Browse Source
Add System Timer driver support for Renesas RZ/G3S Signed-off-by: Nhut Nguyen <nhut.nguyen.kc@renesas.com> Signed-off-by: Hoang Nguyen <hoang.nguyen.jx@bp.renesas.com>pull/90236/merge
5 changed files with 252 additions and 0 deletions
@ -0,0 +1,14 @@ |
|||||||
|
# Copyright (c) 2024 Renesas Electronics Corporation |
||||||
|
# SPDX-License-Identifier: Apache-2.0 |
||||||
|
|
||||||
|
config RZ_OS_TIMER |
||||||
|
bool "Renesas RZ OS timer" |
||||||
|
default y |
||||||
|
depends on DT_HAS_RENESAS_RZ_GTM_OS_TIMER_ENABLED |
||||||
|
select TIMER_READS_ITS_FREQUENCY_AT_RUNTIME |
||||||
|
select SYSTEM_TIMER_HAS_DISABLE_SUPPORT |
||||||
|
select TICKLESS_CAPABLE |
||||||
|
select USE_RZ_FSP_GTM |
||||||
|
help |
||||||
|
This module implements a kernel device driver for the Renesas RZ |
||||||
|
platform provides the standard "system clock driver" interfaces. |
@ -0,0 +1,228 @@ |
|||||||
|
/*
|
||||||
|
* Copyright (c) 2024 Renesas Electronics Corporation |
||||||
|
* |
||||||
|
* SPDX-License-Identifier: Apache-2.0 |
||||||
|
*/ |
||||||
|
#include <zephyr/device.h> |
||||||
|
#include <zephyr/spinlock.h> |
||||||
|
#include <zephyr/drivers/timer/system_timer.h> |
||||||
|
#include <zephyr/irq.h> |
||||||
|
#include <zephyr/sys_clock.h> |
||||||
|
#include <zephyr/logging/log.h> |
||||||
|
#include <instances/rzg/r_gtm.h> |
||||||
|
|
||||||
|
LOG_MODULE_REGISTER(renesas_rz_gtm_timer); |
||||||
|
|
||||||
|
#define DT_DRV_COMPAT renesas_rz_gtm_os_timer |
||||||
|
#define TIMER_NODE DT_INST_PARENT(0) |
||||||
|
|
||||||
|
#define cycle_diff_t uint32_t |
||||||
|
#define CYCLE_DIFF_MAX (~(cycle_diff_t)0) |
||||||
|
|
||||||
|
/*
|
||||||
|
* We have two constraints on the maximum number of cycles we can wait for. |
||||||
|
* |
||||||
|
* 1) sys_clock_announce() accepts at most INT32_MAX ticks. |
||||||
|
* |
||||||
|
* 2) The number of cycles between two reports must fit in a cycle_diff_t |
||||||
|
* variable before converting it to ticks. |
||||||
|
* |
||||||
|
* Then: |
||||||
|
* |
||||||
|
* 3) Pick the smallest between (1) and (2). |
||||||
|
* |
||||||
|
* 4) Take into account some room for the unavoidable IRQ servicing latency. |
||||||
|
* Let's use 3/4 of the max range. |
||||||
|
* |
||||||
|
* Finally let's add the LSB value to the result so to clear out a bunch of |
||||||
|
* consecutive set bits coming from the original max values to produce a |
||||||
|
* nicer literal for assembly generation. |
||||||
|
*/ |
||||||
|
#define CYCLES_MAX_1 ((uint64_t)INT32_MAX * (uint64_t)CYC_PER_TICK) |
||||||
|
#define CYCLES_MAX_2 ((uint64_t)CYCLE_DIFF_MAX) |
||||||
|
#define CYCLES_MAX_3 MIN(CYCLES_MAX_1, CYCLES_MAX_2) |
||||||
|
#define CYCLES_MAX_4 (CYCLES_MAX_3 / 2 + CYCLES_MAX_3 / 4) |
||||||
|
#define CYCLES_MAX_5 (CYCLES_MAX_4 + LSB_GET(CYCLES_MAX_4)) |
||||||
|
|
||||||
|
/* precompute CYCLES_MAX and CYC_PER_TICK at driver init to avoid runtime double divisions */ |
||||||
|
static uint64_t cycles_max; |
||||||
|
static uint32_t cyc_per_tick; |
||||||
|
#define CYCLES_MAX cycles_max |
||||||
|
#define CYC_PER_TICK cyc_per_tick |
||||||
|
|
||||||
|
static void ostm_irq_handler(timer_callback_args_t *arg); |
||||||
|
void gtm_int_isr(void); |
||||||
|
const struct device *g_os_timer_dev = DEVICE_DT_INST_GET(0); |
||||||
|
extern unsigned int z_clock_hw_cycles_per_sec; |
||||||
|
|
||||||
|
struct rz_os_timer_config { |
||||||
|
timer_cfg_t *fsp_cfg; |
||||||
|
const timer_api_t *fsp_api; |
||||||
|
}; |
||||||
|
|
||||||
|
struct rz_os_timer_data { |
||||||
|
timer_ctrl_t *fsp_ctrl; |
||||||
|
struct k_spinlock lock; |
||||||
|
uint32_t last_cycle; |
||||||
|
uint32_t last_tick; |
||||||
|
uint32_t last_elapsed; |
||||||
|
}; |
||||||
|
|
||||||
|
static void ostm_irq_handler(timer_callback_args_t *arg) |
||||||
|
{ |
||||||
|
ARG_UNUSED(arg); |
||||||
|
|
||||||
|
struct rz_os_timer_data *data = (struct rz_os_timer_data *)g_os_timer_dev->data; |
||||||
|
|
||||||
|
uint32_t delta_cycles = sys_clock_cycle_get_32() - data->last_cycle; |
||||||
|
uint32_t delta_ticks = delta_cycles / CYC_PER_TICK; |
||||||
|
|
||||||
|
data->last_cycle += delta_ticks * CYC_PER_TICK; |
||||||
|
data->last_tick += delta_ticks; |
||||||
|
data->last_elapsed = 0; |
||||||
|
|
||||||
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
||||||
|
struct rz_os_timer_config *config = |
||||||
|
(struct rz_os_timer_config *)g_os_timer_dev->config; |
||||||
|
uint32_t next_cycle = data->last_cycle + CYC_PER_TICK; |
||||||
|
|
||||||
|
config->fsp_api->periodSet(data->fsp_ctrl, next_cycle); |
||||||
|
} else { |
||||||
|
irq_disable(DT_IRQN(TIMER_NODE)); |
||||||
|
} |
||||||
|
|
||||||
|
/* Announce to the kernel */ |
||||||
|
sys_clock_announce(delta_ticks); |
||||||
|
} |
||||||
|
|
||||||
|
void sys_clock_set_timeout(int32_t ticks, bool idle) |
||||||
|
{ |
||||||
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
if (idle && ticks == K_TICKS_FOREVER) { |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
struct rz_os_timer_config *config = (struct rz_os_timer_config *)g_os_timer_dev->config; |
||||||
|
struct rz_os_timer_data *data = (struct rz_os_timer_data *)g_os_timer_dev->data; |
||||||
|
uint32_t next_cycle; |
||||||
|
|
||||||
|
k_spinlock_key_t key = k_spin_lock(&data->lock); |
||||||
|
|
||||||
|
if (ticks == K_TICKS_FOREVER) { |
||||||
|
next_cycle = data->last_cycle + CYCLES_MAX; |
||||||
|
} else { |
||||||
|
next_cycle = (data->last_tick + data->last_elapsed + ticks) * CYC_PER_TICK; |
||||||
|
if ((next_cycle - data->last_cycle) > CYCLES_MAX) { |
||||||
|
next_cycle = data->last_cycle + CYCLES_MAX; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
config->fsp_api->periodSet(data->fsp_ctrl, next_cycle); |
||||||
|
irq_enable(DT_IRQN(TIMER_NODE)); |
||||||
|
|
||||||
|
k_spin_unlock(&data->lock, key); |
||||||
|
} |
||||||
|
|
||||||
|
uint32_t sys_clock_elapsed(void) |
||||||
|
{ |
||||||
|
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
||||||
|
return 0; |
||||||
|
} |
||||||
|
|
||||||
|
struct rz_os_timer_data *data = (struct rz_os_timer_data *)g_os_timer_dev->data; |
||||||
|
uint32_t delta_cycles = sys_clock_cycle_get_32() - data->last_cycle; |
||||||
|
uint32_t delta_ticks = delta_cycles / CYC_PER_TICK; |
||||||
|
|
||||||
|
data->last_elapsed = delta_ticks; |
||||||
|
|
||||||
|
return delta_ticks; |
||||||
|
} |
||||||
|
|
||||||
|
void sys_clock_disable(void) |
||||||
|
{ |
||||||
|
struct rz_os_timer_config *config = (struct rz_os_timer_config *)g_os_timer_dev->config; |
||||||
|
struct rz_os_timer_data *data = (struct rz_os_timer_data *)g_os_timer_dev->data; |
||||||
|
|
||||||
|
config->fsp_api->close(data->fsp_ctrl); |
||||||
|
} |
||||||
|
|
||||||
|
uint32_t sys_clock_cycle_get_32(void) |
||||||
|
{ |
||||||
|
struct rz_os_timer_config *config = (struct rz_os_timer_config *)g_os_timer_dev->config; |
||||||
|
struct rz_os_timer_data *data = (struct rz_os_timer_data *)g_os_timer_dev->data; |
||||||
|
timer_status_t timer_status; |
||||||
|
k_spinlock_key_t key = k_spin_lock(&data->lock); |
||||||
|
|
||||||
|
config->fsp_api->statusGet(data->fsp_ctrl, &timer_status); |
||||||
|
k_spin_unlock(&data->lock, key); |
||||||
|
|
||||||
|
return timer_status.counter; |
||||||
|
} |
||||||
|
|
||||||
|
static int sys_clock_driver_init(void) |
||||||
|
{ |
||||||
|
fsp_err_t ret; |
||||||
|
struct rz_os_timer_config *config = (struct rz_os_timer_config *)g_os_timer_dev->config; |
||||||
|
struct rz_os_timer_data *data = (struct rz_os_timer_data *)g_os_timer_dev->data; |
||||||
|
|
||||||
|
IRQ_CONNECT(DT_IRQN(TIMER_NODE), DT_IRQ(TIMER_NODE, priority), gtm_int_isr, |
||||||
|
DEVICE_DT_INST_GET(0), 0); |
||||||
|
|
||||||
|
data->last_tick = 0; |
||||||
|
data->last_cycle = 0; |
||||||
|
z_clock_hw_cycles_per_sec = R_FSP_SystemClockHzGet(FSP_PRIV_CLOCK_P0CLK); |
||||||
|
cyc_per_tick = sys_clock_hw_cycles_per_sec() / CONFIG_SYS_CLOCK_TICKS_PER_SEC; |
||||||
|
cycles_max = CYCLES_MAX_5; |
||||||
|
config->fsp_cfg->period_counts = CYC_PER_TICK; |
||||||
|
ret = config->fsp_api->open(data->fsp_ctrl, config->fsp_cfg); |
||||||
|
if (ret != FSP_SUCCESS) { |
||||||
|
LOG_ERR("timer initialize failed"); |
||||||
|
return -EIO; |
||||||
|
} |
||||||
|
|
||||||
|
ret = config->fsp_api->start(data->fsp_ctrl); |
||||||
|
if (ret != FSP_SUCCESS) { |
||||||
|
LOG_ERR("timer start failed"); |
||||||
|
return -EIO; |
||||||
|
} |
||||||
|
|
||||||
|
return 0; |
||||||
|
} |
||||||
|
|
||||||
|
#define OS_TIMER_RZG_GTM_INIT() \ |
||||||
|
const gtm_extended_cfg_t g_timer0_extend = { \ |
||||||
|
.generate_interrupt_when_starts = GTM_GIWS_TYPE_DISABLED, \ |
||||||
|
.gtm_mode = GTM_TIMER_MODE_FREERUN, \ |
||||||
|
}; \ |
||||||
|
\ |
||||||
|
static timer_cfg_t g_timer0_cfg = { \ |
||||||
|
.mode = TIMER_MODE_PERIODIC, \ |
||||||
|
.period_counts = 0, \ |
||||||
|
.channel = DT_PROP(TIMER_NODE, channel), \ |
||||||
|
.p_callback = ostm_irq_handler, \ |
||||||
|
.p_context = DEVICE_DT_INST_GET(0), \ |
||||||
|
.p_extend = &g_timer0_extend, \ |
||||||
|
.cycle_end_ipl = DT_IRQ(TIMER_NODE, priority), \ |
||||||
|
.cycle_end_irq = DT_IRQN(TIMER_NODE), \ |
||||||
|
}; \ |
||||||
|
\ |
||||||
|
static gtm_instance_ctrl_t g_timer0_ctrl; \ |
||||||
|
\ |
||||||
|
static struct rz_os_timer_data g_rz_os_timer_data = { \ |
||||||
|
.fsp_ctrl = (timer_ctrl_t *)&g_timer0_ctrl, \ |
||||||
|
}; \ |
||||||
|
\ |
||||||
|
struct rz_os_timer_config g_rz_os_timer_config = { \ |
||||||
|
.fsp_cfg = &g_timer0_cfg, \ |
||||||
|
.fsp_api = &g_timer_on_gtm, \ |
||||||
|
}; \ |
||||||
|
\ |
||||||
|
DEVICE_DT_INST_DEFINE(0, NULL, NULL, &g_rz_os_timer_data, &g_rz_os_timer_config, \ |
||||||
|
PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY, NULL); \ |
||||||
|
\ |
||||||
|
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2, CONFIG_SYSTEM_CLOCK_INIT_PRIORITY); |
||||||
|
|
||||||
|
OS_TIMER_RZG_GTM_INIT(); |
Loading…
Reference in new issue