/* * Copyright (c) 2018 Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #define ADC_CONTEXT_USES_KERNEL_TIMER #include "adc_context.h" #include #include #include #include #include #include #include LOG_MODULE_REGISTER(adc_nrfx_saadc, CONFIG_ADC_LOG_LEVEL); #define DT_DRV_COMPAT nordic_nrf_saadc #if (NRF_SAADC_HAS_AIN_AS_PIN) #if defined(CONFIG_NRF_PLATFORM_HALTIUM) static const uint32_t saadc_psels[NRF_SAADC_AIN13 + 1] = { [NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1), [NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 1), [NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 1), [NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1), [NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1), [NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1), [NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1), [NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1), [NRF_SAADC_AIN8] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 9), [NRF_SAADC_AIN9] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 9), [NRF_SAADC_AIN10] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 9), [NRF_SAADC_AIN11] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 9), [NRF_SAADC_AIN12] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 9), [NRF_SAADC_AIN13] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 9), }; #elif defined(CONFIG_SOC_NRF54L05) || defined(CONFIG_SOC_NRF54L10) || defined(CONFIG_SOC_NRF54L15) static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = { [NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1), [NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1), [NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1), [NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1), [NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(11U, 1), [NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(12U, 1), [NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(13U, 1), [NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(14U, 1), [NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD, [NRF_SAADC_AVDD] = NRF_SAADC_INPUT_AVDD, [NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD, }; #elif defined(NRF54LM20A_ENGA_XXAA) static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = { [NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1), [NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(31U, 1), [NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(30U, 1), [NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(29U, 1), [NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1), [NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1), [NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1), [NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1), [NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD, [NRF_SAADC_AVDD] = NRF_SAADC_INPUT_AVDD, [NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD, }; #elif defined(NRF54LV10A_ENGA_XXAA) static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = { [NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1), [NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 1), [NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 1), [NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1), [NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1), [NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(10U, 1), [NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(11U, 1), [NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(12U, 1), [NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD, [NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD, }; #endif #else BUILD_ASSERT((NRF_SAADC_AIN0 == NRF_SAADC_INPUT_AIN0) && (NRF_SAADC_AIN1 == NRF_SAADC_INPUT_AIN1) && (NRF_SAADC_AIN2 == NRF_SAADC_INPUT_AIN2) && (NRF_SAADC_AIN3 == NRF_SAADC_INPUT_AIN3) && (NRF_SAADC_AIN4 == NRF_SAADC_INPUT_AIN4) && (NRF_SAADC_AIN5 == NRF_SAADC_INPUT_AIN5) && (NRF_SAADC_AIN6 == NRF_SAADC_INPUT_AIN6) && (NRF_SAADC_AIN7 == NRF_SAADC_INPUT_AIN7) && #if defined(SAADC_CH_PSELP_PSELP_VDDHDIV5) (NRF_SAADC_VDDHDIV5 == NRF_SAADC_INPUT_VDDHDIV5) && #endif #if defined(SAADC_CH_PSELP_PSELP_VDD) (NRF_SAADC_VDD == NRF_SAADC_INPUT_VDD) && #endif 1, "Definitions from nrf-adc.h do not match those from nrf_saadc.h"); #endif #if defined(CONFIG_NRF_PLATFORM_HALTIUM) #include /* Haltium devices always use bounce buffers in RAM */ static uint16_t adc_samples_buffer[SAADC_CH_NUM] DMM_MEMORY_SECTION(DT_NODELABEL(adc)); #define ADC_BUFFER_IN_RAM #endif /* defined(CONFIG_NRF_PLATFORM_HALTIUM) */ struct driver_data { struct adc_context ctx; uint8_t single_ended_channels; nrf_saadc_value_t *buffer; /* Pointer to the buffer with converted samples. */ uint8_t active_channel_cnt; #if defined(ADC_BUFFER_IN_RAM) void *samples_buffer; void *user_buffer; #endif }; static struct driver_data m_data = { ADC_CONTEXT_INIT_TIMER(m_data, ctx), ADC_CONTEXT_INIT_LOCK(m_data, ctx), ADC_CONTEXT_INIT_SYNC(m_data, ctx), #if defined(ADC_BUFFER_IN_RAM) .samples_buffer = adc_samples_buffer, #endif }; /* Forward declaration */ static void event_handler(const nrfx_saadc_evt_t *event); /* Helper function to convert acquisition time to register TACQ value. */ static int acq_time_set(nrf_saadc_channel_config_t *ch_cfg, uint16_t acquisition_time) { #if NRF_SAADC_HAS_ACQTIME_ENUM switch (acquisition_time) { case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 3): ch_cfg->acq_time = NRF_SAADC_ACQTIME_3US; break; case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 5): ch_cfg->acq_time = NRF_SAADC_ACQTIME_5US; break; case ADC_ACQ_TIME_DEFAULT: case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 10): ch_cfg->acq_time = NRF_SAADC_ACQTIME_10US; break; case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 15): ch_cfg->acq_time = NRF_SAADC_ACQTIME_15US; break; case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 20): ch_cfg->acq_time = NRF_SAADC_ACQTIME_20US; break; case ADC_ACQ_TIME_MAX: case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 40): ch_cfg->acq_time = NRF_SAADC_ACQTIME_40US; break; default: LOG_ERR("Selected ADC acquisition time is not valid"); return -EINVAL; } #else #define MINIMUM_ACQ_TIME_IN_NS 125 #define DEFAULT_ACQ_TIME_IN_NS 10000 nrf_saadc_acqtime_t tacq = 0; uint16_t acq_time = (acquisition_time == ADC_ACQ_TIME_DEFAULT ? DEFAULT_ACQ_TIME_IN_NS : (ADC_ACQ_TIME_VALUE(acquisition_time) * (ADC_ACQ_TIME_UNIT(acquisition_time) == ADC_ACQ_TIME_MICROSECONDS ? 1000 : 1))); tacq = (nrf_saadc_acqtime_t)(acq_time / MINIMUM_ACQ_TIME_IN_NS) - 1; if ((tacq > NRF_SAADC_ACQTIME_MAX) || (acq_time < MINIMUM_ACQ_TIME_IN_NS)) { LOG_ERR("Selected ADC acquisition time is not valid"); return -EINVAL; } else { ch_cfg->acq_time = tacq; } #endif LOG_DBG("ADC acquisition_time: %d", acquisition_time); return 0; } static int input_assign(nrf_saadc_input_t *pin_p, nrf_saadc_input_t *pin_n, const struct adc_channel_cfg *channel_cfg) { #if (NRF_SAADC_HAS_AIN_AS_PIN) if (channel_cfg->input_positive > ARRAY_SIZE(saadc_psels) || channel_cfg->input_positive < NRF_SAADC_AIN0) { LOG_ERR("Invalid analog positive input number: %d", channel_cfg->input_positive); return -EINVAL; } *pin_p = saadc_psels[channel_cfg->input_positive]; if (channel_cfg->differential) { if (channel_cfg->input_negative > ARRAY_SIZE(saadc_psels) || channel_cfg->input_negative < NRF_SAADC_AIN0 || (IS_ENABLED(CONFIG_NRF_PLATFORM_HALTIUM) && (channel_cfg->input_positive > NRF_SAADC_AIN7) != (channel_cfg->input_negative > NRF_SAADC_AIN7))) { LOG_ERR("Invalid analog negative input number: %d", channel_cfg->input_negative); return -EINVAL; } *pin_n = saadc_psels[channel_cfg->input_negative]; } else { *pin_n = NRF_SAADC_INPUT_DISABLED; } #else *pin_p = channel_cfg->input_positive; *pin_n = channel_cfg->differential ? channel_cfg->input_negative : NRF_SAADC_INPUT_DISABLED; #endif LOG_DBG("ADC positive input: %d", *pin_p); LOG_DBG("ADC negative input: %d", *pin_n); return 0; } static int gain_set(nrf_saadc_channel_config_t *ch_cfg, enum adc_gain gain) { #if NRF_SAADC_HAS_CH_GAIN switch (gain) { #if defined(SAADC_CH_CONFIG_GAIN_Gain1_6) case ADC_GAIN_1_6: ch_cfg->gain = NRF_SAADC_GAIN1_6; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain1_5) case ADC_GAIN_1_5: ch_cfg->gain = NRF_SAADC_GAIN1_5; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain1_4) || defined(SAADC_CH_CONFIG_GAIN_Gain2_8) case ADC_GAIN_1_4: ch_cfg->gain = NRF_SAADC_GAIN1_4; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain2_7) case ADC_GAIN_2_7: ch_cfg->gain = NRF_SAADC_GAIN2_7; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain1_3) || defined(SAADC_CH_CONFIG_GAIN_Gain2_6) case ADC_GAIN_1_3: ch_cfg->gain = NRF_SAADC_GAIN1_3; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain2_5) case ADC_GAIN_2_5: ch_cfg->gain = NRF_SAADC_GAIN2_5; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain1_2) || defined(SAADC_CH_CONFIG_GAIN_Gain2_4) case ADC_GAIN_1_2: ch_cfg->gain = NRF_SAADC_GAIN1_2; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain2_3) case ADC_GAIN_2_3: ch_cfg->gain = NRF_SAADC_GAIN2_3; break; #endif case ADC_GAIN_1: ch_cfg->gain = NRF_SAADC_GAIN1; break; case ADC_GAIN_2: ch_cfg->gain = NRF_SAADC_GAIN2; break; #if defined(SAADC_CH_CONFIG_GAIN_Gain4) case ADC_GAIN_4: ch_cfg->gain = NRF_SAADC_GAIN4; break; #endif default: #else if (ch_cfg->gain != ADC_GAIN_1) { #endif /* defined(NRF_SAADC_HAS_CH_GAIN) */ LOG_ERR("Selected ADC gain is not valid"); return -EINVAL; } return 0; } static int reference_set(nrf_saadc_channel_config_t *ch_cfg, enum adc_reference reference) { switch (reference) { #if defined(SAADC_CH_CONFIG_REFSEL_Internal) case ADC_REF_INTERNAL: ch_cfg->reference = NRF_SAADC_REFERENCE_INTERNAL; break; #endif #if defined(SAADC_CH_CONFIG_REFSEL_VDD1_4) case ADC_REF_VDD_1_4: ch_cfg->reference = NRF_SAADC_REFERENCE_VDD4; break; #endif #if defined(SAADC_CH_CONFIG_REFSEL_External) case ADC_REF_EXTERNAL0: ch_cfg->reference = NRF_SAADC_REFERENCE_EXTERNAL; break; #endif default: LOG_ERR("Selected ADC reference is not valid"); return -EINVAL; } return 0; } /* Implementation of the ADC driver API function: adc_channel_setup. */ static int adc_nrfx_channel_setup(const struct device *dev, const struct adc_channel_cfg *channel_cfg) { int err; nrf_saadc_channel_config_t *ch_cfg; nrfx_saadc_channel_t cfg = { .channel_config = { #if NRF_SAADC_HAS_CH_CONFIG_RES .resistor_p = NRF_SAADC_RESISTOR_DISABLED, .resistor_n = NRF_SAADC_RESISTOR_DISABLED, #endif #if NRF_SAADC_HAS_CH_BURST .burst = NRF_SAADC_BURST_DISABLED, #endif }, .channel_index = channel_cfg->channel_id, }; if (channel_cfg->channel_id >= SAADC_CH_NUM) { LOG_ERR("Invalid channel ID: %d", channel_cfg->channel_id); return -EINVAL; } ch_cfg = &cfg.channel_config; err = input_assign(&cfg.pin_p, &cfg.pin_n, channel_cfg); if (err != 0) { return err; } err = gain_set(ch_cfg, channel_cfg->gain); if (err != 0) { return err; } err = reference_set(ch_cfg, channel_cfg->reference); if (err != 0) { return err; } err = acq_time_set(ch_cfg, channel_cfg->acquisition_time); if (err != 0) { return err; } /* Store channel mode to allow correcting negative readings in single-ended mode * after ADC sequence ends. */ if (channel_cfg->differential) { ch_cfg->mode = NRF_SAADC_MODE_DIFFERENTIAL; m_data.single_ended_channels &= ~BIT(channel_cfg->channel_id); } else { ch_cfg->mode = NRF_SAADC_MODE_SINGLE_ENDED; m_data.single_ended_channels |= BIT(channel_cfg->channel_id); } nrfx_err_t ret = nrfx_saadc_channel_config(&cfg); if (ret != NRFX_SUCCESS) { LOG_ERR("Cannot configure channel %d: %d", channel_cfg->channel_id, ret); return -EINVAL; } return 0; } static void adc_context_start_sampling(struct adc_context *ctx) { if (ctx->sequence.calibrate) { nrfx_saadc_offset_calibrate(event_handler); } else { nrfx_err_t ret = nrfx_saadc_mode_trigger(); if (ret != NRFX_SUCCESS) { LOG_ERR("Cannot start sampling: 0x%08x", ret); adc_context_complete(&m_data.ctx, -EIO); } } } static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat) { if (!repeat) { #if defined(ADC_BUFFER_IN_RAM) m_data.user_buffer = (uint16_t *)m_data.user_buffer + m_data.active_channel_cnt; #else nrf_saadc_value_t *buffer = (uint16_t *)m_data.buffer + m_data.active_channel_cnt; nrfx_saadc_buffer_set(buffer, m_data.active_channel_cnt); #endif } } static int get_resolution(const struct adc_sequence *sequence, nrf_saadc_resolution_t *resolution) { switch (sequence->resolution) { case 8: *resolution = NRF_SAADC_RESOLUTION_8BIT; break; case 10: *resolution = NRF_SAADC_RESOLUTION_10BIT; break; case 12: *resolution = NRF_SAADC_RESOLUTION_12BIT; break; case 14: *resolution = NRF_SAADC_RESOLUTION_14BIT; break; default: LOG_ERR("ADC resolution value %d is not valid", sequence->resolution); return -EINVAL; } return 0; } static int get_oversampling(const struct adc_sequence *sequence, uint8_t active_channel_cnt, nrf_saadc_oversample_t *oversampling) { if ((active_channel_cnt > 1) && (sequence->oversampling > 0)) { LOG_ERR( "Oversampling is supported for single channel only"); return -EINVAL; } switch (sequence->oversampling) { case 0: *oversampling = NRF_SAADC_OVERSAMPLE_DISABLED; break; case 1: *oversampling = NRF_SAADC_OVERSAMPLE_2X; break; case 2: *oversampling = NRF_SAADC_OVERSAMPLE_4X; break; case 3: *oversampling = NRF_SAADC_OVERSAMPLE_8X; break; case 4: *oversampling = NRF_SAADC_OVERSAMPLE_16X; break; case 5: *oversampling = NRF_SAADC_OVERSAMPLE_32X; break; case 6: *oversampling = NRF_SAADC_OVERSAMPLE_64X; break; case 7: *oversampling = NRF_SAADC_OVERSAMPLE_128X; break; case 8: *oversampling = NRF_SAADC_OVERSAMPLE_256X; break; default: LOG_ERR("Oversampling value %d is not valid", sequence->oversampling); return -EINVAL; } return 0; } static int check_buffer_size(const struct adc_sequence *sequence, uint8_t active_channel_cnt) { size_t needed_buffer_size; needed_buffer_size = NRFX_SAADC_SAMPLES_TO_BYTES(active_channel_cnt); if (sequence->options) { needed_buffer_size *= (1 + sequence->options->extra_samplings); } if (sequence->buffer_size < needed_buffer_size) { LOG_ERR("Provided buffer is too small (%u/%u)", sequence->buffer_size, needed_buffer_size); return -ENOMEM; } return 0; } static bool has_single_ended(const struct adc_sequence *sequence) { return sequence->channels & m_data.single_ended_channels; } static void correct_single_ended(const struct adc_sequence *sequence) { uint16_t channel_bit = BIT(0); uint8_t selected_channels = sequence->channels; uint8_t single_ended_channels = m_data.single_ended_channels; int16_t *sample = (int16_t *)m_data.buffer; while (channel_bit <= single_ended_channels) { if (channel_bit & selected_channels) { if ((channel_bit & single_ended_channels) && (*sample < 0)) { *sample = 0; } sample++; } channel_bit <<= 1; } } static int start_read(const struct device *dev, const struct adc_sequence *sequence) { nrfx_err_t nrfx_err; int error; uint32_t selected_channels = sequence->channels; nrf_saadc_resolution_t resolution; nrf_saadc_oversample_t oversampling; uint8_t active_channel_cnt = 0U; uint8_t channel_id = 0U; /* Signal an error if channel selection is invalid (no channels or * a non-existing one is selected). */ if (!selected_channels || (selected_channels & ~BIT_MASK(SAADC_CH_NUM))) { LOG_ERR("Invalid selection of channels"); return -EINVAL; } do { if (selected_channels & BIT(channel_id)) { /* Signal an error if a selected channel has not been configured yet. */ if (0 == (nrfx_saadc_channels_configured_get() & BIT(channel_id))) { LOG_ERR("Channel %u not configured", channel_id); return -EINVAL; } ++active_channel_cnt; } } while (++channel_id < SAADC_CH_NUM); if (active_channel_cnt == 0) { LOG_ERR("No channel configured"); return -EINVAL; } error = get_resolution(sequence, &resolution); if (error) { return error; } error = get_oversampling(sequence, active_channel_cnt, &oversampling); if (error) { return error; } nrfx_err = nrfx_saadc_simple_mode_set(selected_channels, resolution, oversampling, event_handler); if (nrfx_err != NRFX_SUCCESS) { return -EINVAL; } error = check_buffer_size(sequence, active_channel_cnt); if (error) { return error; } m_data.active_channel_cnt = active_channel_cnt; #if defined(ADC_BUFFER_IN_RAM) m_data.user_buffer = sequence->buffer; nrfx_saadc_buffer_set(m_data.samples_buffer, active_channel_cnt); #else /* Buffer is filled in chunks, each chunk composed of number of samples equal to number * of active channels. Buffer pointer is advanced and reloaded after each chunk. */ nrfx_saadc_buffer_set(sequence->buffer, active_channel_cnt); #endif adc_context_start_read(&m_data.ctx, sequence); return adc_context_wait_for_completion(&m_data.ctx); } /* Implementation of the ADC driver API function: adc_read. */ static int adc_nrfx_read(const struct device *dev, const struct adc_sequence *sequence) { int error; adc_context_lock(&m_data.ctx, false, NULL); error = start_read(dev, sequence); adc_context_release(&m_data.ctx, error); return error; } #ifdef CONFIG_ADC_ASYNC /* Implementation of the ADC driver API function: adc_read_async. */ static int adc_nrfx_read_async(const struct device *dev, const struct adc_sequence *sequence, struct k_poll_signal *async) { int error; adc_context_lock(&m_data.ctx, true, async); error = start_read(dev, sequence); adc_context_release(&m_data.ctx, error); return error; } #endif /* CONFIG_ADC_ASYNC */ static void event_handler(const nrfx_saadc_evt_t *event) { nrfx_err_t err; if (event->type == NRFX_SAADC_EVT_DONE) { m_data.buffer = event->data.done.p_buffer; if (has_single_ended(&m_data.ctx.sequence)) { correct_single_ended(&m_data.ctx.sequence); } #if defined(ADC_BUFFER_IN_RAM) memcpy(m_data.user_buffer, m_data.samples_buffer, NRFX_SAADC_SAMPLES_TO_BYTES(m_data.active_channel_cnt)); #endif adc_context_on_sampling_done(&m_data.ctx, DEVICE_DT_INST_GET(0)); } else if (event->type == NRFX_SAADC_EVT_CALIBRATEDONE) { err = nrfx_saadc_mode_trigger(); if (err != NRFX_SUCCESS) { LOG_ERR("Cannot start sampling: 0x%08x", err); adc_context_complete(&m_data.ctx, -EIO); } } } static int init_saadc(const struct device *dev) { nrfx_err_t err; /* The priority value passed here is ignored (see nrfx_glue.h). */ err = nrfx_saadc_init(0); if (err != NRFX_SUCCESS) { LOG_ERR("Failed to initialize device: %s", dev->name); return -EIO; } IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), nrfx_isr, nrfx_saadc_irq_handler, 0); adc_context_unlock_unconditionally(&m_data.ctx); return 0; } static DEVICE_API(adc, adc_nrfx_driver_api) = { .channel_setup = adc_nrfx_channel_setup, .read = adc_nrfx_read, #ifdef CONFIG_ADC_ASYNC .read_async = adc_nrfx_read_async, #endif #if defined(NRF54LV10A_ENGA_XXAA) .ref_internal = 1300, #elif defined(CONFIG_SOC_COMPATIBLE_NRF54LX) .ref_internal = 900, #elif defined(CONFIG_NRF_PLATFORM_HALTIUM) .ref_internal = 1024, #else .ref_internal = 600, #endif }; #if defined(CONFIG_NRF_PLATFORM_HALTIUM) /* AIN8-AIN14 inputs are on 3v3 GPIO port and they cannot be mixed with other * analog inputs (from 1v8 ports) in differential mode. */ #define CH_IS_3V3(val) (val >= NRF_SAADC_AIN8) #define MIXED_3V3_1V8_INPUTS(node) \ (DT_NODE_HAS_PROP(node, zephyr_input_negative) && \ (CH_IS_3V3(DT_PROP_OR(node, zephyr_input_negative, 0)) != \ CH_IS_3V3(DT_PROP_OR(node, zephyr_input_positive, 0)))) #else #define MIXED_3V3_1V8_INPUTS(node) false #endif #define VALIDATE_CHANNEL_CONFIG(node) \ BUILD_ASSERT(MIXED_3V3_1V8_INPUTS(node) == false, \ "1v8 inputs cannot be mixed with 3v3 inputs"); /* Validate configuration of all channels. */ DT_FOREACH_CHILD(DT_DRV_INST(0), VALIDATE_CHANNEL_CONFIG) DEVICE_DT_INST_DEFINE(0, init_saadc, NULL, NULL, NULL, POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, &adc_nrfx_driver_api);