You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
365 lines
9.6 KiB
365 lines
9.6 KiB
/* |
|
* Copyright (c) 1997-2016 Wind River Systems, Inc. |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#include <zephyr/kernel.h> |
|
|
|
#include <zephyr/init.h> |
|
#include <zephyr/internal/syscall_handler.h> |
|
#include <stdbool.h> |
|
#include <zephyr/spinlock.h> |
|
#include <ksched.h> |
|
#include <wait_q.h> |
|
|
|
static struct k_spinlock lock; |
|
|
|
#ifdef CONFIG_OBJ_CORE_TIMER |
|
static struct k_obj_type obj_type_timer; |
|
#endif /* CONFIG_OBJ_CORE_TIMER */ |
|
|
|
/** |
|
* @brief Handle expiration of a kernel timer object. |
|
* |
|
* @param t Timeout used by the timer. |
|
*/ |
|
void z_timer_expiration_handler(struct _timeout *t) |
|
{ |
|
struct k_timer *timer = CONTAINER_OF(t, struct k_timer, timeout); |
|
struct k_thread *thread; |
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
|
|
/* In sys_clock_announce(), when a timeout expires, it is first removed |
|
* from the timeout list, then its expiration handler is called (with |
|
* unlocked interrupts). For kernel timers, the expiration handler is |
|
* this function. Usually, the timeout structure related to the timer |
|
* that is handled here will not be linked to the timeout list at this |
|
* point. But it may happen that before this function is executed and |
|
* interrupts are locked again, a given timer gets restarted from an |
|
* interrupt context that has a priority higher than the system timer |
|
* interrupt. Then, the timeout structure for this timer will turn out |
|
* to be linked to the timeout list. And in such case, since the timer |
|
* was restarted, its expiration handler should not be executed then, |
|
* so the function exits immediately. |
|
*/ |
|
if (sys_dnode_is_linked(&t->node)) { |
|
k_spin_unlock(&lock, key); |
|
return; |
|
} |
|
|
|
/* |
|
* if the timer is periodic, start it again; don't add _TICK_ALIGN |
|
* since we're already aligned to a tick boundary |
|
*/ |
|
if (!K_TIMEOUT_EQ(timer->period, K_NO_WAIT) && |
|
!K_TIMEOUT_EQ(timer->period, K_FOREVER)) { |
|
k_timeout_t next = timer->period; |
|
|
|
/* see note about z_add_timeout() in z_impl_k_timer_start() */ |
|
next.ticks = MAX(next.ticks - 1, 0); |
|
|
|
#ifdef CONFIG_TIMEOUT_64BIT |
|
/* Exploit the fact that uptime during a kernel |
|
* timeout handler reflects the time of the scheduled |
|
* event and not real time to get some inexpensive |
|
* protection against late interrupts. If we're |
|
* delayed for any reason, we still end up calculating |
|
* the next expiration as a regular stride from where |
|
* we "should" have run. Requires absolute timeouts. |
|
* (Note offset by one: we're nominally at the |
|
* beginning of a tick, so need to defeat the "round |
|
* down" behavior on timeout addition). |
|
*/ |
|
next = K_TIMEOUT_ABS_TICKS(k_uptime_ticks() + 1 + next.ticks); |
|
#endif /* CONFIG_TIMEOUT_64BIT */ |
|
z_add_timeout(&timer->timeout, z_timer_expiration_handler, |
|
next); |
|
} |
|
|
|
/* update timer's status */ |
|
timer->status += 1U; |
|
|
|
/* invoke timer expiry function */ |
|
if (timer->expiry_fn != NULL) { |
|
/* Unlock for user handler. */ |
|
k_spin_unlock(&lock, key); |
|
timer->expiry_fn(timer); |
|
key = k_spin_lock(&lock); |
|
} |
|
|
|
if (!IS_ENABLED(CONFIG_MULTITHREADING)) { |
|
k_spin_unlock(&lock, key); |
|
return; |
|
} |
|
|
|
thread = z_waitq_head(&timer->wait_q); |
|
|
|
if (thread == NULL) { |
|
k_spin_unlock(&lock, key); |
|
return; |
|
} |
|
|
|
z_unpend_thread_no_timeout(thread); |
|
|
|
arch_thread_return_value_set(thread, 0); |
|
|
|
k_spin_unlock(&lock, key); |
|
|
|
z_ready_thread(thread); |
|
} |
|
|
|
|
|
void k_timer_init(struct k_timer *timer, |
|
k_timer_expiry_t expiry_fn, |
|
k_timer_stop_t stop_fn) |
|
{ |
|
timer->expiry_fn = expiry_fn; |
|
timer->stop_fn = stop_fn; |
|
timer->status = 0U; |
|
|
|
if (IS_ENABLED(CONFIG_MULTITHREADING)) { |
|
z_waitq_init(&timer->wait_q); |
|
} |
|
|
|
z_init_timeout(&timer->timeout); |
|
|
|
SYS_PORT_TRACING_OBJ_INIT(k_timer, timer); |
|
|
|
timer->user_data = NULL; |
|
|
|
k_object_init(timer); |
|
|
|
#ifdef CONFIG_OBJ_CORE_TIMER |
|
k_obj_core_init_and_link(K_OBJ_CORE(timer), &obj_type_timer); |
|
#endif /* CONFIG_OBJ_CORE_TIMER */ |
|
} |
|
|
|
|
|
void z_impl_k_timer_start(struct k_timer *timer, k_timeout_t duration, |
|
k_timeout_t period) |
|
{ |
|
SYS_PORT_TRACING_OBJ_FUNC(k_timer, start, timer, duration, period); |
|
|
|
/* Acquire spinlock to ensure safety during concurrent calls to |
|
* k_timer_start for scheduling or rescheduling. This is necessary |
|
* since k_timer_start can be preempted, especially for the same |
|
* timer instance. |
|
*/ |
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
|
|
if (K_TIMEOUT_EQ(duration, K_FOREVER)) { |
|
k_spin_unlock(&lock, key); |
|
return; |
|
} |
|
|
|
/* z_add_timeout() always adds one to the incoming tick count |
|
* to round up to the next tick (by convention it waits for |
|
* "at least as long as the specified timeout"), but the |
|
* period interval is always guaranteed to be reset from |
|
* within the timer ISR, so no round up is desired and 1 is |
|
* subtracted in there. |
|
* |
|
* Note that the duration (!) value gets the same treatment |
|
* for backwards compatibility. This is unfortunate |
|
* (i.e. k_timer_start() doesn't treat its initial sleep |
|
* argument the same way k_sleep() does), but historical. The |
|
* timer_api test relies on this behavior. |
|
*/ |
|
if (Z_TICK_ABS(duration.ticks) < 0) { |
|
duration.ticks = MAX(duration.ticks - 1, 0); |
|
} |
|
|
|
(void)z_abort_timeout(&timer->timeout); |
|
timer->period = period; |
|
timer->status = 0U; |
|
|
|
z_add_timeout(&timer->timeout, z_timer_expiration_handler, |
|
duration); |
|
|
|
k_spin_unlock(&lock, key); |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_timer_start(struct k_timer *timer, |
|
k_timeout_t duration, |
|
k_timeout_t period) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
|
z_impl_k_timer_start(timer, duration, period); |
|
} |
|
#include <zephyr/syscalls/k_timer_start_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
void z_impl_k_timer_stop(struct k_timer *timer) |
|
{ |
|
SYS_PORT_TRACING_OBJ_FUNC(k_timer, stop, timer); |
|
|
|
bool inactive = (z_abort_timeout(&timer->timeout) != 0); |
|
|
|
if (inactive) { |
|
return; |
|
} |
|
|
|
if (timer->stop_fn != NULL) { |
|
timer->stop_fn(timer); |
|
} |
|
|
|
if (IS_ENABLED(CONFIG_MULTITHREADING)) { |
|
struct k_thread *pending_thread = z_unpend1_no_timeout(&timer->wait_q); |
|
|
|
if (pending_thread != NULL) { |
|
z_ready_thread(pending_thread); |
|
z_reschedule_unlocked(); |
|
} |
|
} |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline void z_vrfy_k_timer_stop(struct k_timer *timer) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
|
z_impl_k_timer_stop(timer); |
|
} |
|
#include <zephyr/syscalls/k_timer_stop_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
uint32_t z_impl_k_timer_status_get(struct k_timer *timer) |
|
{ |
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
uint32_t result = timer->status; |
|
|
|
timer->status = 0U; |
|
k_spin_unlock(&lock, key); |
|
|
|
return result; |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline uint32_t z_vrfy_k_timer_status_get(struct k_timer *timer) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
|
return z_impl_k_timer_status_get(timer); |
|
} |
|
#include <zephyr/syscalls/k_timer_status_get_mrsh.c> |
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
uint32_t z_impl_k_timer_status_sync(struct k_timer *timer) |
|
{ |
|
__ASSERT(!arch_is_in_isr(), ""); |
|
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_timer, status_sync, timer); |
|
|
|
if (!IS_ENABLED(CONFIG_MULTITHREADING)) { |
|
uint32_t result; |
|
|
|
do { |
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
|
|
if (!z_is_inactive_timeout(&timer->timeout)) { |
|
result = *(volatile uint32_t *)&timer->status; |
|
timer->status = 0U; |
|
k_spin_unlock(&lock, key); |
|
if (result > 0) { |
|
break; |
|
} |
|
} else { |
|
result = timer->status; |
|
k_spin_unlock(&lock, key); |
|
break; |
|
} |
|
} while (true); |
|
|
|
return result; |
|
} |
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
uint32_t result = timer->status; |
|
|
|
if (result == 0U) { |
|
if (!z_is_inactive_timeout(&timer->timeout)) { |
|
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_timer, status_sync, timer, K_FOREVER); |
|
|
|
/* wait for timer to expire or stop */ |
|
(void)z_pend_curr(&lock, key, &timer->wait_q, K_FOREVER); |
|
|
|
/* get updated timer status */ |
|
key = k_spin_lock(&lock); |
|
result = timer->status; |
|
} else { |
|
/* timer is already stopped */ |
|
} |
|
} else { |
|
/* timer has already expired at least once */ |
|
} |
|
|
|
timer->status = 0U; |
|
k_spin_unlock(&lock, key); |
|
|
|
/** |
|
* @note New tracing hook |
|
*/ |
|
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_timer, status_sync, timer, result); |
|
|
|
return result; |
|
} |
|
|
|
#ifdef CONFIG_USERSPACE |
|
static inline uint32_t z_vrfy_k_timer_status_sync(struct k_timer *timer) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
|
return z_impl_k_timer_status_sync(timer); |
|
} |
|
#include <zephyr/syscalls/k_timer_status_sync_mrsh.c> |
|
|
|
static inline k_ticks_t z_vrfy_k_timer_remaining_ticks( |
|
const struct k_timer *timer) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
|
return z_impl_k_timer_remaining_ticks(timer); |
|
} |
|
#include <zephyr/syscalls/k_timer_remaining_ticks_mrsh.c> |
|
|
|
static inline k_ticks_t z_vrfy_k_timer_expires_ticks( |
|
const struct k_timer *timer) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
|
return z_impl_k_timer_expires_ticks(timer); |
|
} |
|
#include <zephyr/syscalls/k_timer_expires_ticks_mrsh.c> |
|
|
|
static inline void *z_vrfy_k_timer_user_data_get(const struct k_timer *timer) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
|
return z_impl_k_timer_user_data_get(timer); |
|
} |
|
#include <zephyr/syscalls/k_timer_user_data_get_mrsh.c> |
|
|
|
static inline void z_vrfy_k_timer_user_data_set(struct k_timer *timer, |
|
void *user_data) |
|
{ |
|
K_OOPS(K_SYSCALL_OBJ(timer, K_OBJ_TIMER)); |
|
z_impl_k_timer_user_data_set(timer, user_data); |
|
} |
|
#include <zephyr/syscalls/k_timer_user_data_set_mrsh.c> |
|
|
|
#endif /* CONFIG_USERSPACE */ |
|
|
|
#ifdef CONFIG_OBJ_CORE_TIMER |
|
static int init_timer_obj_core_list(void) |
|
{ |
|
/* Initialize timer object type */ |
|
|
|
z_obj_type_init(&obj_type_timer, K_OBJ_TYPE_TIMER_ID, |
|
offsetof(struct k_timer, obj_core)); |
|
|
|
/* Initialize and link statically defined timers */ |
|
|
|
STRUCT_SECTION_FOREACH(k_timer, timer) { |
|
k_obj_core_init_and_link(K_OBJ_CORE(timer), &obj_type_timer); |
|
} |
|
|
|
return 0; |
|
} |
|
SYS_INIT(init_timer_obj_core_list, PRE_KERNEL_1, |
|
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); |
|
#endif /* CONFIG_OBJ_CORE_TIMER */
|
|
|