You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
748 lines
21 KiB
748 lines
21 KiB
/* |
|
* Copyright (c) 2022 Espressif Systems (Shanghai) CO LTD |
|
* |
|
* SPDX-License-Identifier: Apache-2.0 |
|
*/ |
|
|
|
#define DT_DRV_COMPAT espressif_esp32_adc |
|
|
|
#include <errno.h> |
|
#include <hal/adc_hal.h> |
|
#include <hal/adc_types.h> |
|
#include <soc/adc_periph.h> |
|
#include <esp_adc_cal.h> |
|
#include <esp_clk_tree.h> |
|
#include <esp_private/periph_ctrl.h> |
|
#include <esp_private/sar_periph_ctrl.h> |
|
#include <esp_private/adc_share_hw_ctrl.h> |
|
|
|
#if defined(CONFIG_ADC_ESP32_DMA) |
|
#if !SOC_GDMA_SUPPORTED |
|
#error "SoCs without GDMA peripheral are not supported!" |
|
#endif |
|
#include <zephyr/drivers/dma.h> |
|
#include <zephyr/drivers/dma/dma_esp32.h> |
|
#endif |
|
|
|
#include <zephyr/kernel.h> |
|
#include <zephyr/device.h> |
|
#include <zephyr/drivers/adc.h> |
|
#include <zephyr/drivers/gpio.h> |
|
|
|
#include <zephyr/logging/log.h> |
|
LOG_MODULE_REGISTER(adc_esp32, CONFIG_ADC_LOG_LEVEL); |
|
|
|
#define ADC_RESOLUTION_MIN SOC_ADC_DIGI_MIN_BITWIDTH |
|
#define ADC_RESOLUTION_MAX SOC_ADC_DIGI_MAX_BITWIDTH |
|
|
|
#if CONFIG_SOC_SERIES_ESP32 |
|
#define ADC_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_VREF |
|
/* Due to significant measurement discrepancy in higher voltage range, we |
|
* clip the value instead of yet another correction. The IDF implementation |
|
* for ESP32-S2 is doing it, so we copy that approach in Zephyr driver |
|
*/ |
|
#define ADC_CLIP_MVOLT_11DB 2550 |
|
#else |
|
#define ADC_CALI_SCHEME ESP_ADC_CAL_VAL_EFUSE_TP |
|
#endif |
|
|
|
/* Validate if resolution in bits is within allowed values */ |
|
#define VALID_RESOLUTION(r) ((r) >= ADC_RESOLUTION_MIN && (r) <= ADC_RESOLUTION_MAX) |
|
#define INVALID_RESOLUTION(r) (!VALID_RESOLUTION(r)) |
|
|
|
/* Default internal reference voltage */ |
|
#define ADC_ESP32_DEFAULT_VREF_INTERNAL (1100) |
|
|
|
#define ADC_DMA_BUFFER_SIZE DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED |
|
|
|
struct adc_esp32_conf { |
|
adc_unit_t unit; |
|
uint8_t channel_count; |
|
#if defined(CONFIG_ADC_ESP32_DMA) |
|
const struct device *gpio_port; |
|
const struct device *dma_dev; |
|
uint8_t dma_channel; |
|
#endif /* defined(CONFIG_ADC_ESP32_DMA) */ |
|
}; |
|
|
|
struct adc_esp32_data { |
|
adc_atten_t attenuation[SOC_ADC_MAX_CHANNEL_NUM]; |
|
uint8_t resolution[SOC_ADC_MAX_CHANNEL_NUM]; |
|
esp_adc_cal_characteristics_t chars[SOC_ADC_MAX_CHANNEL_NUM]; |
|
uint16_t meas_ref_internal; |
|
uint16_t *buffer; |
|
bool calibrate; |
|
#if defined(CONFIG_ADC_ESP32_DMA) |
|
adc_hal_dma_ctx_t adc_hal_dma_ctx; |
|
uint8_t *dma_buffer; |
|
struct k_sem dma_conv_wait_lock; |
|
#endif /* defined(CONFIG_ADC_ESP32_DMA) */ |
|
}; |
|
|
|
/* Convert zephyr,gain property to the ESP32 attenuation */ |
|
static inline int gain_to_atten(enum adc_gain gain, adc_atten_t *atten) |
|
{ |
|
switch (gain) { |
|
case ADC_GAIN_1: |
|
*atten = ADC_ATTEN_DB_0; |
|
break; |
|
case ADC_GAIN_4_5: |
|
*atten = ADC_ATTEN_DB_2_5; |
|
break; |
|
case ADC_GAIN_1_2: |
|
*atten = ADC_ATTEN_DB_6; |
|
break; |
|
case ADC_GAIN_1_4: |
|
*atten = ADC_ATTEN_DB_11; |
|
break; |
|
default: |
|
return -ENOTSUP; |
|
} |
|
return 0; |
|
} |
|
|
|
#if !defined(CONFIG_ADC_ESP32_DMA) |
|
/* Convert voltage by inverted attenuation to support zephyr gain values */ |
|
static void atten_to_gain(adc_atten_t atten, uint32_t *val_mv) |
|
{ |
|
if (!val_mv) { |
|
return; |
|
} |
|
switch (atten) { |
|
case ADC_ATTEN_DB_2_5: |
|
*val_mv = (*val_mv * 4) / 5; /* 1/ADC_GAIN_4_5 */ |
|
break; |
|
case ADC_ATTEN_DB_6: |
|
*val_mv = *val_mv >> 1; /* 1/ADC_GAIN_1_2 */ |
|
break; |
|
case ADC_ATTEN_DB_11: |
|
*val_mv = *val_mv / 4; /* 1/ADC_GAIN_1_4 */ |
|
break; |
|
case ADC_ATTEN_DB_0: /* 1/ADC_GAIN_1 */ |
|
default: |
|
break; |
|
} |
|
} |
|
#endif /* !defined(CONFIG_ADC_ESP32_DMA) */ |
|
|
|
static void adc_hw_calibration(adc_unit_t unit) |
|
{ |
|
#if SOC_ADC_CALIBRATION_V1_SUPPORTED |
|
adc_hal_calibration_init(unit); |
|
for (int j = 0; j < SOC_ADC_ATTEN_NUM; j++) { |
|
adc_calc_hw_calibration_code(unit, j); |
|
#if SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED |
|
/* Load the channel compensation from efuse */ |
|
for (int k = 0; k < SOC_ADC_CHANNEL_NUM(unit); k++) { |
|
adc_load_hw_calibration_chan_compens(unit, k, j); |
|
} |
|
#endif /* SOC_ADC_CALIB_CHAN_COMPENS_SUPPORTED */ |
|
} |
|
#endif /* SOC_ADC_CALIBRATION_V1_SUPPORTED */ |
|
} |
|
|
|
static bool adc_calibration_init(const struct device *dev) |
|
{ |
|
struct adc_esp32_data *data = dev->data; |
|
|
|
switch (esp_adc_cal_check_efuse(ADC_CALI_SCHEME)) { |
|
case ESP_ERR_NOT_SUPPORTED: |
|
LOG_WRN("Skip software calibration - Not supported!"); |
|
break; |
|
case ESP_ERR_INVALID_VERSION: |
|
LOG_WRN("Skip software calibration - Invalid version!"); |
|
break; |
|
case ESP_OK: |
|
LOG_DBG("Software calibration possible"); |
|
return true; |
|
default: |
|
LOG_ERR("Invalid arg"); |
|
break; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
#if defined(CONFIG_ADC_ESP32_DMA) |
|
|
|
static void IRAM_ATTR adc_esp32_dma_conv_done(const struct device *dma_dev, void *user_data, |
|
uint32_t channel, int status) |
|
{ |
|
ARG_UNUSED(dma_dev); |
|
ARG_UNUSED(status); |
|
|
|
const struct device *dev = user_data; |
|
struct adc_esp32_data *data = dev->data; |
|
|
|
k_sem_give(&data->dma_conv_wait_lock); |
|
} |
|
|
|
static int adc_esp32_dma_start(const struct device *dev, uint8_t *buf, size_t len) |
|
{ |
|
const struct adc_esp32_conf *conf = dev->config; |
|
struct adc_esp32_data *data = dev->data; |
|
|
|
int err = 0; |
|
struct dma_config dma_cfg = {0}; |
|
struct dma_status dma_status = {0}; |
|
struct dma_block_config dma_blk = {0}; |
|
|
|
err = dma_get_status(conf->dma_dev, conf->dma_channel, &dma_status); |
|
if (err) { |
|
LOG_ERR("Unable to get dma channel[%u] status (%d)", |
|
(unsigned int)conf->dma_channel, err); |
|
return -EINVAL; |
|
} |
|
|
|
if (dma_status.busy) { |
|
LOG_ERR("dma channel[%u] is busy!", (unsigned int)conf->dma_channel); |
|
return -EBUSY; |
|
} |
|
|
|
unsigned int key = irq_lock(); |
|
|
|
dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY; |
|
dma_cfg.dma_callback = adc_esp32_dma_conv_done; |
|
dma_cfg.user_data = (void *)dev; |
|
dma_cfg.dma_slot = ESP_GDMA_TRIG_PERIPH_ADC0; |
|
dma_cfg.block_count = 1; |
|
dma_cfg.head_block = &dma_blk; |
|
dma_blk.block_size = len; |
|
dma_blk.dest_address = (uint32_t)buf; |
|
|
|
err = dma_config(conf->dma_dev, conf->dma_channel, &dma_cfg); |
|
if (err) { |
|
LOG_ERR("Error configuring dma (%d)", err); |
|
goto unlock; |
|
} |
|
|
|
err = dma_start(conf->dma_dev, conf->dma_channel); |
|
if (err) { |
|
LOG_ERR("Error starting dma (%d)", err); |
|
goto unlock; |
|
} |
|
|
|
unlock: |
|
irq_unlock(key); |
|
return err; |
|
} |
|
|
|
static int adc_esp32_dma_stop(const struct device *dev) |
|
{ |
|
const struct adc_esp32_conf *conf = dev->config; |
|
unsigned int key = irq_lock(); |
|
int err = 0; |
|
|
|
err = dma_stop(conf->dma_dev, conf->dma_channel); |
|
if (err) { |
|
LOG_ERR("Error stopping dma (%d)", err); |
|
} |
|
|
|
irq_unlock(key); |
|
return err; |
|
} |
|
|
|
static int adc_esp32_fill_digi_pattern(const struct device *dev, const struct adc_sequence *seq, |
|
void *pattern_config, uint32_t *pattern_len, uint32_t *unit_attenuation) |
|
{ |
|
const struct adc_esp32_conf *conf = dev->config; |
|
struct adc_esp32_data *data = dev->data; |
|
|
|
adc_digi_pattern_config_t *adc_digi_pattern_config = |
|
(adc_digi_pattern_config_t *)pattern_config; |
|
const uint32_t unit_atten_uninit = 999; |
|
uint32_t channel_mask = 1, channels_copy = seq->channels; |
|
|
|
*pattern_len = 0; |
|
*unit_attenuation = unit_atten_uninit; |
|
for (uint8_t channel_id = 0; channel_id < conf->channel_count; channel_id++) { |
|
if (channels_copy & channel_mask) { |
|
if (*unit_attenuation == unit_atten_uninit) { |
|
*unit_attenuation = data->attenuation[channel_id]; |
|
} else if (*unit_attenuation != data->attenuation[channel_id]) { |
|
LOG_ERR("Channel[%u] attenuation different of unit[%u] attenuation", |
|
(unsigned int)channel_id, (unsigned int)conf->unit); |
|
return -EINVAL; |
|
} |
|
|
|
adc_digi_pattern_config->atten = data->attenuation[channel_id]; |
|
adc_digi_pattern_config->channel = channel_id; |
|
adc_digi_pattern_config->unit = conf->unit; |
|
adc_digi_pattern_config->bit_width = seq->resolution; |
|
adc_digi_pattern_config++; |
|
|
|
*pattern_len += 1; |
|
if (*pattern_len > SOC_ADC_PATT_LEN_MAX) { |
|
LOG_ERR("Max pattern len is %d", SOC_ADC_PATT_LEN_MAX); |
|
return -EINVAL; |
|
} |
|
|
|
channels_copy &= ~channel_mask; |
|
if (!channels_copy) { |
|
break; |
|
} |
|
} |
|
channel_mask <<= 1; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void adc_esp32_digi_start(const struct device *dev, void *pattern_config, |
|
uint32_t pattern_len, uint32_t number_of_samplings, |
|
uint32_t sample_freq_hz, uint32_t unit_attenuation) |
|
{ |
|
const struct adc_esp32_conf *conf = dev->config; |
|
struct adc_esp32_data *data = dev->data; |
|
|
|
sar_periph_ctrl_adc_continuous_power_acquire(); |
|
adc_lock_acquire(conf->unit); |
|
|
|
#if SOC_ADC_CALIBRATION_V1_SUPPORTED |
|
adc_set_hw_calibration_code(conf->unit, unit_attenuation); |
|
#endif /* SOC_ADC_CALIBRATION_V1_SUPPORTED */ |
|
|
|
#if SOC_ADC_ARBITER_SUPPORTED |
|
if (conf->unit == ADC_UNIT_2) { |
|
adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); |
|
|
|
adc_hal_arbiter_config(&config); |
|
} |
|
#endif /* SOC_ADC_ARBITER_SUPPORTED */ |
|
|
|
adc_hal_digi_ctrlr_cfg_t adc_hal_digi_ctrlr_cfg; |
|
soc_module_clk_t clk_src = ADC_DIGI_CLK_SRC_DEFAULT; |
|
uint32_t clk_src_freq_hz = 0; |
|
|
|
esp_clk_tree_src_get_freq_hz(clk_src, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, |
|
&clk_src_freq_hz); |
|
|
|
adc_hal_digi_ctrlr_cfg.conv_mode = |
|
(conf->unit == ADC_UNIT_1)?ADC_CONV_SINGLE_UNIT_1:ADC_CONV_SINGLE_UNIT_2; |
|
adc_hal_digi_ctrlr_cfg.clk_src = clk_src; |
|
adc_hal_digi_ctrlr_cfg.clk_src_freq_hz = clk_src_freq_hz; |
|
adc_hal_digi_ctrlr_cfg.sample_freq_hz = sample_freq_hz; |
|
adc_hal_digi_ctrlr_cfg.adc_pattern = (adc_digi_pattern_config_t *)pattern_config; |
|
adc_hal_digi_ctrlr_cfg.adc_pattern_len = pattern_len; |
|
|
|
uint32_t number_of_adc_digi_samples = number_of_samplings * pattern_len; |
|
|
|
adc_hal_dma_config_t adc_hal_dma_config = { |
|
.dev = (void *)GDMA_LL_GET_HW(0), |
|
.eof_desc_num = 1, |
|
.eof_step = 1, |
|
.dma_chan = conf->dma_channel, |
|
.eof_num = number_of_adc_digi_samples, |
|
}; |
|
|
|
adc_hal_dma_ctx_config(&data->adc_hal_dma_ctx, &adc_hal_dma_config); |
|
|
|
adc_hal_set_controller(conf->unit, ADC_HAL_CONTINUOUS_READ_MODE); |
|
adc_hal_digi_init(&data->adc_hal_dma_ctx); |
|
adc_hal_digi_controller_config(&data->adc_hal_dma_ctx, &adc_hal_digi_ctrlr_cfg); |
|
adc_hal_digi_start(&data->adc_hal_dma_ctx, data->dma_buffer); |
|
} |
|
|
|
static void adc_esp32_digi_stop(const struct device *dev) |
|
{ |
|
const struct adc_esp32_conf *conf = dev->config; |
|
struct adc_esp32_data *data = dev->data; |
|
|
|
adc_hal_digi_dis_intr(&data->adc_hal_dma_ctx, ADC_HAL_DMA_INTR_MASK); |
|
adc_hal_digi_clr_intr(&data->adc_hal_dma_ctx, ADC_HAL_DMA_INTR_MASK); |
|
adc_hal_digi_stop(&data->adc_hal_dma_ctx); |
|
adc_hal_digi_deinit(&data->adc_hal_dma_ctx); |
|
adc_lock_release(conf->unit); |
|
sar_periph_ctrl_adc_continuous_power_release(); |
|
} |
|
|
|
static void adc_esp32_fill_seq_buffer(const void *seq_buffer, const void *dma_buffer, |
|
uint32_t number_of_samples) |
|
{ |
|
uint16_t *sample = (uint16_t *)seq_buffer; |
|
adc_digi_output_data_t *digi_data = (adc_digi_output_data_t *)dma_buffer; |
|
|
|
for (uint32_t k = 0; k < number_of_samples; k++) { |
|
*sample++ = (uint16_t)(digi_data++)->type2.data; |
|
} |
|
} |
|
|
|
static int adc_esp32_wait_for_dma_conv_done(const struct device *dev) |
|
{ |
|
struct adc_esp32_data *data = dev->data; |
|
int err = 0; |
|
|
|
err = k_sem_take(&data->dma_conv_wait_lock, K_FOREVER); |
|
if (err) { |
|
LOG_ERR("Error taking dma_conv_wait_lock (%d)", err); |
|
} |
|
|
|
return err; |
|
} |
|
|
|
#endif /* defined(CONFIG_ADC_ESP32_DMA) */ |
|
|
|
static int adc_esp32_read(const struct device *dev, const struct adc_sequence *seq) |
|
{ |
|
const struct adc_esp32_conf *conf = dev->config; |
|
struct adc_esp32_data *data = dev->data; |
|
int reading; |
|
uint32_t cal, cal_mv; |
|
|
|
uint8_t channel_id = find_lsb_set(seq->channels) - 1; |
|
|
|
if (seq->buffer_size < 2) { |
|
LOG_ERR("Sequence buffer space too low '%d'", seq->buffer_size); |
|
return -ENOMEM; |
|
} |
|
|
|
#if !defined(CONFIG_ADC_ESP32_DMA) |
|
if (seq->channels > BIT(channel_id)) { |
|
LOG_ERR("Multi-channel readings not supported"); |
|
return -ENOTSUP; |
|
} |
|
#endif /* !defined(CONFIG_ADC_ESP32_DMA) */ |
|
|
|
if (seq->options) { |
|
if (seq->options->extra_samplings) { |
|
LOG_ERR("Extra samplings not supported"); |
|
return -ENOTSUP; |
|
} |
|
|
|
#if !defined(CONFIG_ADC_ESP32_DMA) |
|
if (seq->options->interval_us) { |
|
LOG_ERR("Interval between samplings not supported"); |
|
return -ENOTSUP; |
|
} |
|
#endif /* !defined(CONFIG_ADC_ESP32_DMA) */ |
|
} |
|
|
|
if (INVALID_RESOLUTION(seq->resolution)) { |
|
LOG_ERR("unsupported resolution (%d)", seq->resolution); |
|
return -ENOTSUP; |
|
} |
|
|
|
if (seq->calibrate) { |
|
/* TODO: Does this mean actual Vref measurement on selected GPIO ?*/ |
|
LOG_ERR("calibration is not supported"); |
|
return -ENOTSUP; |
|
} |
|
|
|
data->resolution[channel_id] = seq->resolution; |
|
|
|
#if CONFIG_SOC_SERIES_ESP32C3 |
|
/* NOTE: nothing to set on ESP32C3 SoC */ |
|
if (conf->unit == ADC_UNIT_1) { |
|
adc1_config_width(ADC_WIDTH_BIT_DEFAULT); |
|
} |
|
#else |
|
adc_set_data_width(conf->unit, data->resolution[channel_id]); |
|
#endif /* CONFIG_SOC_SERIES_ESP32C3 */ |
|
|
|
#if !defined(CONFIG_ADC_ESP32_DMA) |
|
/* Read raw value */ |
|
if (conf->unit == ADC_UNIT_1) { |
|
reading = adc1_get_raw(channel_id); |
|
} |
|
if (conf->unit == ADC_UNIT_2) { |
|
if (adc2_get_raw(channel_id, ADC_WIDTH_BIT_DEFAULT, &reading)) { |
|
LOG_ERR("Conversion timeout on '%s' channel %d", dev->name, channel_id); |
|
return -ETIMEDOUT; |
|
} |
|
} |
|
|
|
/* Calibration scheme is available */ |
|
if (data->calibrate) { |
|
data->chars[channel_id].bit_width = data->resolution[channel_id]; |
|
/* Get corrected voltage output */ |
|
cal = cal_mv = esp_adc_cal_raw_to_voltage(reading, &data->chars[channel_id]); |
|
|
|
#if CONFIG_SOC_SERIES_ESP32 |
|
if (data->attenuation[channel_id] == ADC_ATTEN_DB_11) { |
|
if (cal > ADC_CLIP_MVOLT_11DB) { |
|
cal = ADC_CLIP_MVOLT_11DB; |
|
} |
|
} |
|
#endif /* CONFIG_SOC_SERIES_ESP32 */ |
|
|
|
/* Fit according to selected attenuation */ |
|
atten_to_gain(data->attenuation[channel_id], &cal); |
|
if (data->meas_ref_internal > 0) { |
|
cal = (cal << data->resolution[channel_id]) / data->meas_ref_internal; |
|
} |
|
} else { |
|
LOG_DBG("Using uncalibrated values!"); |
|
/* Uncalibrated raw value */ |
|
cal = reading; |
|
} |
|
|
|
/* Store result */ |
|
data->buffer = (uint16_t *) seq->buffer; |
|
data->buffer[0] = cal; |
|
|
|
#else /* !defined(CONFIG_ADC_ESP32_DMA) */ |
|
|
|
int err = 0; |
|
uint32_t adc_pattern_len, unit_attenuation; |
|
adc_digi_pattern_config_t adc_digi_pattern_config[SOC_ADC_MAX_CHANNEL_NUM]; |
|
|
|
err = adc_esp32_fill_digi_pattern(dev, seq, &adc_digi_pattern_config, |
|
&adc_pattern_len, &unit_attenuation); |
|
if (err || adc_pattern_len == 0) { |
|
return -EINVAL; |
|
} |
|
|
|
const struct adc_sequence_options *options = seq->options; |
|
uint32_t sample_freq_hz = SOC_ADC_SAMPLE_FREQ_THRES_HIGH, |
|
number_of_samplings = 1; |
|
|
|
if (options != NULL) { |
|
number_of_samplings = seq->buffer_size / (adc_pattern_len * sizeof(uint16_t)); |
|
|
|
if (options->interval_us) { |
|
sample_freq_hz = MHZ(1) / options->interval_us; |
|
} |
|
} |
|
|
|
if (!number_of_samplings) { |
|
LOG_ERR("buffer_size insufficient to store at least one set of samples!"); |
|
return -EINVAL; |
|
} |
|
|
|
if (sample_freq_hz < SOC_ADC_SAMPLE_FREQ_THRES_LOW || |
|
sample_freq_hz > SOC_ADC_SAMPLE_FREQ_THRES_HIGH) { |
|
LOG_ERR("ADC sampling frequency out of range: %uHz", sample_freq_hz); |
|
return -EINVAL; |
|
} |
|
|
|
uint32_t number_of_adc_samples = number_of_samplings * adc_pattern_len; |
|
uint32_t number_of_adc_dma_data_bytes = |
|
number_of_adc_samples * SOC_ADC_DIGI_DATA_BYTES_PER_CONV; |
|
|
|
if (number_of_adc_dma_data_bytes > ADC_DMA_BUFFER_SIZE) { |
|
LOG_ERR("dma buffer size insufficient to store a complete sequence!"); |
|
return -EINVAL; |
|
} |
|
|
|
err = adc_esp32_dma_start(dev, data->dma_buffer, number_of_adc_dma_data_bytes); |
|
if (err) { |
|
return err; |
|
} |
|
|
|
adc_esp32_digi_start(dev, &adc_digi_pattern_config, adc_pattern_len, number_of_samplings, |
|
sample_freq_hz, unit_attenuation); |
|
|
|
err = adc_esp32_wait_for_dma_conv_done(dev); |
|
if (err) { |
|
return err; |
|
} |
|
|
|
adc_esp32_digi_stop(dev); |
|
|
|
err = adc_esp32_dma_stop(dev); |
|
if (err) { |
|
return err; |
|
} |
|
|
|
adc_esp32_fill_seq_buffer(seq->buffer, data->dma_buffer, number_of_adc_samples); |
|
|
|
#endif /* !defined(CONFIG_ADC_ESP32_DMA) */ |
|
|
|
return 0; |
|
} |
|
|
|
#ifdef CONFIG_ADC_ASYNC |
|
static int adc_esp32_read_async(const struct device *dev, |
|
const struct adc_sequence *sequence, |
|
struct k_poll_signal *async) |
|
{ |
|
(void)(dev); |
|
(void)(sequence); |
|
(void)(async); |
|
|
|
return -ENOTSUP; |
|
} |
|
#endif /* CONFIG_ADC_ASYNC */ |
|
|
|
static int adc_esp32_channel_setup(const struct device *dev, const struct adc_channel_cfg *cfg) |
|
{ |
|
const struct adc_esp32_conf *conf = (const struct adc_esp32_conf *)dev->config; |
|
struct adc_esp32_data *data = (struct adc_esp32_data *) dev->data; |
|
int err; |
|
|
|
if (cfg->channel_id >= conf->channel_count) { |
|
LOG_ERR("Unsupported channel id '%d'", cfg->channel_id); |
|
return -ENOTSUP; |
|
} |
|
|
|
if (cfg->reference != ADC_REF_INTERNAL) { |
|
LOG_ERR("Unsupported channel reference '%d'", cfg->reference); |
|
return -ENOTSUP; |
|
} |
|
|
|
if (cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) { |
|
LOG_ERR("Unsupported acquisition_time '%d'", cfg->acquisition_time); |
|
return -ENOTSUP; |
|
} |
|
|
|
if (cfg->differential) { |
|
LOG_ERR("Differential channels are not supported"); |
|
return -ENOTSUP; |
|
} |
|
|
|
if (gain_to_atten(cfg->gain, &data->attenuation[cfg->channel_id])) { |
|
LOG_ERR("Unsupported gain value '%d'", cfg->gain); |
|
return -ENOTSUP; |
|
} |
|
|
|
/* Prepare channel */ |
|
if (conf->unit == ADC_UNIT_1) { |
|
adc1_config_channel_atten(cfg->channel_id, data->attenuation[cfg->channel_id]); |
|
} |
|
if (conf->unit == ADC_UNIT_2) { |
|
adc2_config_channel_atten(cfg->channel_id, data->attenuation[cfg->channel_id]); |
|
} |
|
|
|
if (data->calibrate) { |
|
esp_adc_cal_value_t cal = esp_adc_cal_characterize(conf->unit, |
|
data->attenuation[cfg->channel_id], |
|
data->resolution[cfg->channel_id], |
|
data->meas_ref_internal, |
|
&data->chars[cfg->channel_id]); |
|
if (cal >= ESP_ADC_CAL_VAL_NOT_SUPPORTED) { |
|
LOG_ERR("Calibration error or not supported"); |
|
return -EIO; |
|
} |
|
LOG_DBG("Using ADC calibration method %d", cal); |
|
} |
|
|
|
#if defined(CONFIG_ADC_ESP32_DMA) |
|
|
|
if (!SOC_ADC_DIG_SUPPORTED_UNIT(conf->unit)) { |
|
LOG_ERR("ADC2 dma mode is no longer supported, please use ADC1!"); |
|
return -EINVAL; |
|
} |
|
|
|
int io_num = adc_channel_io_map[conf->unit][cfg->channel_id]; |
|
|
|
if (io_num < 0) { |
|
LOG_ERR("Channel %u not supported!", cfg->channel_id); |
|
return -ENOTSUP; |
|
} |
|
|
|
struct gpio_dt_spec gpio = { |
|
.port = conf->gpio_port, |
|
.dt_flags = 0, |
|
.pin = io_num, |
|
}; |
|
|
|
err = gpio_pin_configure_dt(&gpio, GPIO_DISCONNECTED); |
|
if (err) { |
|
LOG_ERR("Error disconnecting io (%d)", io_num); |
|
return err; |
|
} |
|
|
|
#endif /* defined(CONFIG_ADC_ESP32_DMA) */ |
|
|
|
return 0; |
|
} |
|
|
|
static int adc_esp32_init(const struct device *dev) |
|
{ |
|
struct adc_esp32_data *data = (struct adc_esp32_data *) dev->data; |
|
const struct adc_esp32_conf *conf = (struct adc_esp32_conf *) dev->config; |
|
|
|
adc_hw_calibration(conf->unit); |
|
|
|
#if defined(CONFIG_ADC_ESP32_DMA) |
|
if (!device_is_ready(conf->gpio_port)) { |
|
LOG_ERR("gpio0 port not ready"); |
|
return -ENODEV; |
|
} |
|
|
|
if (k_sem_init(&data->dma_conv_wait_lock, 0, 1)) { |
|
LOG_ERR("dma_conv_wait_lock initialization failed!"); |
|
return -EINVAL; |
|
} |
|
|
|
data->adc_hal_dma_ctx.rx_desc = k_aligned_alloc(sizeof(uint32_t), |
|
sizeof(dma_descriptor_t)); |
|
if (!data->adc_hal_dma_ctx.rx_desc) { |
|
LOG_ERR("rx_desc allocation failed!"); |
|
return -ENOMEM; |
|
} |
|
LOG_DBG("rx_desc = 0x%08X", (unsigned int)data->adc_hal_dma_ctx.rx_desc); |
|
|
|
data->dma_buffer = k_aligned_alloc(sizeof(uint32_t), ADC_DMA_BUFFER_SIZE); |
|
if (!data->dma_buffer) { |
|
LOG_ERR("dma buffer allocation failed!"); |
|
k_free(data->adc_hal_dma_ctx.rx_desc); |
|
return -ENOMEM; |
|
} |
|
LOG_DBG("data->dma_buffer = 0x%08X", (unsigned int)data->dma_buffer); |
|
|
|
#endif /* defined(CONFIG_ADC_ESP32_DMA) */ |
|
|
|
for (uint8_t i = 0; i < ARRAY_SIZE(data->resolution); i++) { |
|
data->resolution[i] = ADC_RESOLUTION_MAX; |
|
} |
|
|
|
for (uint8_t i = 0; i < ARRAY_SIZE(data->attenuation); i++) { |
|
data->attenuation[i] = ADC_ATTEN_DB_0; |
|
} |
|
|
|
/* Default reference voltage. This could be calibrated externaly */ |
|
data->meas_ref_internal = ADC_ESP32_DEFAULT_VREF_INTERNAL; |
|
|
|
/* Check if calibration is possible */ |
|
data->calibrate = adc_calibration_init(dev); |
|
|
|
return 0; |
|
} |
|
|
|
static const struct adc_driver_api api_esp32_driver_api = { |
|
.channel_setup = adc_esp32_channel_setup, |
|
.read = adc_esp32_read, |
|
#ifdef CONFIG_ADC_ASYNC |
|
.read_async = adc_esp32_read_async, |
|
#endif /* CONFIG_ADC_ASYNC */ |
|
.ref_internal = ADC_ESP32_DEFAULT_VREF_INTERNAL, |
|
}; |
|
|
|
#if defined(CONFIG_ADC_ESP32_DMA) |
|
|
|
#define ADC_ESP32_CONF_GPIO_PORT_INIT .gpio_port = DEVICE_DT_GET(DT_NODELABEL(gpio0)), |
|
|
|
#define ADC_ESP32_CONF_DMA_INIT(n) .dma_dev = COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), \ |
|
(DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_IDX(n, 0))), \ |
|
(NULL)), \ |
|
.dma_channel = COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), \ |
|
(DT_INST_DMAS_CELL_BY_IDX(n, 0, channel)), \ |
|
(0xff)), |
|
#else |
|
|
|
#define ADC_ESP32_CONF_GPIO_PORT_INIT |
|
#define ADC_ESP32_CONF_DMA_INIT(inst) |
|
|
|
#endif /* defined(CONFIG_ADC_ESP32_DMA) */ |
|
|
|
#define ESP32_ADC_INIT(inst) \ |
|
\ |
|
static const struct adc_esp32_conf adc_esp32_conf_##inst = { \ |
|
.unit = DT_PROP(DT_DRV_INST(inst), unit) - 1, \ |
|
.channel_count = DT_PROP(DT_DRV_INST(inst), channel_count), \ |
|
ADC_ESP32_CONF_GPIO_PORT_INIT \ |
|
ADC_ESP32_CONF_DMA_INIT(inst) \ |
|
}; \ |
|
\ |
|
static struct adc_esp32_data adc_esp32_data_##inst = { \ |
|
}; \ |
|
\ |
|
DEVICE_DT_INST_DEFINE(inst, &adc_esp32_init, NULL, \ |
|
&adc_esp32_data_##inst, \ |
|
&adc_esp32_conf_##inst, \ |
|
POST_KERNEL, \ |
|
CONFIG_ADC_INIT_PRIORITY, \ |
|
&api_esp32_driver_api); |
|
|
|
DT_INST_FOREACH_STATUS_OKAY(ESP32_ADC_INIT)
|
|
|