Primary Git Repository for the Zephyr Project. Zephyr is a new generation, scalable, optimized, secure RTOS for multiple hardware architectures.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

554 lines
16 KiB

/*
* Copyright (c) 2018, Cue Health Inc
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <nrfx_pwm.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/pm/device.h>
#include <zephyr/drivers/pinctrl.h>
#include <soc.h>
#include <hal/nrf_gpio.h>
#include <stdbool.h>
#include <zephyr/linker/devicetree_regions.h>
#include <zephyr/cache.h>
#include <zephyr/mem_mgmt/mem_attr.h>
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
#ifdef CONFIG_SOC_NRF54H20_GPD
#include <nrf/gpd.h>
#endif
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(pwm_nrfx, CONFIG_PWM_LOG_LEVEL);
/* NRFX_PWM_NRF52_ANOMALY_109_WORKAROUND_ENABLED can be undefined or defined
* to 0 or 1, hence the use of #if IS_ENABLED().
*/
#if IS_ENABLED(NRFX_PWM_NRF52_ANOMALY_109_WORKAROUND_ENABLED)
#define ANOMALY_109_EGU_IRQ_CONNECT(idx) _EGU_IRQ_CONNECT(idx)
#define _EGU_IRQ_CONNECT(idx) \
extern void nrfx_egu_##idx##_irq_handler(void); \
IRQ_CONNECT(DT_IRQN(DT_NODELABEL(egu##idx)), \
DT_IRQ(DT_NODELABEL(egu##idx), priority), \
nrfx_isr, nrfx_egu_##idx##_irq_handler, 0)
#else
#define ANOMALY_109_EGU_IRQ_CONNECT(idx)
#endif
#define PWM(dev_idx) DT_NODELABEL(pwm##dev_idx)
#define PWM_PROP(dev_idx, prop) DT_PROP(PWM(dev_idx), prop)
#define PWM_HAS_PROP(idx, prop) DT_NODE_HAS_PROP(PWM(idx), prop)
#define PWM_NRFX_IS_FAST(unused, prefix, idx, _) \
COND_CODE_1(DT_NODE_HAS_STATUS_OKAY(PWM(idx)), \
(COND_CODE_1(PWM_HAS_PROP(idx, power_domains), \
(IS_EQ(DT_PHA(PWM(idx), power_domains, id), NRF_GPD_FAST_ACTIVE1)), \
(0))), (0))
#if NRFX_FOREACH_PRESENT(PWM, PWM_NRFX_IS_FAST, (||), (0))
#define PWM_NRFX_FAST_PRESENT 1
#endif
#if defined(PWM_NRFX_FAST_PRESENT) && CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL
#define PWM_NRFX_USE_CLOCK_CONTROL 1
#endif
#define PWM_NRFX_CH_POLARITY_MASK BIT(15)
#define PWM_NRFX_CH_COMPARE_MASK BIT_MASK(15)
#define PWM_NRFX_CH_VALUE(compare_value, inverted) \
(compare_value | (inverted ? 0 : PWM_NRFX_CH_POLARITY_MASK))
struct pwm_nrfx_config {
nrfx_pwm_t pwm;
nrfx_pwm_config_t initial_config;
nrf_pwm_sequence_t seq;
const struct pinctrl_dev_config *pcfg;
uint32_t clock_freq;
#ifdef CONFIG_DCACHE
uint32_t mem_attr;
#endif
#ifdef PWM_NRFX_USE_CLOCK_CONTROL
const struct device *clk_dev;
struct nrf_clock_spec clk_spec;
#endif
};
struct pwm_nrfx_data {
uint32_t period_cycles;
/* Bit mask indicating channels that need the PWM generation. */
uint8_t pwm_needed;
uint8_t prescaler;
bool stop_requested;
#ifdef PWM_NRFX_USE_CLOCK_CONTROL
bool clock_requested;
#endif
};
/* Ensure the pwm_needed bit mask can accommodate all available channels. */
#if (NRF_PWM_CHANNEL_COUNT > 8)
#error "Current implementation supports maximum 8 channels."
#endif
#ifdef PWM_NRFX_FAST_PRESENT
static bool pwm_is_fast(const struct pwm_nrfx_config *config)
{
return config->clock_freq > MHZ(16);
}
#else
static bool pwm_is_fast(const struct pwm_nrfx_config *config)
{
return false;
}
#endif
static uint16_t *seq_values_ptr_get(const struct device *dev)
{
const struct pwm_nrfx_config *config = dev->config;
return (uint16_t *)config->seq.values.p_raw;
}
static void pwm_handler(nrfx_pwm_evt_type_t event_type, void *p_context)
{
ARG_UNUSED(event_type);
ARG_UNUSED(p_context);
}
static bool pwm_period_check_and_set(const struct device *dev,
uint32_t channel, uint32_t period_cycles)
{
const struct pwm_nrfx_config *config = dev->config;
struct pwm_nrfx_data *data = dev->data;
uint8_t prescaler;
uint32_t countertop;
/* If the currently configured period matches the requested one,
* nothing more needs to be done.
*/
if (period_cycles == data->period_cycles) {
return true;
}
/* If any other channel is driven by the PWM peripheral, the period
* that is currently set cannot be changed, as this would influence
* the output for that channel.
*/
if ((data->pwm_needed & ~BIT(channel)) != 0) {
LOG_ERR("Incompatible period.");
return false;
}
/* Try to find a prescaler that will allow setting the requested period
* after prescaling as the countertop value for the PWM peripheral.
*/
prescaler = 0;
countertop = period_cycles;
do {
if (countertop <= PWM_COUNTERTOP_COUNTERTOP_Msk) {
data->period_cycles = period_cycles;
data->prescaler = prescaler;
nrf_pwm_configure(config->pwm.p_reg,
data->prescaler,
config->initial_config.count_mode,
(uint16_t)countertop);
return true;
}
countertop >>= 1;
++prescaler;
} while (prescaler <= PWM_PRESCALER_PRESCALER_Msk);
LOG_ERR("Prescaler for period_cycles %u not found.", period_cycles);
return false;
}
static bool channel_psel_get(uint32_t channel, uint32_t *psel,
const struct pwm_nrfx_config *config)
{
*psel = nrf_pwm_pin_get(config->pwm.p_reg, (uint8_t)channel);
return (((*psel & PWM_PSEL_OUT_CONNECT_Msk) >> PWM_PSEL_OUT_CONNECT_Pos)
== PWM_PSEL_OUT_CONNECT_Connected);
}
static int stop_pwm(const struct device *dev)
{
const struct pwm_nrfx_config *config = dev->config;
/* Don't wait here for the peripheral to actually stop. Instead,
* ensure it is stopped before starting the next playback.
*/
nrfx_pwm_stop(&config->pwm, false);
#if PWM_NRFX_USE_CLOCK_CONTROL
struct pwm_nrfx_data *data = dev->data;
if (data->clock_requested) {
int ret = nrf_clock_control_release(config->clk_dev, &config->clk_spec);
if (ret < 0) {
LOG_ERR("Global HSFLL release failed: %d", ret);
return ret;
}
data->clock_requested = false;
}
#endif
return 0;
}
static int pwm_nrfx_set_cycles(const struct device *dev, uint32_t channel,
uint32_t period_cycles, uint32_t pulse_cycles,
pwm_flags_t flags)
{
/* We assume here that period_cycles will always be 16MHz
* peripheral clock. Since pwm_nrfx_get_cycles_per_sec() function might
* be removed, see ISSUE #6958.
* TODO: Remove this comment when issue has been resolved.
*/
const struct pwm_nrfx_config *config = dev->config;
struct pwm_nrfx_data *data = dev->data;
uint16_t compare_value;
bool inverted = (flags & PWM_POLARITY_INVERTED);
bool needs_pwm = false;
if (channel >= NRF_PWM_CHANNEL_COUNT) {
LOG_ERR("Invalid channel: %u.", channel);
return -EINVAL;
}
/* If this PWM is in center-aligned mode, pulse and period lengths
* are effectively doubled by the up-down count, so halve them here
* to compensate.
*/
if (config->initial_config.count_mode == NRF_PWM_MODE_UP_AND_DOWN) {
period_cycles /= 2;
pulse_cycles /= 2;
}
if (pulse_cycles == 0) {
/* Constantly inactive (duty 0%). */
compare_value = 0;
} else if (pulse_cycles >= period_cycles) {
/* Constantly active (duty 100%). */
/* This value is always greater than or equal to COUNTERTOP. */
compare_value = PWM_NRFX_CH_COMPARE_MASK;
} else {
/* PWM generation needed. Check if the requested period matches
* the one that is currently set, or the PWM peripheral can be
* reconfigured accordingly.
*/
if (!pwm_period_check_and_set(dev, channel, period_cycles)) {
return -EINVAL;
}
compare_value = (uint16_t)(pulse_cycles >> data->prescaler);
needs_pwm = true;
}
seq_values_ptr_get(dev)[channel] = PWM_NRFX_CH_VALUE(compare_value, inverted);
#ifdef CONFIG_DCACHE
if (config->mem_attr & DT_MEM_CACHEABLE) {
sys_cache_data_flush_range(seq_values_ptr_get(dev), config->seq.length);
}
#endif
LOG_DBG("channel %u, pulse %u, period %u, prescaler: %u.",
channel, pulse_cycles, period_cycles, data->prescaler);
/* If this channel does not need to be driven by the PWM peripheral
* because its state is to be constant (duty 0% or 100%), set properly
* the GPIO configuration for its output pin. This will provide
* the correct output state for this channel when the PWM peripheral
* is stopped.
*/
if (!needs_pwm) {
uint32_t psel;
if (channel_psel_get(channel, &psel, config)) {
uint32_t out_level = (pulse_cycles == 0) ? 0 : 1;
if (inverted) {
out_level ^= 1;
}
/* Output of fast PWM instance is directly connected to GPIO pads,
* thus it cannot controlled by GPIO. Use regular 0%/100% duty cycle
* playback instead.
*/
#ifdef PWM_NRFX_FAST_PRESENT
if (pwm_is_fast(config)) {
nrfx_pwm_simple_playback(&config->pwm, &config->seq, 1,
NRFX_PWM_FLAG_NO_EVT_FINISHED);
} else {
#else
{
#endif
nrf_gpio_pin_write(psel, out_level);
}
}
data->pwm_needed &= ~BIT(channel);
} else {
data->pwm_needed |= BIT(channel);
}
/* If the PWM generation is not needed for any channel (all are set
* to constant inactive or active state), stop the PWM peripheral.
* Otherwise, request a playback of the defined sequence so that
* the PWM peripheral loads `seq_values` into its internal compare
* registers and drives its outputs accordingly.
*/
if (data->pwm_needed == 0) {
if (pwm_is_fast(config)) {
#if PWM_NRFX_USE_CLOCK_CONTROL
if (data->clock_requested) {
int ret = nrf_clock_control_release(config->clk_dev,
&config->clk_spec);
if (ret < 0) {
LOG_ERR("Global HSFLL release failed: %d", ret);
return ret;
}
data->clock_requested = false;
}
#endif
return 0;
}
int ret = stop_pwm(dev);
if (ret < 0) {
LOG_ERR("PWM stop failed: %d", ret);
return ret;
}
data->stop_requested = true;
} else {
if (data->stop_requested) {
data->stop_requested = false;
/* After a stop is requested, the PWM peripheral stops
* pulse generation at the end of the current period,
* and till that moment, it ignores any start requests,
* so ensure here that it is stopped.
*/
while (!nrfx_pwm_stopped_check(&config->pwm)) {
}
}
/* It is sufficient to play the sequence once without looping.
* The PWM generation will continue with the loaded values
* until another playback is requested (new values will be
* loaded then) or the PWM peripheral is stopped.
*/
#if PWM_NRFX_USE_CLOCK_CONTROL
if (config->clk_dev && !data->clock_requested) {
int ret = nrf_clock_control_request_sync(config->clk_dev,
&config->clk_spec,
K_FOREVER);
if (ret < 0) {
LOG_ERR("Global HSFLL request failed: %d", ret);
return ret;
}
data->clock_requested = true;
}
#endif
nrfx_pwm_simple_playback(&config->pwm, &config->seq, 1,
NRFX_PWM_FLAG_NO_EVT_FINISHED);
}
return 0;
}
static int pwm_nrfx_get_cycles_per_sec(const struct device *dev, uint32_t channel,
uint64_t *cycles)
{
const struct pwm_nrfx_config *config = dev->config;
*cycles = config->clock_freq;
return 0;
}
static DEVICE_API(pwm, pwm_nrfx_drv_api_funcs) = {
.set_cycles = pwm_nrfx_set_cycles,
.get_cycles_per_sec = pwm_nrfx_get_cycles_per_sec,
};
static int pwm_resume(const struct device *dev)
{
const struct pwm_nrfx_config *config = dev->config;
uint8_t initially_inverted = 0;
(void)pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
#ifdef CONFIG_SOC_NRF54H20_GPD
nrf_gpd_retain_pins_set(config->pcfg, false);
#endif
for (size_t i = 0; i < NRF_PWM_CHANNEL_COUNT; i++) {
uint32_t psel;
if (channel_psel_get(i, &psel, config)) {
/* Mark channels as inverted according to what initial
* state of their outputs has been set by pinctrl (high
* idle state means that the channel is inverted).
*/
initially_inverted |= nrf_gpio_pin_out_read(psel) ?
BIT(i) : 0;
}
}
for (size_t i = 0; i < NRF_PWM_CHANNEL_COUNT; i++) {
bool inverted = initially_inverted & BIT(i);
seq_values_ptr_get(dev)[i] = PWM_NRFX_CH_VALUE(0, inverted);
}
return 0;
}
static int pwm_suspend(const struct device *dev)
{
const struct pwm_nrfx_config *config = dev->config;
int ret = stop_pwm(dev);
if (ret < 0) {
LOG_ERR("PWM stop failed: %d", ret);
return ret;
}
while (!nrfx_pwm_stopped_check(&config->pwm)) {
}
#ifdef CONFIG_SOC_NRF54H20_GPD
nrf_gpd_retain_pins_set(config->pcfg, true);
#endif
memset(dev->data, 0, sizeof(struct pwm_nrfx_data));
(void)pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP);
return 0;
}
static int pwm_nrfx_pm_action(const struct device *dev,
enum pm_device_action action)
{
if (action == PM_DEVICE_ACTION_RESUME) {
return pwm_resume(dev);
} else if (IS_ENABLED(CONFIG_PM_DEVICE) && (action == PM_DEVICE_ACTION_SUSPEND)) {
return pwm_suspend(dev);
} else {
return -ENOTSUP;
}
return 0;
}
static int pwm_nrfx_init(const struct device *dev)
{
const struct pwm_nrfx_config *config = dev->config;
nrfx_err_t err;
ANOMALY_109_EGU_IRQ_CONNECT(NRFX_PWM_NRF52_ANOMALY_109_EGU_INSTANCE);
if (IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME)) {
(void)pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP);
}
err = nrfx_pwm_init(&config->pwm, &config->initial_config, pwm_handler, dev->data);
if (err != NRFX_SUCCESS) {
LOG_ERR("Failed to initialize device: %s", dev->name);
return -EBUSY;
}
return pm_device_driver_init(dev, pwm_nrfx_pm_action);
}
#define PWM_MEM_REGION(idx) DT_PHANDLE(PWM(idx), memory_regions)
#define PWM_MEMORY_SECTION(idx) \
COND_CODE_1(PWM_HAS_PROP(idx, memory_regions), \
(__attribute__((__section__(LINKER_DT_NODE_REGION_NAME( \
PWM_MEM_REGION(idx)))))), \
())
#define PWM_GET_MEM_ATTR(idx) \
COND_CODE_1(PWM_HAS_PROP(idx, memory_regions), \
(DT_PROP_OR(PWM_MEM_REGION(idx), zephyr_memory_attr, 0)), (0))
/* Fast instances depend on the global HSFLL clock controller (as they need
* to request the highest frequency from it to operate correctly), so they
* must be initialized after that controller driver, hence the default PWM
* initialization priority may be too early for them.
*/
#if defined(CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL_INIT_PRIORITY) && \
CONFIG_PWM_INIT_PRIORITY < CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL_INIT_PRIORITY
#define PWM_INIT_PRIORITY(idx) \
COND_CODE_1(PWM_NRFX_IS_FAST(_, /*empty*/, idx, _), \
(UTIL_INC(CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL_INIT_PRIORITY)), \
(CONFIG_PWM_INIT_PRIORITY))
#else
#define PWM_INIT_PRIORITY(idx) CONFIG_PWM_INIT_PRIORITY
#endif
#define PWM_NRFX_DEVICE(idx) \
NRF_DT_CHECK_NODE_HAS_PINCTRL_SLEEP(PWM(idx)); \
static struct pwm_nrfx_data pwm_nrfx_##idx##_data; \
static uint16_t pwm_##idx##_seq_values[NRF_PWM_CHANNEL_COUNT] \
PWM_MEMORY_SECTION(idx); \
PINCTRL_DT_DEFINE(PWM(idx)); \
static const struct pwm_nrfx_config pwm_nrfx_##idx##_config = { \
.pwm = NRFX_PWM_INSTANCE(idx), \
.initial_config = { \
.skip_gpio_cfg = true, \
.skip_psel_cfg = true, \
.base_clock = NRF_PWM_CLK_1MHz, \
.count_mode = (PWM_PROP(idx, center_aligned) \
? NRF_PWM_MODE_UP_AND_DOWN \
: NRF_PWM_MODE_UP), \
.top_value = 1000, \
.load_mode = NRF_PWM_LOAD_INDIVIDUAL, \
.step_mode = NRF_PWM_STEP_TRIGGERED, \
}, \
.seq.values.p_raw = pwm_##idx##_seq_values, \
.seq.length = NRF_PWM_CHANNEL_COUNT, \
.pcfg = PINCTRL_DT_DEV_CONFIG_GET(PWM(idx)), \
.clock_freq = COND_CODE_1(DT_CLOCKS_HAS_IDX(PWM(idx), 0), \
(DT_PROP(DT_CLOCKS_CTLR(PWM(idx)), clock_frequency)), \
(16ul * 1000ul * 1000ul)), \
IF_ENABLED(CONFIG_DCACHE, \
(.mem_attr = PWM_GET_MEM_ATTR(idx),)) \
IF_ENABLED(PWM_NRFX_USE_CLOCK_CONTROL, \
(.clk_dev = PWM_NRFX_IS_FAST(_, /*empty*/, idx, _) \
? DEVICE_DT_GET(DT_CLOCKS_CTLR(PWM(idx))) \
: NULL, \
.clk_spec = { \
.frequency = \
NRF_PERIPH_GET_FREQUENCY(PWM(idx)), \
},)) \
}; \
static int pwm_nrfx_init##idx(const struct device *dev) \
{ \
IRQ_CONNECT(DT_IRQN(PWM(idx)), DT_IRQ(PWM(idx), priority), \
nrfx_isr, nrfx_pwm_##idx##_irq_handler, 0); \
return pwm_nrfx_init(dev); \
}; \
PM_DEVICE_DT_DEFINE(PWM(idx), pwm_nrfx_pm_action); \
DEVICE_DT_DEFINE(PWM(idx), \
pwm_nrfx_init##idx, PM_DEVICE_DT_GET(PWM(idx)), \
&pwm_nrfx_##idx##_data, \
&pwm_nrfx_##idx##_config, \
POST_KERNEL, PWM_INIT_PRIORITY(idx), \
&pwm_nrfx_drv_api_funcs)
#define COND_PWM_NRFX_DEVICE(unused, prefix, i, _) \
IF_ENABLED(CONFIG_HAS_HW_NRF_PWM##prefix##i, (PWM_NRFX_DEVICE(prefix##i);))
NRFX_FOREACH_PRESENT(PWM, COND_PWM_NRFX_DEVICE, (), (), _)