/* * Copyright (c) 2022 Cypress Semiconductor Corporation (an Infineon company) or * an affiliate of Cypress Semiconductor Corporation * * SPDX-License-Identifier: Apache-2.0 */ /** * @brief UART driver for Infineon CAT1 MCU family. * */ #define DT_DRV_COMPAT infineon_cat1_uart #include #include #include #include #include #include "cy_scb_uart.h" #include LOG_MODULE_REGISTER(uart_ifx_cat1, CONFIG_UART_LOG_LEVEL); #if (CONFIG_SOC_FAMILY_INFINEON_CAT1C) extern void cyhal_uart_irq_handler(cyhal_uart_t *cyhal_uart_irq_obj); #endif #ifdef CONFIG_UART_ASYNC_API #include #include extern int ifx_cat1_dma_ex_connect_digital(const struct device *dev, uint32_t channel, cyhal_source_t source, cyhal_dma_input_t input); struct ifx_cat1_dma_stream { const struct device *dev; uint32_t dma_channel; struct dma_config dma_cfg; struct dma_block_config blk_cfg; uint8_t *buf; size_t buf_len; size_t offset; size_t counter; uint32_t timeout; size_t dma_transmitted_bytes; struct k_work_delayable timeout_work; }; struct ifx_cat1_uart_async { const struct device *uart_dev; uart_callback_t cb; void *user_data; struct ifx_cat1_dma_stream dma_rx; struct ifx_cat1_dma_stream dma_tx; uint8_t *rx_next_buf; size_t rx_next_buf_len; }; #define CURRENT_BUFFER 0 #define NEXT_BUFFER 1 #endif /* CONFIG_UART_ASYNC_API */ /* Data structure */ struct ifx_cat1_uart_data { cyhal_uart_t obj; /* UART CYHAL object */ struct uart_config cfg; cyhal_resource_inst_t hw_resource; cyhal_clock_t clock; #if CONFIG_UART_INTERRUPT_DRIVEN uart_irq_callback_user_data_t irq_cb; /* Interrupt Callback */ void *irq_cb_data; /* Interrupt Callback Arg */ #endif #ifdef CONFIG_UART_ASYNC_API struct ifx_cat1_uart_async async; #endif }; /* Device config structure */ struct ifx_cat1_uart_config { const struct pinctrl_dev_config *pcfg; CySCB_Type *reg_addr; struct uart_config dt_cfg; #if (CONFIG_SOC_FAMILY_INFINEON_CAT1C) uint16_t irq_num; #endif uint8_t irq_priority; }; /* Default Counter configuration structure */ static const cy_stc_scb_uart_config_t _cyhal_uart_default_config = { .uartMode = CY_SCB_UART_STANDARD, .enableMutliProcessorMode = false, .smartCardRetryOnNack = false, .irdaInvertRx = false, .irdaEnableLowPowerReceiver = false, .oversample = 12, .enableMsbFirst = false, .dataWidth = 8UL, .parity = CY_SCB_UART_PARITY_NONE, .stopBits = CY_SCB_UART_STOP_BITS_1, .enableInputFilter = false, .breakWidth = 11UL, .dropOnFrameError = false, .dropOnParityError = false, .receiverAddress = 0x0UL, .receiverAddressMask = 0x0UL, .acceptAddrInFifo = false, .enableCts = false, .ctsPolarity = CY_SCB_UART_ACTIVE_LOW, #if defined(COMPONENT_CAT1A) || defined(COMPONENT_CAT1B) .rtsRxFifoLevel = 20UL, #elif defined(COMPONENT_CAT2) .rtsRxFifoLevel = 3UL, #endif .rtsPolarity = CY_SCB_UART_ACTIVE_LOW, /* Level triggers when at least one element is in FIFO */ .rxFifoTriggerLevel = 0UL, .rxFifoIntEnableMask = 0x0UL, /* Level triggers when half-fifo is half empty */ .txFifoTriggerLevel = (CY_SCB_FIFO_SIZE / 2 - 1), .txFifoIntEnableMask = 0x0UL }; /* Helper API */ static cyhal_uart_parity_t _convert_uart_parity_z_to_cyhal(enum uart_config_parity parity) { cyhal_uart_parity_t cyhal_parity; switch (parity) { case UART_CFG_PARITY_NONE: cyhal_parity = CYHAL_UART_PARITY_NONE; break; case UART_CFG_PARITY_ODD: cyhal_parity = CYHAL_UART_PARITY_ODD; break; case UART_CFG_PARITY_EVEN: cyhal_parity = CYHAL_UART_PARITY_EVEN; break; default: cyhal_parity = CYHAL_UART_PARITY_NONE; } return cyhal_parity; } static uint32_t _convert_uart_stop_bits_z_to_cyhal(enum uart_config_stop_bits stop_bits) { uint32_t cyhal_stop_bits; switch (stop_bits) { case UART_CFG_STOP_BITS_1: cyhal_stop_bits = 1u; break; case UART_CFG_STOP_BITS_2: cyhal_stop_bits = 2u; break; default: cyhal_stop_bits = 1u; } return cyhal_stop_bits; } static uint32_t _convert_uart_data_bits_z_to_cyhal(enum uart_config_data_bits data_bits) { uint32_t cyhal_data_bits; switch (data_bits) { case UART_CFG_DATA_BITS_5: cyhal_data_bits = 1u; break; case UART_CFG_DATA_BITS_6: cyhal_data_bits = 6u; break; case UART_CFG_DATA_BITS_7: cyhal_data_bits = 7u; break; case UART_CFG_DATA_BITS_8: cyhal_data_bits = 8u; break; case UART_CFG_DATA_BITS_9: cyhal_data_bits = 9u; break; default: cyhal_data_bits = 1u; } return cyhal_data_bits; } static int32_t _get_hw_block_num(CySCB_Type *reg_addr) { extern const uint8_t _CYHAL_SCB_BASE_ADDRESS_INDEX[_SCB_ARRAY_SIZE]; extern CySCB_Type *const _CYHAL_SCB_BASE_ADDRESSES[_SCB_ARRAY_SIZE]; uint32_t i; for (i = 0u; i < _SCB_ARRAY_SIZE; i++) { if (_CYHAL_SCB_BASE_ADDRESSES[i] == reg_addr) { return _CYHAL_SCB_BASE_ADDRESS_INDEX[i]; } } return -1; } uint32_t ifx_cat1_uart_get_num_in_tx_fifo(const struct device *dev) { const struct ifx_cat1_uart_config *const config = dev->config; return Cy_SCB_GetNumInTxFifo(config->reg_addr); } bool ifx_cat1_uart_get_tx_active(const struct device *dev) { const struct ifx_cat1_uart_config *const config = dev->config; return Cy_SCB_GetTxSrValid(config->reg_addr) ? true : false; } static int ifx_cat1_uart_poll_in(const struct device *dev, unsigned char *c) { cy_rslt_t rec; struct ifx_cat1_uart_data *data = dev->data; rec = cyhal_uart_getc(&data->obj, c, 0u); return ((rec == CY_SCB_UART_RX_NO_DATA) ? -1 : 0); } static void ifx_cat1_uart_poll_out(const struct device *dev, unsigned char c) { struct ifx_cat1_uart_data *data = dev->data; (void)cyhal_uart_putc(&data->obj, (uint32_t)c); } static int ifx_cat1_uart_err_check(const struct device *dev) { struct ifx_cat1_uart_data *data = dev->data; uint32_t status = Cy_SCB_UART_GetRxFifoStatus(data->obj.base); int errors = 0; if (status & CY_SCB_UART_RX_OVERFLOW) { errors |= UART_ERROR_OVERRUN; } if (status & CY_SCB_UART_RX_ERR_PARITY) { errors |= UART_ERROR_PARITY; } if (status & CY_SCB_UART_RX_ERR_FRAME) { errors |= UART_ERROR_FRAMING; } return errors; } static int ifx_cat1_uart_configure(const struct device *dev, const struct uart_config *cfg) { __ASSERT_NO_MSG(cfg != NULL); cy_rslt_t result; struct ifx_cat1_uart_data *data = dev->data; cyhal_uart_cfg_t uart_cfg = { .data_bits = _convert_uart_data_bits_z_to_cyhal(cfg->data_bits), .stop_bits = _convert_uart_stop_bits_z_to_cyhal(cfg->stop_bits), .parity = _convert_uart_parity_z_to_cyhal(cfg->parity)}; /* Store Uart Zephyr configuration (uart config) into data structure */ data->cfg = *cfg; /* Configure parity, data and stop bits */ result = cyhal_uart_configure(&data->obj, &uart_cfg); /* Configure the baud rate */ if (result == CY_RSLT_SUCCESS) { result = cyhal_uart_set_baud(&data->obj, cfg->baudrate, NULL); } /* Set RTS/CTS flow control pins as NC so cyhal will skip initialization */ data->obj.pin_cts = NC; data->obj.pin_rts = NC; /* Enable RTS/CTS flow control */ if ((result == CY_RSLT_SUCCESS) && cfg->flow_ctrl) { result = cyhal_uart_enable_flow_control(&data->obj, true, true); } return (result == CY_RSLT_SUCCESS) ? 0 : -ENOTSUP; }; static int ifx_cat1_uart_config_get(const struct device *dev, struct uart_config *cfg) { ARG_UNUSED(dev); struct ifx_cat1_uart_data *const data = dev->data; if (cfg == NULL) { return -EINVAL; } *cfg = data->cfg; return 0; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN /* Uart event callback for Interrupt driven mode */ static void _uart_event_callback_irq_mode(void *arg, cyhal_uart_event_t event) { ARG_UNUSED(event); const struct device *dev = (const struct device *)arg; struct ifx_cat1_uart_data *const data = dev->data; if (data->irq_cb != NULL) { data->irq_cb(dev, data->irq_cb_data); } } /* Fill FIFO with data */ static int ifx_cat1_uart_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size) { struct ifx_cat1_uart_data *const data = dev->data; size_t _size = (size_t)size; (void)cyhal_uart_write(&data->obj, (uint8_t *)tx_data, &_size); return (int)_size; } /* Read data from FIFO */ static int ifx_cat1_uart_fifo_read(const struct device *dev, uint8_t *rx_data, const int size) { struct ifx_cat1_uart_data *const data = dev->data; size_t _size = (size_t)size; (void)cyhal_uart_read(&data->obj, rx_data, &_size); return (int)_size; } /* Enable TX interrupt */ static void ifx_cat1_uart_irq_tx_enable(const struct device *dev) { struct ifx_cat1_uart_data *const data = dev->data; const struct ifx_cat1_uart_config *const config = dev->config; cyhal_uart_enable_event(&data->obj, (cyhal_uart_event_t)CYHAL_UART_IRQ_TX_EMPTY, config->irq_priority, true); } /* Disable TX interrupt */ static void ifx_cat1_uart_irq_tx_disable(const struct device *dev) { struct ifx_cat1_uart_data *const data = dev->data; const struct ifx_cat1_uart_config *const config = dev->config; cyhal_uart_enable_event(&data->obj, (cyhal_uart_event_t)CYHAL_UART_IRQ_TX_EMPTY, config->irq_priority, false); } /* Check if UART TX buffer can accept a new char */ static int ifx_cat1_uart_irq_tx_ready(const struct device *dev) { struct ifx_cat1_uart_data *const data = dev->data; uint32_t mask = Cy_SCB_GetTxInterruptStatusMasked(data->obj.base); return (((mask & (CY_SCB_UART_TX_NOT_FULL | SCB_INTR_TX_EMPTY_Msk)) != 0u) ? 1 : 0); } /* Check if UART TX block finished transmission */ static int ifx_cat1_uart_irq_tx_complete(const struct device *dev) { struct ifx_cat1_uart_data *const data = dev->data; return (int)!(cyhal_uart_is_tx_active(&data->obj)); } /* Enable RX interrupt */ static void ifx_cat1_uart_irq_rx_enable(const struct device *dev) { struct ifx_cat1_uart_data *const data = dev->data; const struct ifx_cat1_uart_config *const config = dev->config; cyhal_uart_enable_event(&data->obj, (cyhal_uart_event_t)CYHAL_UART_IRQ_RX_NOT_EMPTY, config->irq_priority, true); } /* Disable TX interrupt */ static void ifx_cat1_uart_irq_rx_disable(const struct device *dev) { struct ifx_cat1_uart_data *const data = dev->data; const struct ifx_cat1_uart_config *const config = dev->config; cyhal_uart_enable_event(&data->obj, (cyhal_uart_event_t)CYHAL_UART_IRQ_RX_NOT_EMPTY, config->irq_priority, false); } /* Check if UART RX buffer has a received char */ static int ifx_cat1_uart_irq_rx_ready(const struct device *dev) { struct ifx_cat1_uart_data *const data = dev->data; return cyhal_uart_readable(&data->obj) ? 1 : 0; } /* Enable Error interrupts */ static void ifx_cat1_uart_irq_err_enable(const struct device *dev) { struct ifx_cat1_uart_data *const data = dev->data; const struct ifx_cat1_uart_config *const config = dev->config; cyhal_uart_enable_event( &data->obj, (cyhal_uart_event_t)(CYHAL_UART_IRQ_TX_ERROR | CYHAL_UART_IRQ_RX_ERROR), config->irq_priority, true); } /* Disable Error interrupts */ static void ifx_cat1_uart_irq_err_disable(const struct device *dev) { struct ifx_cat1_uart_data *const data = dev->data; const struct ifx_cat1_uart_config *const config = dev->config; cyhal_uart_enable_event( &data->obj, (cyhal_uart_event_t)(CYHAL_UART_IRQ_TX_ERROR | CYHAL_UART_IRQ_RX_ERROR), config->irq_priority, false); } /* Check if any IRQs is pending */ static int ifx_cat1_uart_irq_is_pending(const struct device *dev) { struct ifx_cat1_uart_data *const data = dev->data; uint32_t intcause = Cy_SCB_GetInterruptCause(data->obj.base); return (int)(intcause & (CY_SCB_TX_INTR | CY_SCB_RX_INTR)); } /* Start processing interrupts in ISR. * This function should be called the first thing in the ISR. Calling * uart_irq_rx_ready(), uart_irq_tx_ready(), uart_irq_tx_complete() * allowed only after this. */ static int ifx_cat1_uart_irq_update(const struct device *dev) { struct ifx_cat1_uart_data *const data = dev->data; int status = 1; if (((ifx_cat1_uart_irq_is_pending(dev) & CY_SCB_RX_INTR) != 0u) && (Cy_SCB_UART_GetNumInRxFifo(data->obj.base) == 0u)) { status = 0; } return status; } static void ifx_cat1_uart_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct ifx_cat1_uart_data *data = dev->data; cyhal_uart_t *uart_obj = &data->obj; /* Store user callback info */ data->irq_cb = cb; data->irq_cb_data = cb_data; /* Register a uart general callback handler */ cyhal_uart_register_callback(uart_obj, _uart_event_callback_irq_mode, (void *)dev); } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #ifdef CONFIG_UART_ASYNC_API static int ifx_cat1_uart_async_callback_set(const struct device *dev, uart_callback_t callback, void *user_data) { struct ifx_cat1_uart_data *const data = dev->data; data->async.cb = callback; data->async.user_data = user_data; data->async.dma_tx.dma_cfg.user_data = (void *)dev; return 0; } /* Async DMA helper */ static int ifx_cat1_uart_async_dma_config_buffer(const struct device *dev, bool tx) { int ret; struct ifx_cat1_uart_data *const data = dev->data; struct ifx_cat1_dma_stream *dma_stream = tx ? &data->async.dma_tx : &data->async.dma_rx; /* Configure byte mode */ dma_stream->blk_cfg.block_size = dma_stream->buf_len; if (tx) { dma_stream->blk_cfg.source_address = (uint32_t)dma_stream->buf; } else { dma_stream->blk_cfg.dest_address = (uint32_t)dma_stream->buf; } ret = dma_config(dma_stream->dev, dma_stream->dma_channel, &dma_stream->dma_cfg); if (!ret) { ret = dma_start(dma_stream->dev, dma_stream->dma_channel); } return ret; } static int ifx_cat1_uart_async_tx(const struct device *dev, const uint8_t *tx_data, size_t tx_data_size, int32_t timeout) { struct ifx_cat1_uart_data *const data = dev->data; const struct device *dev_dma = data->async.dma_tx.dev; int err; if (dev_dma == NULL) { err = -ENODEV; goto exit; } if (tx_data == NULL || tx_data_size == 0) { err = -EINVAL; goto exit; } /* Store information about data buffer need to send */ data->async.dma_tx.buf = (uint8_t *)tx_data; data->async.dma_tx.buf_len = tx_data_size; data->async.dma_tx.blk_cfg.block_size = 0; data->async.dma_tx.dma_transmitted_bytes = 0; /* Configure dma to transfer */ err = ifx_cat1_uart_async_dma_config_buffer(dev, true); if (err) { LOG_ERR("Error Tx DMA configure (%d)", err); goto exit; } /* Configure timeout */ if ((timeout != SYS_FOREVER_US) && (timeout != 0)) { k_work_reschedule(&data->async.dma_tx.timeout_work, K_USEC(timeout)); } exit: return err; } static int ifx_cat1_uart_async_tx_abort(const struct device *dev) { struct ifx_cat1_uart_data *data = dev->data; struct uart_event evt = {0}; struct dma_status stat; int err = 0; unsigned int key = irq_lock(); k_work_cancel_delayable(&data->async.dma_tx.timeout_work); err = dma_stop(data->async.dma_tx.dev, data->async.dma_tx.dma_channel); if (err) { LOG_ERR("Error stopping Tx DMA (%d)", err); goto unlock; } err = dma_get_status(data->async.dma_tx.dev, data->async.dma_tx.dma_channel, &stat); if (err) { LOG_ERR("Error stopping Tx DMA (%d)", err); goto unlock; } evt.type = UART_TX_ABORTED; evt.data.tx.buf = data->async.dma_tx.buf; evt.data.tx.len = 0; if (data->async.cb) { data->async.cb(dev, &evt, data->async.user_data); } unlock: irq_unlock(key); return err; } static void dma_callback_tx_done(const struct device *dma_dev, void *arg, uint32_t channel, int status) { const struct device *uart_dev = (void *)arg; struct ifx_cat1_uart_data *const data = uart_dev->data; unsigned int key = irq_lock(); if (status == 0) { k_work_cancel_delayable(&data->async.dma_tx.timeout_work); dma_stop(data->async.dma_tx.dev, data->async.dma_tx.dma_channel); struct uart_event evt = {.type = UART_TX_DONE, .data.tx.buf = data->async.dma_tx.buf, .data.tx.len = data->async.dma_tx.buf_len}; data->async.dma_tx.buf = NULL; data->async.dma_tx.buf_len = 0; if (data->async.cb) { data->async.cb(uart_dev, &evt, data->async.user_data); } } else { /* DMA error */ dma_stop(data->async.dma_tx.dev, data->async.dma_tx.dma_channel); } irq_unlock(key); } static void ifx_cat1_uart_async_tx_timeout(struct k_work *work) { struct k_work_delayable *dwork = k_work_delayable_from_work(work); struct ifx_cat1_dma_stream *dma_tx = CONTAINER_OF(dwork, struct ifx_cat1_dma_stream, timeout_work); struct ifx_cat1_uart_async *async = CONTAINER_OF(dma_tx, struct ifx_cat1_uart_async, dma_tx); (void)ifx_cat1_uart_async_tx_abort(async->uart_dev); } static inline void async_evt_rx_rdy(struct ifx_cat1_uart_data *data) { struct uart_event event = {.type = UART_RX_RDY, .data.rx.buf = (uint8_t *)data->async.dma_rx.buf, .data.rx.len = data->async.dma_rx.counter - data->async.dma_rx.offset, .data.rx.offset = data->async.dma_rx.offset}; data->async.dma_rx.offset = data->async.dma_rx.counter; if (event.data.rx.len > 0 && data->async.cb) { data->async.cb(data->async.uart_dev, &event, data->async.user_data); } } static inline void async_evt_rx_buf_request(struct ifx_cat1_uart_data *data) { struct uart_event evt = {.type = UART_RX_BUF_REQUEST}; if (data->async.cb) { data->async.cb(data->async.uart_dev, &evt, data->async.user_data); } } static inline void async_evt_rx_release_buffer(struct ifx_cat1_uart_data *data, int buffer_type) { struct uart_event event = {.type = UART_RX_BUF_RELEASED}; if (buffer_type == NEXT_BUFFER && !data->async.rx_next_buf) { return; } if (buffer_type == CURRENT_BUFFER && !data->async.dma_rx.buf) { return; } if (buffer_type == NEXT_BUFFER) { event.data.rx_buf.buf = data->async.rx_next_buf; data->async.rx_next_buf = NULL; data->async.rx_next_buf_len = 0; } else { event.data.rx_buf.buf = data->async.dma_rx.buf; data->async.dma_rx.buf = NULL; data->async.dma_rx.buf_len = 0; } if (data->async.cb) { data->async.cb(data->async.uart_dev, &event, data->async.user_data); } } static inline void async_evt_rx_disabled(struct ifx_cat1_uart_data *data) { struct uart_event event = {.type = UART_RX_DISABLED}; data->async.dma_rx.buf = NULL; data->async.dma_rx.buf_len = 0; data->async.dma_rx.offset = 0; data->async.dma_rx.counter = 0; if (data->async.cb) { data->async.cb(data->async.uart_dev, &event, data->async.user_data); } } static inline void async_evt_rx_stopped(struct ifx_cat1_uart_data *data, enum uart_rx_stop_reason reason) { struct uart_event event = {.type = UART_RX_STOPPED, .data.rx_stop.reason = reason}; struct uart_event_rx *rx = &event.data.rx_stop.data; struct dma_status stat; if (data->async.dma_rx.buf_len == 0 || data->async.cb == NULL) { return; } rx->buf = data->async.dma_rx.buf; if (dma_get_status(data->async.dma_rx.dev, data->async.dma_rx.dma_channel, &stat) == 0) { data->async.dma_rx.counter = data->async.dma_rx.buf_len - stat.pending_length; } rx->len = data->async.dma_rx.counter - data->async.dma_rx.offset; rx->offset = data->async.dma_rx.counter; data->async.cb(data->async.uart_dev, &event, data->async.user_data); } static int ifx_cat1_uart_async_rx_enable(const struct device *dev, uint8_t *rx_data, size_t rx_data_size, int32_t timeout) { struct ifx_cat1_uart_data *const data = dev->data; struct dma_status dma_status = {0}; int err = 0; unsigned int key = irq_lock(); if (data->async.dma_rx.dev == NULL) { return -ENODEV; } if (data->async.dma_rx.buf_len != 0) { return -EBUSY; } /* Store information about data buffer need to send */ data->async.dma_rx.buf = (uint8_t *)rx_data; data->async.dma_rx.buf_len = rx_data_size; data->async.dma_rx.blk_cfg.block_size = 0; data->async.dma_rx.dma_transmitted_bytes = 0; data->async.dma_rx.timeout = timeout; /* Request buffers before enabling rx */ async_evt_rx_buf_request(data); /* Configure dma to transfer */ err = ifx_cat1_uart_async_dma_config_buffer(dev, false); if (err) { LOG_ERR("Error Rx DMA configure (%d)", err); goto unlock; } err = dma_get_status(data->async.dma_rx.dev, data->async.dma_rx.dma_channel, &dma_status); if (err) { return err; } if (dma_status.busy) { return -EBUSY; } /* Configure timeout */ if ((timeout != SYS_FOREVER_US) && (timeout != 0)) { k_work_reschedule(&data->async.dma_rx.timeout_work, K_USEC(timeout)); } unlock: irq_unlock(key); return err; } static void dma_callback_rx_rdy(const struct device *dma_dev, void *arg, uint32_t channel, int status) { const struct device *uart_dev = (void *)arg; struct ifx_cat1_uart_data *const data = uart_dev->data; unsigned int key = irq_lock(); if (status == 0) { /* All data are sent, call user callback */ k_work_cancel_delayable(&data->async.dma_rx.timeout_work); data->async.dma_rx.counter = data->async.dma_rx.buf_len; async_evt_rx_rdy(data); async_evt_rx_release_buffer(data, CURRENT_BUFFER); data->async.dma_rx.buf = NULL; data->async.dma_rx.buf_len = 0; data->async.dma_rx.blk_cfg.block_size = 0; data->async.dma_rx.dma_transmitted_bytes = 0; if (!data->async.rx_next_buf) { dma_stop(data->async.dma_rx.dev, data->async.dma_rx.dma_channel); async_evt_rx_disabled(data); goto unlock; } data->async.dma_rx.buf = data->async.rx_next_buf; data->async.dma_rx.buf_len = data->async.rx_next_buf_len; data->async.dma_rx.offset = 0; data->async.dma_rx.counter = 0; data->async.rx_next_buf = NULL; data->async.rx_next_buf_len = 0; ifx_cat1_uart_async_dma_config_buffer(uart_dev, false); async_evt_rx_buf_request(data); if ((data->async.dma_rx.timeout != SYS_FOREVER_US) && (data->async.dma_rx.timeout != 0)) { k_work_reschedule(&data->async.dma_rx.timeout_work, K_USEC(data->async.dma_rx.timeout)); } } else { /* DMA error */ dma_stop(data->async.dma_rx.dev, data->async.dma_rx.dma_channel); async_evt_rx_stopped(data, UART_ERROR_OVERRUN); async_evt_rx_release_buffer(data, CURRENT_BUFFER); async_evt_rx_release_buffer(data, NEXT_BUFFER); async_evt_rx_disabled(data); goto unlock; } unlock: irq_unlock(key); } static void ifx_cat1_uart_async_rx_timeout(struct k_work *work) { struct k_work_delayable *dwork = k_work_delayable_from_work(work); struct ifx_cat1_dma_stream *dma_rx = CONTAINER_OF(dwork, struct ifx_cat1_dma_stream, timeout_work); struct ifx_cat1_uart_async *async = CONTAINER_OF(dma_rx, struct ifx_cat1_uart_async, dma_rx); struct ifx_cat1_uart_data *data = CONTAINER_OF(async, struct ifx_cat1_uart_data, async); struct dma_status stat; unsigned int key = irq_lock(); if (dma_rx->buf_len == 0) { irq_unlock(key); return; } if (dma_get_status(dma_rx->dev, dma_rx->dma_channel, &stat) == 0) { size_t rx_rcv_len = dma_rx->buf_len - stat.pending_length; if ((rx_rcv_len > 0) && (rx_rcv_len == dma_rx->counter)) { dma_rx->counter = rx_rcv_len; async_evt_rx_rdy(data); } else { dma_rx->counter = rx_rcv_len; } } irq_unlock(key); if ((dma_rx->timeout != SYS_FOREVER_US) && (dma_rx->timeout != 0)) { k_work_reschedule(&dma_rx->timeout_work, K_USEC(dma_rx->timeout)); } } static int ifx_cat1_uart_async_rx_disable(const struct device *dev) { struct ifx_cat1_uart_data *data = dev->data; struct dma_status stat; unsigned int key; k_work_cancel_delayable(&data->async.dma_rx.timeout_work); key = irq_lock(); if (data->async.dma_rx.buf_len == 0) { __ASSERT_NO_MSG(data->async.dma_rx.buf == NULL); irq_unlock(key); return -EINVAL; } dma_stop(data->async.dma_rx.dev, data->async.dma_rx.dma_channel); if (dma_get_status(data->async.dma_rx.dev, data->async.dma_rx.dma_channel, &stat) == 0) { size_t rx_rcv_len = data->async.dma_rx.buf_len - stat.pending_length; if (rx_rcv_len > data->async.dma_rx.offset) { data->async.dma_rx.counter = rx_rcv_len; async_evt_rx_rdy(data); } } async_evt_rx_release_buffer(data, CURRENT_BUFFER); async_evt_rx_release_buffer(data, NEXT_BUFFER); async_evt_rx_disabled(data); irq_unlock(key); return 0; } static int ifx_cat1_uart_async_rx_buf_rsp(const struct device *dev, uint8_t *buf, size_t len) { struct ifx_cat1_uart_data *data = dev->data; unsigned int key; int ret = 0; key = irq_lock(); if (data->async.dma_rx.buf_len == 0U) { ret = -EACCES; goto unlock; } if (data->async.rx_next_buf_len != 0U) { ret = -EBUSY; goto unlock; } data->async.rx_next_buf = buf; data->async.rx_next_buf_len = len; unlock: irq_unlock(key); return ret; } #endif /*CONFIG_UART_ASYNC_API */ static int ifx_cat1_uart_init(const struct device *dev) { struct ifx_cat1_uart_data *const data = dev->data; const struct ifx_cat1_uart_config *const config = dev->config; cy_rslt_t result; int ret; cyhal_uart_configurator_t uart_init_cfg = { .resource = &data->hw_resource, .config = &_cyhal_uart_default_config, .clock = &data->clock, .gpios = {.pin_tx = NC, .pin_rts = NC, .pin_cts = NC}, }; /* Dedicate SCB HW resource */ data->hw_resource.type = CYHAL_RSC_SCB; data->hw_resource.block_num = _get_hw_block_num(config->reg_addr); /* Configure dt provided device signals when available */ ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { return ret; } /* Allocates clock for selected IP block */ result = _cyhal_utils_allocate_clock(&data->clock, &data->hw_resource, CYHAL_CLOCK_BLOCK_PERIPHERAL_16BIT, true); if (result != CY_RSLT_SUCCESS) { return -ENOTSUP; } /* Assigns a programmable divider to a selected IP block */ en_clk_dst_t clk_idx = _cyhal_scb_get_clock_index(uart_init_cfg.resource->block_num); result = _cyhal_utils_peri_pclk_assign_divider(clk_idx, uart_init_cfg.clock); if (result != CY_RSLT_SUCCESS) { return -ENOTSUP; } /* Initialize the UART peripheral */ result = cyhal_uart_init_cfg(&data->obj, &uart_init_cfg); if (result != CY_RSLT_SUCCESS) { return -ENOTSUP; } #if (CONFIG_SOC_FAMILY_INFINEON_CAT1C && CONFIG_UART_INTERRUPT_DRIVEN) /* Enable the UART interrupt */ enable_sys_int(config->irq_num, config->irq_priority, (void (*)(const void *))(void *)cyhal_uart_irq_handler, &data->obj); #endif /* Perform initial Uart configuration */ data->obj.is_clock_owned = true; ret = ifx_cat1_uart_configure(dev, &config->dt_cfg); #ifdef CONFIG_UART_ASYNC_API data->async.uart_dev = dev; if (data->async.dma_rx.dev != NULL) { cyhal_source_t uart_source; if (!device_is_ready(data->async.dma_rx.dev)) { return -ENODEV; } data->async.dma_rx.blk_cfg.source_address = (uint32_t)(&config->reg_addr->RX_FIFO_RD); data->async.dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; data->async.dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; data->async.dma_rx.dma_cfg.head_block = &data->async.dma_rx.blk_cfg; data->async.dma_rx.dma_cfg.user_data = (void *)dev; data->async.dma_rx.dma_cfg.dma_callback = dma_callback_rx_rdy; if (cyhal_uart_enable_output(&data->obj, CYHAL_UART_OUTPUT_TRIGGER_RX_FIFO_LEVEL_REACHED, &uart_source)) { return -ENOTSUP; } if (ifx_cat1_dma_ex_connect_digital(data->async.dma_rx.dev, data->async.dma_rx.dma_channel, uart_source, CYHAL_DMA_INPUT_TRIGGER_ALL_ELEMENTS)) { return -ENOTSUP; } Cy_SCB_SetRxFifoLevel(config->reg_addr, 0); } if (data->async.dma_tx.dev != NULL) { cyhal_source_t uart_source; if (!device_is_ready(data->async.dma_tx.dev)) { return -ENODEV; } data->async.dma_tx.blk_cfg.dest_address = (uint32_t)(&config->reg_addr->TX_FIFO_WR); data->async.dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; data->async.dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; data->async.dma_tx.dma_cfg.head_block = &data->async.dma_tx.blk_cfg; data->async.dma_tx.dma_cfg.user_data = (void *)dev; data->async.dma_tx.dma_cfg.dma_callback = dma_callback_tx_done; if (cyhal_uart_enable_output(&data->obj, CYHAL_UART_OUTPUT_TRIGGER_TX_FIFO_LEVEL_REACHED, &uart_source)) { return -ENOTSUP; } if (ifx_cat1_dma_ex_connect_digital(data->async.dma_tx.dev, data->async.dma_tx.dma_channel, uart_source, CYHAL_DMA_INPUT_TRIGGER_ALL_ELEMENTS)) { return -ENOTSUP; } Cy_SCB_SetTxFifoLevel(config->reg_addr, 1); } k_work_init_delayable(&data->async.dma_tx.timeout_work, ifx_cat1_uart_async_tx_timeout); k_work_init_delayable(&data->async.dma_rx.timeout_work, ifx_cat1_uart_async_rx_timeout); #endif /* CONFIG_UART_ASYNC_API */ return ret; } static DEVICE_API(uart, ifx_cat1_uart_driver_api) = { .poll_in = ifx_cat1_uart_poll_in, .poll_out = ifx_cat1_uart_poll_out, .err_check = ifx_cat1_uart_err_check, #ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE .configure = ifx_cat1_uart_configure, .config_get = ifx_cat1_uart_config_get, #endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */ #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = ifx_cat1_uart_fifo_fill, .fifo_read = ifx_cat1_uart_fifo_read, .irq_tx_enable = ifx_cat1_uart_irq_tx_enable, .irq_tx_disable = ifx_cat1_uart_irq_tx_disable, .irq_tx_ready = ifx_cat1_uart_irq_tx_ready, .irq_rx_enable = ifx_cat1_uart_irq_rx_enable, .irq_rx_disable = ifx_cat1_uart_irq_rx_disable, .irq_tx_complete = ifx_cat1_uart_irq_tx_complete, .irq_rx_ready = ifx_cat1_uart_irq_rx_ready, .irq_err_enable = ifx_cat1_uart_irq_err_enable, .irq_err_disable = ifx_cat1_uart_irq_err_disable, .irq_is_pending = ifx_cat1_uart_irq_is_pending, .irq_update = ifx_cat1_uart_irq_update, .irq_callback_set = ifx_cat1_uart_irq_callback_set, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #if CONFIG_UART_ASYNC_API .callback_set = ifx_cat1_uart_async_callback_set, .tx = ifx_cat1_uart_async_tx, .rx_enable = ifx_cat1_uart_async_rx_enable, .tx_abort = ifx_cat1_uart_async_tx_abort, .rx_buf_rsp = ifx_cat1_uart_async_rx_buf_rsp, .rx_disable = ifx_cat1_uart_async_rx_disable, #endif /*CONFIG_UART_ASYNC_API*/ }; #if defined(CONFIG_UART_ASYNC_API) #define UART_DMA_CHANNEL_INIT(index, dir, ch_dir, src_data_size, dst_data_size) \ .dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(index, dir)), \ .dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ .dma_cfg = { \ .channel_direction = ch_dir, \ .source_data_size = src_data_size, \ .dest_data_size = dst_data_size, \ .source_burst_length = 0, \ .dest_burst_length = 0, \ .block_count = 1, \ .complete_callback_en = 0, \ }, #define UART_DMA_CHANNEL(index, dir, ch_dir, src_data_size, dst_data_size) \ .async.dma_##dir = {COND_CODE_1( \ DT_INST_DMAS_HAS_NAME(index, dir), \ (UART_DMA_CHANNEL_INIT(index, dir, ch_dir, src_data_size, dst_data_size)), \ (NULL))}, #else #define UART_DMA_CHANNEL(index, dir, ch_dir, src_data_size, dst_data_size) #endif /* CONFIG_UART_ASYNC_API */ #if (CONFIG_SOC_FAMILY_INFINEON_CAT1C) #define IRQ_INFO(n) \ .irq_num = DT_INST_PROP_BY_IDX(n, system_interrupts, SYS_INT_NUM), \ .irq_priority = DT_INST_PROP_BY_IDX(n, system_interrupts, SYS_INT_PRI)}; #else #define IRQ_INFO(n) .irq_priority = DT_INST_IRQ(n, priority)}; #endif #define INFINEON_CAT1_UART_INIT(n) \ PINCTRL_DT_INST_DEFINE(n); \ static struct ifx_cat1_uart_data ifx_cat1_uart##n##_data = { \ UART_DMA_CHANNEL(n, tx, MEMORY_TO_PERIPHERAL, 1, 1) \ UART_DMA_CHANNEL(n, rx, PERIPHERAL_TO_MEMORY, 1, 1)}; \ \ static struct ifx_cat1_uart_config ifx_cat1_uart##n##_cfg = { \ .dt_cfg.baudrate = DT_INST_PROP(n, current_speed), \ .dt_cfg.parity = DT_INST_ENUM_IDX(n, parity), \ .dt_cfg.stop_bits = DT_INST_ENUM_IDX(n, stop_bits), \ .dt_cfg.data_bits = DT_INST_ENUM_IDX(n, data_bits), \ .dt_cfg.flow_ctrl = DT_INST_PROP(n, hw_flow_control), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ .reg_addr = (CySCB_Type *)DT_INST_REG_ADDR(n), \ IRQ_INFO(n) \ \ DEVICE_DT_INST_DEFINE(n, &ifx_cat1_uart_init, NULL, &ifx_cat1_uart##n##_data, \ &ifx_cat1_uart##n##_cfg, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \ &ifx_cat1_uart_driver_api); DT_INST_FOREACH_STATUS_OKAY(INFINEON_CAT1_UART_INIT)