/* * Copyright (c) 2024 Antmicro * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include LOG_MODULE_REGISTER(virtio, CONFIG_VIRTIO_LOG_LEVEL); /* * Based on Virtual I/O Device (VIRTIO) Version 1.3 specification: * https://docs.oasis-open.org/virtio/virtio/v1.3/csd01/virtio-v1.3-csd01.pdf */ /* * The maximum queue size is 2^15 (see 2.7), * so any 16bit value larger than that can be used as a sentinel in the next field */ #define VIRTQ_DESC_NEXT_SENTINEL 0xffff /* According to the spec 2.7.5.2 the maximum size of descriptor chain is 4GB */ #define MAX_DESCRIPTOR_CHAIN_LENGTH ((uint64_t)1 << 32) int virtq_create(struct virtq *v, size_t size) { __ASSERT(IS_POWER_OF_TWO(size), "size of virtqueue must be a power of 2"); __ASSERT(size <= KB(32), "size of virtqueue must be at most 32KB"); /* * For sizes and alignments see table in spec 2.7. We are supporting only modern virtio, so * we don't have to adhere to additional constraints from spec 2.7.2 */ size_t descriptor_table_size = 16 * size; size_t available_ring_size = 2 * size + 6; size_t used_ring_pad = (descriptor_table_size + available_ring_size) % 4; size_t used_ring_size = 8 * size + 6; size_t shared_size = descriptor_table_size + available_ring_size + used_ring_pad + used_ring_size; size_t v_size = shared_size + sizeof(struct virtq_receive_callback_entry) * size; uint8_t *v_area = k_aligned_alloc(16, v_size); if (!v_area) { LOG_ERR("unable to allocate virtqueue"); return -ENOMEM; } v->num = size; v->desc = (struct virtq_desc *)v_area; v->avail = (struct virtq_avail *)((uint8_t *)v->desc + descriptor_table_size); v->used = (struct virtq_used *)((uint8_t *)v->avail + available_ring_size + used_ring_pad); v->recv_cbs = (struct virtq_receive_callback_entry *)((uint8_t *)v->used + used_ring_size); /* * At the beginning of the descriptor table, the available ring and the used ring have to be * set to zero. It's the case for both PCI (4.1.5.1.3) and MMIO (4.2.3.2) transport options. * Its unspecified for channel I/O (chapter 4.3), but its used on platforms not supported by * Zephyr, so we don't have to handle it here */ memset(v_area, 0, v_size); v->last_used_idx = 0; k_stack_alloc_init(&v->free_desc_stack, size); for (uint16_t i = 0; i < size; i++) { k_stack_push(&v->free_desc_stack, i); } v->free_desc_n = size; return 0; } void virtq_free(struct virtq *v) { k_free(v->desc); k_stack_cleanup(&v->free_desc_stack); } static int virtq_add_available(struct virtq *v, uint16_t desc_idx) { uint16_t new_idx_le = sys_cpu_to_le16(sys_le16_to_cpu(v->avail->idx) % v->num); v->avail->ring[new_idx_le] = sys_cpu_to_le16(desc_idx); barrier_dmem_fence_full(); v->avail->idx = sys_cpu_to_le16(sys_le16_to_cpu(v->avail->idx) + 1); return 0; } int virtq_add_buffer_chain( struct virtq *v, struct virtq_buf *bufs, uint16_t bufs_size, uint16_t device_readable_count, virtq_receive_callback cb, void *cb_opaque, k_timeout_t timeout) { uint64_t total_len = 0; for (int i = 0; i < bufs_size; i++) { total_len += bufs[i].len; } if (total_len > MAX_DESCRIPTOR_CHAIN_LENGTH) { LOG_ERR("buffer chain is longer than 2^32 bytes"); return -EINVAL; } k_spinlock_key_t key = k_spin_lock(&v->lock); if (v->free_desc_n < bufs_size && !K_TIMEOUT_EQ(timeout, K_FOREVER)) { /* we don't have enough free descriptors to push all buffers to the queue */ k_spin_unlock(&v->lock, key); return -EBUSY; } uint16_t prev_desc = VIRTQ_DESC_NEXT_SENTINEL; uint16_t head = VIRTQ_DESC_NEXT_SENTINEL; for (uint16_t buf_n = 0; buf_n < bufs_size; buf_n++) { uint16_t desc; /* * we've checked before that we have enough free descriptors * and the queue is locked, so popping from stack is guaranteed * to succeed and we don't have to check its return value */ virtq_get_free_desc(v, &desc, timeout); uint16_t desc_le = sys_cpu_to_le16(desc); if (head == VIRTQ_DESC_NEXT_SENTINEL) { head = desc; } v->desc[desc_le].addr = k_mem_phys_addr(bufs[buf_n].addr); v->desc[desc_le].len = bufs[buf_n].len; if (buf_n < device_readable_count) { v->desc[desc_le].flags = 0; } else { v->desc[desc_le].flags = VIRTQ_DESC_F_WRITE; } if (buf_n < bufs_size - 1) { v->desc[desc_le].flags |= VIRTQ_DESC_F_NEXT; } else { v->desc[desc_le].next = 0; } if (prev_desc != VIRTQ_DESC_NEXT_SENTINEL) { uint16_t prev_desc_le = sys_cpu_to_le16(prev_desc); v->desc[prev_desc_le].next = desc_le; } prev_desc = desc; } v->recv_cbs[head].cb = cb; v->recv_cbs[head].opaque = cb_opaque; virtq_add_available(v, head); k_spin_unlock(&v->lock, key); return 0; } int virtq_get_free_desc(struct virtq *v, uint16_t *desc_idx, k_timeout_t timeout) { stack_data_t desc; int ret = k_stack_pop(&v->free_desc_stack, &desc, timeout); if (ret == 0) { *desc_idx = (uint16_t)desc; v->free_desc_n--; } return ret; } void virtq_add_free_desc(struct virtq *v, uint16_t desc_idx) { k_stack_push(&v->free_desc_stack, desc_idx); v->free_desc_n++; }