You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
4.7 KiB
197 lines
4.7 KiB
/* |
|
* Copyright (c) 2024 MASSDRIVER EI (massdriver.space) |
|
* Copyright (c) 2018-2023 Intel Corporation |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#include <limits.h> |
|
|
|
#include <zephyr/init.h> |
|
#include <zephyr/devicetree.h> |
|
#include <zephyr/drivers/timer/system_timer.h> |
|
#include <zephyr/sys_clock.h> |
|
#include <zephyr/spinlock.h> |
|
#include <zephyr/irq.h> |
|
|
|
#define DT_DRV_COMPAT riscv_machine_timer |
|
|
|
#define MTIME_REG DT_INST_REG_ADDR_BY_IDX(0, 0) |
|
#define MTIMECMP_REG DT_INST_REG_ADDR_BY_IDX(0, 1) |
|
#define TIMER_IRQN DT_INST_IRQN(0) |
|
|
|
#define CYC_PER_TICK (uint32_t)(sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
|
|
|
/* the unsigned long cast limits divisions to native CPU register width */ |
|
#define cycle_diff_t unsigned long |
|
#define CYCLE_DIFF_MAX (~(cycle_diff_t)0) |
|
|
|
/* |
|
* We have two constraints on the maximum number of cycles we can wait for. |
|
* |
|
* 1) sys_clock_announce() accepts at most INT32_MAX ticks. |
|
* |
|
* 2) The number of cycles between two reports must fit in a cycle_diff_t |
|
* variable before converting it to ticks. |
|
* |
|
* Then: |
|
* |
|
* 3) Pick the smallest between (1) and (2). |
|
* |
|
* 4) Take into account some room for the unavoidable IRQ servicing latency. |
|
* Let's use 3/4 of the max range. |
|
* |
|
* Finally let's add the LSB value to the result so to clear out a bunch of |
|
* consecutive set bits coming from the original max values to produce a |
|
* nicer literal for assembly generation. |
|
*/ |
|
#define CYCLES_MAX_1 ((uint64_t)INT32_MAX * (uint64_t)CYC_PER_TICK) |
|
#define CYCLES_MAX_2 ((uint64_t)CYCLE_DIFF_MAX) |
|
#define CYCLES_MAX_3 MIN(CYCLES_MAX_1, CYCLES_MAX_2) |
|
#define CYCLES_MAX_4 (CYCLES_MAX_3 / 2 + CYCLES_MAX_3 / 4) |
|
#define CYCLES_MAX (CYCLES_MAX_4 + LSB_GET(CYCLES_MAX_4)) |
|
|
|
static struct k_spinlock lock; |
|
static uint64_t last_count; |
|
static uint64_t last_ticks; |
|
static uint32_t last_elapsed; |
|
|
|
#if defined(CONFIG_TEST) |
|
const int32_t z_sys_timer_irq_for_test = TIMER_IRQN; |
|
#endif |
|
|
|
static uintptr_t get_hart_mtimecmp(void) |
|
{ |
|
return MTIMECMP_REG + (arch_proc_id() * 8); |
|
} |
|
|
|
static void set_mtimecmp(uint64_t time) |
|
{ |
|
#ifdef CONFIG_64BIT |
|
*(volatile uint64_t *)get_hart_mtimecmp() = time; |
|
#else |
|
volatile uint32_t *r = (uint32_t *)get_hart_mtimecmp(); |
|
|
|
/* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit, |
|
* but are NOT internally latched for multiword transfers. So |
|
* we have to be careful about sequencing to avoid triggering |
|
* spurious interrupts: always set the high word to a max |
|
* value first. |
|
*/ |
|
r[1] = 0xffffffff; |
|
r[0] = (uint32_t)time; |
|
r[1] = (uint32_t)(time >> 32); |
|
#endif |
|
} |
|
|
|
static uint64_t mtime(void) |
|
{ |
|
#ifdef CONFIG_64BIT |
|
return *(volatile uint64_t *)MTIME_REG; |
|
#else |
|
volatile uint32_t *r = (uint32_t *)MTIME_REG; |
|
uint32_t lo, hi; |
|
|
|
/* Likewise, must guard against rollover when reading */ |
|
do { |
|
hi = r[1]; |
|
lo = r[0]; |
|
} while (r[1] != hi); |
|
|
|
return (((uint64_t)hi) << 32) | lo; |
|
#endif |
|
} |
|
|
|
static void timer_isr(const void *arg) |
|
{ |
|
ARG_UNUSED(arg); |
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
|
|
uint64_t now = mtime(); |
|
uint64_t dcycles = now - last_count; |
|
uint32_t dticks = (cycle_diff_t)dcycles / CYC_PER_TICK; |
|
|
|
last_count += (cycle_diff_t)dticks * CYC_PER_TICK; |
|
last_ticks += dticks; |
|
last_elapsed = 0; |
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
|
uint64_t next = last_count + CYC_PER_TICK; |
|
|
|
set_mtimecmp(next); |
|
} |
|
|
|
k_spin_unlock(&lock, key); |
|
sys_clock_announce(dticks); |
|
} |
|
|
|
void sys_clock_set_timeout(int32_t ticks, bool idle) |
|
{ |
|
ARG_UNUSED(idle); |
|
|
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
|
return; |
|
} |
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
uint64_t cyc; |
|
|
|
if (ticks == K_TICKS_FOREVER) { |
|
cyc = last_count + CYCLES_MAX; |
|
} else { |
|
cyc = (last_ticks + last_elapsed + ticks) * CYC_PER_TICK; |
|
if ((cyc - last_count) > CYCLES_MAX) { |
|
cyc = last_count + CYCLES_MAX; |
|
} |
|
} |
|
set_mtimecmp(cyc); |
|
|
|
k_spin_unlock(&lock, key); |
|
} |
|
|
|
uint32_t sys_clock_elapsed(void) |
|
{ |
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
|
return 0; |
|
} |
|
|
|
k_spinlock_key_t key = k_spin_lock(&lock); |
|
uint64_t now = mtime(); |
|
uint64_t dcycles = now - last_count; |
|
uint32_t dticks = (cycle_diff_t)dcycles / CYC_PER_TICK; |
|
|
|
last_elapsed = dticks; |
|
k_spin_unlock(&lock, key); |
|
return dticks; |
|
} |
|
|
|
uint32_t sys_clock_cycle_get_32(void) |
|
{ |
|
return ((uint32_t)mtime()) << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER; |
|
} |
|
|
|
uint64_t sys_clock_cycle_get_64(void) |
|
{ |
|
return mtime() << CONFIG_RISCV_MACHINE_TIMER_SYSTEM_CLOCK_DIVIDER; |
|
} |
|
|
|
static int sys_clock_driver_init(void) |
|
{ |
|
IRQ_CONNECT(TIMER_IRQN, 0, timer_isr, NULL, 0); |
|
last_ticks = mtime() / CYC_PER_TICK; |
|
last_count = last_ticks * CYC_PER_TICK; |
|
set_mtimecmp(last_count + CYC_PER_TICK); |
|
irq_enable(TIMER_IRQN); |
|
return 0; |
|
} |
|
|
|
#ifdef CONFIG_SMP |
|
void smp_timer_init(void) |
|
{ |
|
set_mtimecmp(last_count + CYC_PER_TICK); |
|
irq_enable(TIMER_IRQN); |
|
} |
|
#endif |
|
|
|
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);
|
|
|