/* * Copyright (c) 2023 Antmicro * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT ambiq_i2c #include #include #include #include #include #include #include #ifdef CONFIG_I2C_AMBIQ_BUS_RECOVERY #include #include "i2c_bitbang.h" #endif /* CONFIG_I2C_AMBIQ_BUS_RECOVERY */ #include #include LOG_MODULE_REGISTER(ambiq_i2c, CONFIG_I2C_LOG_LEVEL); #define I2C_TRANSFER_TIMEOUT_MSEC 500 /* Transfer timeout period */ #include "i2c-priv.h" #include struct i2c_ambiq_config { #ifdef CONFIG_I2C_AMBIQ_BUS_RECOVERY struct gpio_dt_spec scl; struct gpio_dt_spec sda; #endif /* CONFIG_I2C_AMBIQ_BUS_RECOVERY */ uint32_t base; int size; int inst_idx; uint32_t bitrate; const struct pinctrl_dev_config *pcfg; void (*irq_config_func)(void); }; typedef void (*i2c_ambiq_callback_t)(const struct device *dev, int result, void *data); struct i2c_ambiq_data { am_hal_iom_config_t iom_cfg; void *iom_handler; struct k_sem bus_sem; struct k_sem transfer_sem; i2c_ambiq_callback_t callback; void *callback_data; uint32_t transfer_status; bool pm_policy_state_on; bool dma_mode; }; static void i2c_ambiq_pm_policy_state_lock_get(const struct device *dev) { if (IS_ENABLED(CONFIG_PM)) { struct i2c_ambiq_data *data = dev->data; if (!data->pm_policy_state_on) { data->pm_policy_state_on = true; pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES); pm_device_runtime_get(dev); } } } static void i2c_ambiq_pm_policy_state_lock_put(const struct device *dev) { if (IS_ENABLED(CONFIG_PM)) { struct i2c_ambiq_data *data = dev->data; if (data->pm_policy_state_on) { data->pm_policy_state_on = false; pm_device_runtime_put(dev); pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES); } } } static void i2c_ambiq_callback(void *callback_ctxt, uint32_t status) { const struct device *dev = callback_ctxt; struct i2c_ambiq_data *data = dev->data; if (data->callback) { data->callback(dev, status, data->callback_data); } data->transfer_status = status; } static void i2c_ambiq_isr(const struct device *dev) { uint32_t ui32Status; struct i2c_ambiq_data *data = dev->data; am_hal_iom_interrupt_status_get(data->iom_handler, false, &ui32Status); am_hal_iom_interrupt_clear(data->iom_handler, ui32Status); am_hal_iom_interrupt_service(data->iom_handler, ui32Status); k_sem_give(&data->transfer_sem); } static int i2c_ambiq_read(const struct device *dev, struct i2c_msg *hdr_msg, struct i2c_msg *data_msg, uint16_t addr) { struct i2c_ambiq_data *data = dev->data; int ret = 0; am_hal_iom_transfer_t trans = {0}; trans.ui8Priority = 1; trans.eDirection = AM_HAL_IOM_RX; trans.uPeerInfo.ui32I2CDevAddr = addr; trans.ui32NumBytes = data_msg->len; trans.pui32RxBuffer = (uint32_t *)data_msg->buf; if (hdr_msg) { if (hdr_msg->len > AM_HAL_IOM_MAX_OFFSETSIZE) { return -E2BIG; } #if defined(CONFIG_SOC_SERIES_APOLLO3X) memcpy(&trans.ui32Instr, hdr_msg->buf, hdr_msg->len); #else memcpy(&trans.ui64Instr, hdr_msg->buf, hdr_msg->len); #endif trans.ui32InstrLen = hdr_msg->len; } if (data->dma_mode) { data->transfer_status = -EFAULT; ret = am_hal_iom_nonblocking_transfer(data->iom_handler, &trans, i2c_ambiq_callback, (void *)dev); if (k_sem_take(&data->transfer_sem, K_MSEC(I2C_TRANSFER_TIMEOUT_MSEC))) { LOG_ERR("Timeout waiting for transfer complete"); /* cancel timed out transaction */ am_hal_iom_disable(data->iom_handler); /* clean up for next xfer */ k_sem_reset(&data->transfer_sem); am_hal_iom_enable(data->iom_handler); return -ETIMEDOUT; } #if CONFIG_I2C_AMBIQ_HANDLE_CACHE if (!buf_in_nocache((uintptr_t)trans.pui32RxBuffer, trans.ui32NumBytes)) { /* Invalidate Dcache after DMA read */ sys_cache_data_invd_range((void *)trans.pui32RxBuffer, trans.ui32NumBytes); } #endif /* CONFIG_I2C_AMBIQ_HANDLE_CACHE */ ret = data->transfer_status; } else { ret = am_hal_iom_blocking_transfer(data->iom_handler, &trans); } return (ret != AM_HAL_STATUS_SUCCESS) ? -EIO : 0; } static int i2c_ambiq_write(const struct device *dev, struct i2c_msg *hdr_msg, struct i2c_msg *data_msg, uint16_t addr) { struct i2c_ambiq_data *data = dev->data; int ret = 0; am_hal_iom_transfer_t trans = {0}; trans.ui8Priority = 1; trans.eDirection = AM_HAL_IOM_TX; trans.uPeerInfo.ui32I2CDevAddr = addr; trans.ui32NumBytes = data_msg->len; trans.pui32TxBuffer = (uint32_t *)data_msg->buf; if (hdr_msg) { if (hdr_msg->len > AM_HAL_IOM_MAX_OFFSETSIZE) { return -E2BIG; } #if defined(CONFIG_SOC_SERIES_APOLLO3X) memcpy(&trans.ui32Instr, hdr_msg->buf, hdr_msg->len); #else memcpy(&trans.ui64Instr, hdr_msg->buf, hdr_msg->len); #endif trans.ui32InstrLen = hdr_msg->len; } if (data->dma_mode) { data->transfer_status = -EFAULT; #if CONFIG_I2C_AMBIQ_HANDLE_CACHE if (!buf_in_nocache((uintptr_t)trans.pui32TxBuffer, trans.ui32NumBytes)) { /* Clean Dcache before DMA write */ sys_cache_data_flush_range((void *)trans.pui32TxBuffer, trans.ui32NumBytes); } #endif /* CONFIG_I2C_AMBIQ_HANDLE_CACHE */ ret = am_hal_iom_nonblocking_transfer(data->iom_handler, &trans, i2c_ambiq_callback, (void *)dev); if (k_sem_take(&data->transfer_sem, K_MSEC(I2C_TRANSFER_TIMEOUT_MSEC))) { LOG_ERR("Timeout waiting for transfer complete"); /* cancel timed out transaction */ am_hal_iom_disable(data->iom_handler); /* clean up for next xfer */ k_sem_reset(&data->transfer_sem); am_hal_iom_enable(data->iom_handler); return -ETIMEDOUT; } ret = data->transfer_status; } else { ret = am_hal_iom_blocking_transfer(data->iom_handler, &trans); } return (ret != AM_HAL_STATUS_SUCCESS) ? -EIO : 0; } static int i2c_ambiq_configure(const struct device *dev, uint32_t dev_config) { struct i2c_ambiq_data *data = dev->data; if (!(I2C_MODE_CONTROLLER & dev_config)) { return -EINVAL; } switch (I2C_SPEED_GET(dev_config)) { case I2C_SPEED_STANDARD: data->iom_cfg.ui32ClockFreq = AM_HAL_IOM_100KHZ; break; case I2C_SPEED_FAST: data->iom_cfg.ui32ClockFreq = AM_HAL_IOM_400KHZ; break; case I2C_SPEED_FAST_PLUS: data->iom_cfg.ui32ClockFreq = AM_HAL_IOM_1MHZ; break; default: return -EINVAL; } am_hal_iom_configure(data->iom_handler, &data->iom_cfg); return 0; } static int i2c_ambiq_transfer(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs, uint16_t addr) { struct i2c_ambiq_data *data = dev->data; int ret = 0; if (!num_msgs) { return 0; } i2c_ambiq_pm_policy_state_lock_get(dev); /* Send out messages */ k_sem_take(&data->bus_sem, K_FOREVER); for (int i = 0; i < num_msgs; i++) { if (msgs[i].flags & I2C_MSG_READ) { ret = i2c_ambiq_read(dev, NULL, &(msgs[i]), addr); } else if ((i + 1) < num_msgs) { if (msgs[i + 1].flags & I2C_MSG_READ) { ret = i2c_ambiq_read(dev, &(msgs[i]), &(msgs[i + 1]), addr); } else { ret = i2c_ambiq_write(dev, &(msgs[i]), &(msgs[i + 1]), addr); } i++; } else { ret = i2c_ambiq_write(dev, NULL, &(msgs[i]), addr); } if (ret != 0) { LOG_ERR("i2c transfer failed: %d", ret); break; } } k_sem_give(&data->bus_sem); i2c_ambiq_pm_policy_state_lock_put(dev); return ret; } #if CONFIG_I2C_AMBIQ_BUS_RECOVERY static void i2c_ambiq_bitbang_set_scl(void *io_context, int state) { const struct i2c_ambiq_config *config = io_context; gpio_pin_set_dt(&config->scl, state); } static void i2c_ambiq_bitbang_set_sda(void *io_context, int state) { const struct i2c_ambiq_config *config = io_context; gpio_pin_set_dt(&config->sda, state); } static int i2c_ambiq_bitbang_get_sda(void *io_context) { const struct i2c_ambiq_config *config = io_context; return gpio_pin_get_dt(&config->sda) == 0 ? 0 : 1; } static int i2c_ambiq_recover_bus(const struct device *dev) { const struct i2c_ambiq_config *config = dev->config; struct i2c_ambiq_data *data = dev->data; struct i2c_bitbang bitbang_ctx; struct i2c_bitbang_io bitbang_io = { .set_scl = i2c_ambiq_bitbang_set_scl, .set_sda = i2c_ambiq_bitbang_set_sda, .get_sda = i2c_ambiq_bitbang_get_sda, }; uint32_t bitrate_cfg; int error = 0; LOG_ERR("attempting to recover bus"); if (!gpio_is_ready_dt(&config->scl)) { LOG_ERR("SCL GPIO device not ready"); return -EIO; } if (!gpio_is_ready_dt(&config->sda)) { LOG_ERR("SDA GPIO device not ready"); return -EIO; } k_sem_take(&data->bus_sem, K_FOREVER); error = gpio_pin_configure_dt(&config->scl, GPIO_OUTPUT_HIGH); if (error != 0) { LOG_ERR("failed to configure SCL GPIO (err %d)", error); goto restore; } error = gpio_pin_configure_dt(&config->sda, GPIO_OUTPUT_HIGH); if (error != 0) { LOG_ERR("failed to configure SDA GPIO (err %d)", error); goto restore; } i2c_bitbang_init(&bitbang_ctx, &bitbang_io, (void *)config); bitrate_cfg = i2c_map_dt_bitrate(config->bitrate) | I2C_MODE_CONTROLLER; error = i2c_bitbang_configure(&bitbang_ctx, bitrate_cfg); if (error != 0) { LOG_ERR("failed to configure I2C bitbang (err %d)", error); goto restore; } error = i2c_bitbang_recover_bus(&bitbang_ctx); if (error != 0) { LOG_ERR("failed to recover bus (err %d)", error); } restore: (void)pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); k_sem_give(&data->bus_sem); return error; } #endif /* CONFIG_I2C_AMBIQ_BUS_RECOVERY */ static int i2c_ambiq_init(const struct device *dev) { struct i2c_ambiq_data *data = dev->data; const struct i2c_ambiq_config *config = dev->config; uint32_t bitrate_cfg = i2c_map_dt_bitrate(config->bitrate); int ret = 0; if (AM_HAL_STATUS_SUCCESS != am_hal_iom_initialize(config->inst_idx, &data->iom_handler)) { LOG_ERR("Fail to initialize I2C\n"); return -ENXIO; } ret = am_hal_iom_power_ctrl(data->iom_handler, AM_HAL_SYSCTRL_WAKE, false); ret |= i2c_ambiq_configure(dev, I2C_MODE_CONTROLLER | bitrate_cfg); if (ret < 0) { LOG_ERR("Fail to config I2C\n"); goto end; } ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { LOG_ERR("Fail to config I2C pins\n"); goto end; } if (data->dma_mode) { am_hal_iom_interrupt_clear(data->iom_handler, AM_HAL_IOM_INT_DCMP | AM_HAL_IOM_INT_CMDCMP); am_hal_iom_interrupt_enable(data->iom_handler, AM_HAL_IOM_INT_DCMP | AM_HAL_IOM_INT_CMDCMP); config->irq_config_func(); } if (AM_HAL_STATUS_SUCCESS != am_hal_iom_enable(data->iom_handler)) { LOG_ERR("Fail to enable I2C\n"); ret = -EIO; } end: if (ret < 0) { am_hal_iom_uninitialize(data->iom_handler); } return ret; } static DEVICE_API(i2c, i2c_ambiq_driver_api) = { .configure = i2c_ambiq_configure, .transfer = i2c_ambiq_transfer, #if CONFIG_I2C_AMBIQ_BUS_RECOVERY .recover_bus = i2c_ambiq_recover_bus, #endif /* CONFIG_I2C_AMBIQ_BUS_RECOVERY */ #ifdef CONFIG_I2C_RTIO .iodev_submit = i2c_iodev_submit_fallback, #endif }; #ifdef CONFIG_PM_DEVICE static int i2c_ambiq_pm_action(const struct device *dev, enum pm_device_action action) { const struct i2c_ambiq_config *config = dev->config; struct i2c_ambiq_data *data = dev->data; int ret; am_hal_sysctrl_power_state_e status; switch (action) { case PM_DEVICE_ACTION_RESUME: /* Move pins to active/default state */ ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { LOG_ERR("I2C pinctrl setup failed (%d)", ret); return ret; } status = AM_HAL_SYSCTRL_WAKE; break; case PM_DEVICE_ACTION_SUSPEND: /* Move pins to sleep state */ ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP); if (ret == -ENOENT) { /* Warn but don't block suspend */ LOG_WRN("I2C pinctrl sleep state not available "); } else if (ret < 0) { return ret; } status = AM_HAL_SYSCTRL_DEEPSLEEP; break; default: return -ENOTSUP; } ret = am_hal_iom_power_ctrl(data->iom_handler, status, true); if (ret != AM_HAL_STATUS_SUCCESS) { return -EPERM; } else { return 0; } } #endif /* CONFIG_PM_DEVICE */ #define IOM_HAL_CFG(n, cmdq, cmdq_size) \ { \ .eInterfaceMode = AM_HAL_IOM_I2C_MODE, \ .ui32ClockFreq = AM_HAL_IOM_100KHZ, \ .pNBTxnBuf = cmdq, \ .ui32NBTxnBufLength = cmdq_size, \ } #define AMBIQ_I2C_DEFINE(n) \ BUILD_ASSERT(DT_CHILD_NUM_STATUS_OKAY(DT_INST_PARENT(n)) == 1, \ "Too many children for IOM, either SPI or I2C should be enabled!"); \ PINCTRL_DT_INST_DEFINE(n); \ static void i2c_irq_config_func_##n(void) \ { \ IRQ_CONNECT(DT_IRQN(DT_INST_PARENT(n)), DT_IRQ(DT_INST_PARENT(n), priority), \ i2c_ambiq_isr, DEVICE_DT_INST_GET(n), 0); \ irq_enable(DT_IRQN(DT_INST_PARENT(n))); \ }; \ IF_ENABLED(DT_PROP(DT_INST_PARENT(n), dma_mode), \ (static uint32_t i2c_ambiq_cmdq##n[DT_PROP_OR(DT_INST_PARENT(n), cmdq_buffer_size, 1024)] \ __attribute__((section(DT_PROP_OR(DT_INST_PARENT(n), \ cmdq_buffer_location, ".nocache"))));) \ ) \ static struct i2c_ambiq_data i2c_ambiq_data##n = { \ .iom_cfg = IOM_HAL_CFG( \ n, COND_CODE_1(DT_PROP(DT_INST_PARENT(n), dma_mode), (i2c_ambiq_cmdq##n), \ (NULL)), \ COND_CODE_1(DT_PROP(DT_INST_PARENT(n), dma_mode), \ (DT_INST_PROP_OR(n, cmdq_buffer_size, 1024)), (0))), \ .dma_mode = DT_PROP(DT_INST_PARENT(n), dma_mode), \ .bus_sem = Z_SEM_INITIALIZER(i2c_ambiq_data##n.bus_sem, 1, 1), \ .transfer_sem = Z_SEM_INITIALIZER(i2c_ambiq_data##n.transfer_sem, 0, 1), \ }; \ static const struct i2c_ambiq_config i2c_ambiq_config##n = { \ .base = DT_REG_ADDR(DT_INST_PARENT(n)), \ .size = DT_REG_SIZE(DT_INST_PARENT(n)), \ .inst_idx = \ (DT_REG_ADDR(DT_INST_PARENT(n)) - IOM0_BASE) / (IOM1_BASE - IOM0_BASE), \ .bitrate = DT_INST_PROP(n, clock_frequency), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ .irq_config_func = i2c_irq_config_func_##n, \ IF_ENABLED(CONFIG_I2C_AMBIQ_BUS_RECOVERY, \ (.scl = GPIO_DT_SPEC_INST_GET_OR(n, scl_gpios, {0}), \ .sda = GPIO_DT_SPEC_INST_GET_OR(n, sda_gpios, {0}),)) }; \ PM_DEVICE_DT_INST_DEFINE(n, i2c_ambiq_pm_action); \ I2C_DEVICE_DT_INST_DEFINE(n, i2c_ambiq_init, PM_DEVICE_DT_INST_GET(n), &i2c_ambiq_data##n, \ &i2c_ambiq_config##n, POST_KERNEL, CONFIG_I2C_INIT_PRIORITY, \ &i2c_ambiq_driver_api); DT_INST_FOREACH_STATUS_OKAY(AMBIQ_I2C_DEFINE)