adc_xec_init, PM_DEVICE_DT_INST_GET(0), |
|
&adc_xec_dev_data_0, &adc_xec_dev_cfg_0, |
|
PRE_KERNEL_1, CONFIG_ADC_INIT_PRIORITY, |
|
&adc_xec_api);
|
|
|