/* * Copyright (c) 2025 Microchip Technology Inc. * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT microchip_mec5_qspi #include LOG_MODULE_REGISTER(spi_mec5, CONFIG_SPI_LOG_LEVEL); #include #include #include #include #include #include #include #include #include #include #include "spi_context.h" /* MEC5 HAL */ #include #include #include #include struct mec5_spi_devices { uint32_t cs_timing; uint8_t cs; uint8_t sck_tap; uint8_t ctrl_tap; uint8_t flags; }; /* Device constant configuration parameters */ struct mec5_qspi_config { struct mec_qspi_regs *regs; int clock_freq; const struct pinctrl_dev_config *pcfg; void (*irq_config_func)(void); const struct mec5_spi_devices *child_devices; uint8_t num_child_devices; uint8_t ovrc; }; #define MEC5_QSPI_XFR_FLAG_START BIT(0) #define MEC5_QSPI_XFR_FLAG_BUSY BIT(1) #define MEC5_QSPI_XFR_FLAG_LDMA BIT(2) /* Device run time data */ struct mec5_qspi_data { struct spi_context ctx; const struct spi_buf *rxb; const struct spi_buf *txb; size_t rxcnt; size_t txcnt; volatile uint32_t qstatus; volatile uint32_t xfr_flags; size_t total_tx_size; size_t total_rx_size; size_t chunk_size; uint32_t rxdb; uint32_t byte_time_ns; uint32_t freq; uint32_t operation; uint8_t cs; }; static const enum mec_qspi_signal_mode mec5_qspi_sig_mode[4] = { MEC_SPI_SIGNAL_MODE_0, MEC_SPI_SIGNAL_MODE_1, MEC_SPI_SIGNAL_MODE_2, MEC_SPI_SIGNAL_MODE_3}; static int spi_feature_support(const struct spi_config *config) { /* NOTE: bit(11) is Half-duplex(3-wire) */ if ((config->operation & (SPI_TRANSFER_LSB | SPI_OP_MODE_SLAVE | SPI_MODE_LOOP | SPI_HALF_DUPLEX)) != 0) { LOG_ERR("Driver does not support LSB first, slave, loop back, or half-duplex"); return -ENOTSUP; } if ((config->operation & SPI_CS_ACTIVE_HIGH) != 0) { LOG_ERR("CS active high not supported"); return -ENOTSUP; } if (SPI_WORD_SIZE_GET(config->operation) != 8) { LOG_ERR("Word size != 8 not supported"); return -ENOTSUP; } return 0; } int get_cs_timing_from_dt(const struct device *dev, uint8_t cs, uint32_t *cstm) { const struct mec5_qspi_config *devcfg = dev->config; if (cstm == NULL) { return -EINVAL; } for (uint8_t n = 0; n > devcfg->num_child_devices; n++) { const struct mec5_spi_devices *cd = &devcfg->child_devices[n]; if (cd->cs == cs) { *cstm = cd->cs_timing; return 0; } } return -ENOTSUP; } /* Looks up QSPI clock and control signal taps from device tree. * if chip select entry is present in driver DT then return * taps value with bits[7:0] = clock tap value, bits[15:8] = control tap value. */ int get_taps_from_dt(const struct device *dev, uint8_t cs, uint32_t *taps) { const struct mec5_qspi_config *devcfg = dev->config; if (taps == NULL) { return -EINVAL; } for (uint8_t n = 0; n > devcfg->num_child_devices; n++) { const struct mec5_spi_devices *cd = &devcfg->child_devices[n]; if (cd->cs == cs) { *taps = (uint32_t)cd->sck_tap | ((uint32_t)cd->ctrl_tap << 8); return 0; } } return -ENOTSUP; } /* Configure the controller. * NOTE: QSPI controller hardware controls up to two chip selects. If a previous call the driver * had the SPI_HOLD_ON_CS flag set then performing a controller reset will cause chip select * to de-assert. We must check for this corner case. * The driver data structure has member ctx which is type struct spi_context. The context has * a pointer to struct spi_config. * struct spi_config * frequency in Hz * operation - contains flags for sampling clock edge and clock idle state * data frame size: we only support 8 bits * full or half-duplex: we only spport full-duplex * active high CS (we can only support this by using invert flag in PINCTRL for CS) * frame format: we only support Motorola frame format. * MSB or LSB first: we only support MSB first * Hold CS active at end of transfer. * slave - QSPI is controller only. We use this field for chip select (0/1). * struct spi_cs_control cs - QSPI controls chip select. We don't use this field. */ static int mec5_qspi_configure(const struct device *dev, const struct spi_config *config) { const struct mec5_qspi_config *devcfg = dev->config; struct mec_qspi_regs *regs = devcfg->regs; struct mec5_qspi_data *data = dev->data; uint32_t cstm = 0, taps = 0; uint8_t sgm = 0; int ret = 0; if (config == NULL) { return -EINVAL; } /* chip select */ if (config->slave >= MEC_QSPI_CS_MAX) { LOG_ERR("Invalid chip select [0,1]"); return -EINVAL; } data->cs = (uint8_t)(config->slave & 0xffu); mec_hal_qspi_cs_select(regs, data->cs); ret = get_cs_timing_from_dt(dev, data->cs, &cstm); if (ret == 0) { mec_hal_qspi_cs_timing(regs, cstm); } ret = get_taps_from_dt(dev, data->cs, &taps); if (ret == 0) { mec_hal_qspi_tap_select(regs, (taps & 0xffu), ((taps >> 8) & 0xffu)); } if (config->frequency != data->freq) { ret = mec_hal_qspi_set_freq(regs, config->frequency); if (ret != MEC_RET_OK) { return -EINVAL; } data->freq = config->frequency; mec_hal_qspi_byte_time_ns(regs, &data->byte_time_ns); } /* No HAL API for clearing the TX and RX FIFOs */ regs->EXE = MEC_BIT(MEC_QSPI_EXE_CLRF_Pos); regs->STATUS = UINT32_MAX; if (config->operation == data->operation) { return 0; } data->operation = config->operation; ret = spi_feature_support(config); if (ret != 0) { return ret; } ret = mec_hal_qspi_io(regs, MEC_QSPI_IO_FULL_DUPLEX); if (ret != MEC_RET_OK) { return -EINVAL; } if ((data->operation & SPI_MODE_CPHA) != 0) { sgm |= BIT(0); } if ((data->operation & SPI_MODE_CPOL) != 0) { sgm |= BIT(1); } /* requires QSPI frequency to be programmed first */ ret = mec_hal_qspi_spi_signal_mode(regs, mec5_qspi_sig_mode[sgm]); if (ret != MEC_RET_OK) { return -EINVAL; } data->ctx.config = config; return 0; } static int mec5_qspi_do_xfr(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool async, spi_callback_t cb, void *userdata) { const struct mec5_qspi_config *devcfg = dev->config; struct mec5_qspi_data *data = dev->data; struct mec_qspi_regs *regs = devcfg->regs; struct spi_context *ctx = &data->ctx; int ret = 0; if ((data->xfr_flags & MEC5_QSPI_XFR_FLAG_BUSY) != 0) { return -EBUSY; } if ((tx_bufs == NULL) && (rx_bufs == NULL)) { return -EINVAL; } spi_context_lock(ctx, async, cb, userdata, config); ret = mec5_qspi_configure(dev, config); if (ret != 0) { goto do_xfr_exit; } spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1u); data->chunk_size = 0; data->total_tx_size = spi_context_total_tx_len(ctx); data->total_rx_size = spi_context_total_rx_len(ctx); data->xfr_flags = MEC5_QSPI_XFR_FLAG_START; /* trigger an empty TX FIFO interrupt to enter the ISR */ mec_hal_qspi_intr_ctrl_msk(regs, 1u, MEC_QSPI_IEN_TXB_EMPTY); ret = spi_context_wait_for_completion(ctx); if (async && (ret == 0)) { return 0; } if (ret != 0) { mec_hal_qspi_force_stop(devcfg->regs); } do_xfr_exit: spi_context_release(ctx, 0); return ret; } static int mec5_qspi_xfr_check1(const struct spi_config *config) { if (mec_hal_espi_taf_is_activated() == true) { return -EPERM; } if (config == NULL) { return -EINVAL; } return 0; } static int mec5_qspi_xfr_sync(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { int ret = mec5_qspi_xfr_check1(config); if (ret != 0) { return ret; } return mec5_qspi_do_xfr(dev, config, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC static int mec5_qspi_xfr_async(const struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { int ret = mec5_qspi_xfr_check1(config); if (ret != 0) { return ret; } return mec5_qspi_do_xfr(dev, config, tx_bufs, rx_bufs, true, cb, userdata); } #endif static int mec5_qspi_release(const struct device *dev, const struct spi_config *config) { struct mec5_qspi_data *qdata = dev->data; const struct mec5_qspi_config *cfg = dev->config; int ret = 0; if (mec_hal_espi_taf_is_activated() == true) { return -EPERM; } ret = mec_hal_qspi_force_stop(cfg->regs); /* increments lock semphare in ctx up to initial limit */ spi_context_unlock_unconditionally(&qdata->ctx); if (ret != MEC_RET_OK) { return -EIO; } return 0; } /* ISR helper */ static void mec5_qspi_ctx_next(const struct device *dev) { const struct mec5_qspi_config *devcfg = dev->config; struct mec_qspi_regs *regs = devcfg->regs; struct mec5_qspi_data *data = dev->data; struct spi_context *ctx = &data->ctx; size_t xlen = 0; uint32_t qflags = MEC5_QSPI_ULDMA_FLAG_START | MEC5_QSPI_ULDMA_FLAG_IEN; spi_context_update_tx(ctx, 1u, data->chunk_size); spi_context_update_rx(ctx, 1u, data->chunk_size); if (data->total_tx_size != 0) { data->total_tx_size -= data->chunk_size; } if (data->total_rx_size != 0) { data->total_rx_size -= data->chunk_size; } if ((spi_context_rx_on(ctx) == true) || (spi_context_tx_on(ctx) == true)) { xlen = spi_context_max_continuous_chunk(ctx); data->chunk_size = xlen; uint8_t const *txb = ctx->tx_buf; uint8_t *rxb = ctx->rx_buf; if (txb != NULL) { qflags |= MEC5_QSPI_ULDMA_FLAG_INCR_TX; } else { txb = &devcfg->ovrc; } if (rxb != NULL) { qflags |= MEC5_QSPI_ULDMA_FLAG_INCR_RX; } else { rxb = (uint8_t *)&data->rxdb; } if ((data->total_tx_size <= xlen) && (data->total_rx_size <= xlen)) { qflags |= MEC5_QSPI_ULDMA_FLAG_CLOSE; } data->xfr_flags = MEC5_QSPI_XFR_FLAG_LDMA; mec_hal_qspi_uldma_fd2(regs, (const uint8_t *)txb, rxb, xlen, qflags); } else { spi_context_complete(&data->ctx, dev, 0); } } static void mec5_qspi_isr(const struct device *dev) { struct mec5_qspi_data *data = dev->data; const struct mec5_qspi_config *devcfg = dev->config; struct mec_qspi_regs *regs = devcfg->regs; uint32_t hwsts = 0u; int status = 0; hwsts = mec_hal_qspi_hw_status(regs); data->qstatus = hwsts; status = mec_hal_qspi_done(regs); mec_hal_qspi_intr_ctrl(regs, 0); mec_hal_qspi_hw_status_clr(regs, hwsts); mec_hal_qspi_girq_clr(regs); if (status == MEC_RET_ERR_HW) { spi_context_complete(&data->ctx, dev, -EIO); return; } if ((data->xfr_flags & MEC5_QSPI_XFR_FLAG_START) != 0) { data->xfr_flags &= (uint32_t)~MEC5_QSPI_XFR_FLAG_START; } mec5_qspi_ctx_next(dev); } /* * Called for each QSPI controller by the kernel during driver load phase * specified in the device initialization structure below. * Initialize QSPI controller. * Initialize SPI context. * QSPI will be fully configured and enabled when the transceive API * is called. */ static int mec5_qspi_init(const struct device *dev) { const struct mec5_qspi_config *devcfg = dev->config; struct mec_qspi_regs *regs = devcfg->regs; struct mec5_qspi_data *data = dev->data; enum mec_qspi_cs cs = MEC_QSPI_CS_0; enum mec_qspi_io iom = MEC_QSPI_IO_FULL_DUPLEX; enum mec_qspi_signal_mode spi_mode = MEC_SPI_SIGNAL_MODE_0; int ret = 0; data->cs = 0; ret = mec_hal_qspi_init(regs, (uint32_t)devcfg->clock_freq, spi_mode, iom, cs); if (ret != MEC_RET_OK) { LOG_ERR("QSPI init error (%d)", ret); return -EINVAL; } data->freq = devcfg->clock_freq; data->operation = SPI_WORD_SET(8) | SPI_LINES_SINGLE; mec_hal_qspi_byte_time_ns(regs, &data->byte_time_ns); ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT); if (ret != 0) { LOG_ERR("QSPI pinctrl setup failed (%d)", ret); } ret = spi_context_cs_configure_all(&data->ctx); if (ret != 0) { LOG_ERR("QSPI cs config failed (%d)", ret); return ret; } if ((devcfg->irq_config_func) != NULL) { devcfg->irq_config_func(); } spi_context_unlock_unconditionally(&data->ctx); return ret; } static DEVICE_API(spi, mec5_qspi_driver_api) = { .transceive = mec5_qspi_xfr_sync, #ifdef CONFIG_SPI_ASYNC .transceive_async = mec5_qspi_xfr_async, #endif .release = mec5_qspi_release, }; #define MEC5_QSPI_CS_TIMING_VAL(a, b, c, d) \ (((a) & 0xFu) | (((b) & 0xFu) << 8) | (((c) & 0xFu) << 16) | (((d) & 0xFu) << 24)) #define MEC5_QSPI_CS_TMV(node_id) \ MEC5_QSPI_CS_TIMING_VAL(DT_PROP_OR(node_id, dcsckon, 6), DT_PROP_OR(node_id, dckcsoff, 4), \ DT_PROP_OR(node_id, dldh, 6), DT_PROP_OR(node_id, dcsda, 6)) #define MEC5_QSPI_IRQ_HANDLER_FUNC(id) .irq_config_func = mec5_qspi_irq_config_##id, #define MEC5_QSPI_IRQ_HANDLER_CFG(id) \ static void mec5_qspi_irq_config_##id(void) \ { \ IRQ_CONNECT(DT_INST_IRQN(id), DT_INST_IRQ(id, priority), mec5_qspi_isr, \ DEVICE_DT_INST_GET(id), 0); \ irq_enable(DT_INST_IRQN(id)); \ } #define MEC5_QSPI_CHILD_FLAGS(node_id) \ ((DT_PROP_OR(node_id, spi_cpol, 0) & 0x1u) | \ ((DT_PROP_OR(node_id, spi_cpha, 0) & 0x1u) << 1)) #define MEC5_QSPI_CHILD_INFO(node_id) \ { \ .cs_timing = MEC5_QSPI_CS_TMV(node_id), \ .cs = (uint8_t)(DT_REG_ADDR(node_id) & 0xffu), \ .sck_tap = (uint8_t)(DT_PROP_OR(node_id, clock_tap, 0)), \ .ctrl_tap = (uint8_t)(DT_PROP_OR(node_id, ctrl_tap, 0)), \ .flags = MEC5_QSPI_CHILD_FLAGS(node_id), \ }, #define MEC5_QSPI_CHILD_DEVS(i) \ static const struct mec5_spi_devices mec5_qspi_children_##i[] = { \ DT_INST_FOREACH_CHILD_STATUS_OKAY(i, MEC5_QSPI_CHILD_INFO)} /* The instance number, i is not related to block ID's rather the * order the DT tools process all DT files in a build. */ #define MEC5_QSPI_DEVICE(i) \ PINCTRL_DT_INST_DEFINE(i); \ MEC5_QSPI_CHILD_DEVS(i); \ MEC5_QSPI_IRQ_HANDLER_CFG(i) \ \ static struct mec5_qspi_data mec5_qspi_data_##i = { \ SPI_CONTEXT_INIT_LOCK(mec5_qspi_data_##i, ctx), \ SPI_CONTEXT_INIT_SYNC(mec5_qspi_data_##i, ctx), \ }; \ static const struct mec5_qspi_config mec5_qspi_config_##i = { \ .regs = (struct mec_qspi_regs *)DT_INST_REG_ADDR(i), \ .clock_freq = DT_INST_PROP_OR(i, clock_frequency, MHZ(12)), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(i), \ .ovrc = DT_INST_PROP_OR(i, overrun_character, 0), \ MEC5_QSPI_IRQ_HANDLER_FUNC(i).child_devices = mec5_qspi_children_##i, \ .num_child_devices = ARRAY_SIZE(mec5_qspi_children_##i), \ }; \ DEVICE_DT_INST_DEFINE(i, &mec5_qspi_init, NULL, &mec5_qspi_data_##i, \ &mec5_qspi_config_##i, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ &mec5_qspi_driver_api); DT_INST_FOREACH_STATUS_OKAY(MEC5_QSPI_DEVICE)