Browse Source
Deprecate the xoroshiro128+ PRNG algorithm in favour of xoshiro128++. xoshiro128++ is a drop-in replacement which is invisible from the user perspective. xoroshiro128+ is unsuitable because it is explicitly a floating-point PRNG, not a general-purpose PRNG. This means that the lower 4 bits of the output are actually linear, not random (from the designers, https://prng.di.unimi.it/). This means 1/8th of the generated data is not random. Additionally, xoroshiro128+ is not a 32bit algorithm, it operates on 64bit numbers. For the vast majority of Zephyr devices, this makes the PRNG slower than it needs to be. The replacement (xoshiro128++) is 32bit, with no loss in state space (still 128 bit). Signed-off-by: Jordan Yates <jordan.yates@data61.csiro.au>pull/37383/head
9 changed files with 15 additions and 149 deletions
@ -1,122 +0,0 @@
@@ -1,122 +0,0 @@
|
||||
/*
|
||||
* Copyright (c) 2017 Intel Corporation |
||||
* |
||||
* SPDX-License-Identifier: CC0-1.0 |
||||
* |
||||
* Based on code written in 2016 by David Blackman and Sebastiano Vigna |
||||
* (vigna@acm.org) |
||||
* |
||||
* To the extent possible under law, the author has dedicated all copyright |
||||
* and related and neighboring rights to this software to the public domain |
||||
* worldwide. This software is distributed without any warranty. |
||||
* |
||||
* See <http://creativecommons.org/publicdomain/zero/1.0/>.
|
||||
*/ |
||||
|
||||
/* This is the successor to xorshift128+. It is the fastest full-period
|
||||
* generator passing BigCrush without systematic failures, but due to the |
||||
* relatively short period it is acceptable only for applications with a |
||||
* mild amount of parallelism; otherwise, use a xorshift1024* generator. |
||||
* |
||||
* Beside passing BigCrush, this generator passes the PractRand test suite |
||||
* up to (and included) 16TB, with the exception of binary rank tests, as |
||||
* the lowest bit of this generator is an LSFR. The next bit is not an |
||||
* LFSR, but in the long run it will fail binary rank tests, too. The |
||||
* other bits have no LFSR artifacts. |
||||
* |
||||
* We suggest to use a sign test to extract a random Boolean value, and |
||||
* right shifts to extract subsets of bits. |
||||
* |
||||
* Note that the generator uses a simulated rotate operation, which most C |
||||
* compilers will turn into a single instruction. In Java, you can use |
||||
* Long.rotateLeft(). In languages that do not make low-level rotation |
||||
* instructions accessible xorshift128+ could be faster. |
||||
* |
||||
* The state must be seeded so that it is not everywhere zero. If you have |
||||
* a 64-bit seed, we suggest to seed a splitmix64 generator and use its |
||||
* output to fill s. |
||||
*/ |
||||
|
||||
#include <init.h> |
||||
#include <device.h> |
||||
#include <drivers/entropy.h> |
||||
#include <kernel.h> |
||||
#include <string.h> |
||||
|
||||
static uint64_t state[2]; |
||||
|
||||
static inline uint64_t rotl(const uint64_t x, int k) |
||||
{ |
||||
return (x << k) | (x >> (64 - k)); |
||||
} |
||||
|
||||
static int xoroshiro128_initialize(const struct device *dev) |
||||
{ |
||||
dev = device_get_binding(DT_CHOSEN_ZEPHYR_ENTROPY_LABEL); |
||||
if (!dev) { |
||||
return -EINVAL; |
||||
} |
||||
|
||||
int32_t rc = entropy_get_entropy_isr(dev, (uint8_t *)&state, |
||||
sizeof(state), ENTROPY_BUSYWAIT); |
||||
|
||||
if (rc == -ENOTSUP) { |
||||
/* Driver does not provide an ISR-specific API, assume it can
|
||||
* be called from ISR context |
||||
*/ |
||||
rc = entropy_get_entropy(dev, (uint8_t *)&state, sizeof(state)); |
||||
} |
||||
|
||||
if (rc < 0) { |
||||
return -EINVAL; |
||||
} |
||||
|
||||
return 0; |
||||
} |
||||
|
||||
static uint32_t xoroshiro128_next(void) |
||||
{ |
||||
const uint64_t s0 = state[0]; |
||||
uint64_t s1 = state[1]; |
||||
const uint64_t result = s0 + s1; |
||||
|
||||
s1 ^= s0; |
||||
state[0] = rotl(s0, 55) ^ s1 ^ (s1 << 14); |
||||
state[1] = rotl(s1, 36); |
||||
|
||||
return (uint32_t)result; |
||||
} |
||||
|
||||
uint32_t z_impl_sys_rand32_get(void) |
||||
{ |
||||
uint32_t ret; |
||||
|
||||
ret = xoroshiro128_next(); |
||||
|
||||
return ret; |
||||
} |
||||
|
||||
void z_impl_sys_rand_get(void *dst, size_t outlen) |
||||
{ |
||||
uint32_t ret; |
||||
uint32_t blocksize = 4; |
||||
uint32_t len = 0; |
||||
uint32_t *udst = (uint32_t *)dst; |
||||
|
||||
while (len < outlen) { |
||||
ret = xoroshiro128_next(); |
||||
if ((outlen-len) < sizeof(ret)) { |
||||
blocksize = outlen - len; |
||||
(void)memcpy(udst, &ret, blocksize); |
||||
} else { |
||||
(*udst++) = ret; |
||||
} |
||||
len += blocksize; |
||||
} |
||||
} |
||||
|
||||
/* In-tree entropy drivers will initialize in PRE_KERNEL_1; ensure that they're
|
||||
* initialized properly before initializing ourselves. |
||||
*/ |
||||
SYS_INIT(xoroshiro128_initialize, PRE_KERNEL_2, |
||||
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT); |
@ -1,4 +0,0 @@
@@ -1,4 +0,0 @@
|
||||
CONFIG_ZTEST=y |
||||
CONFIG_LOG=y |
||||
CONFIG_ENTROPY_GENERATOR=y |
||||
CONFIG_XOROSHIRO_RANDOM_GENERATOR=y |
Loading…
Reference in new issue