Browse Source

drivers/timer/apic_timer: move to periodic mode

This driver is impossible to make time-accurate using single-shot
mode. Time accuracy may be obtained only by using periodic mode, meaning
it is not tickless capable either. Let's simplify the code by only
supporting periodic mode and strip out the TSC stuff. Any hardware with
TSC capability should now use the apic-tsc driver instead.

Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
pull/73440/head
Nicolas Pitre 1 year ago committed by Henrik Brix Andersen
parent
commit
99dcbdf933
  1. 4
      drivers/timer/Kconfig.x86
  2. 184
      drivers/timer/apic_timer.c

4
drivers/timer/Kconfig.x86

@ -26,10 +26,10 @@ config HPET_TIMER @@ -26,10 +26,10 @@ config HPET_TIMER
config APIC_TIMER
bool "Local APIC timer"
select LOAPIC
select TICKLESS_CAPABLE
select TIMER_HAS_64BIT_CYCLE_COUNTER
select SYSTEM_CLOCK_LOCK_FREE_COUNT
help
Use the x86 local APIC in one-shot mode as the system time
Use the x86 local APIC in periodic mode as the system time
source. NOTE: this probably isn't what you want except on
older or idiosyncratic hardware (or environments like qemu
without complete APIC emulation). Modern hardware will work

184
drivers/timer/apic_timer.c

@ -10,18 +10,14 @@ @@ -10,18 +10,14 @@
#include <zephyr/drivers/interrupt_controller/loapic.h>
#include <zephyr/irq.h>
BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP), "APIC timer doesn't support SMP");
BUILD_ASSERT(!IS_ENABLED(CONFIG_TICKLESS_KERNEL), "this is a tickfull driver");
/*
* Overview:
*
* This driver enables the local APIC as the Zephyr system timer. It supports
* both legacy ("tickful") mode as well as TICKLESS_KERNEL. The driver will
* work with any APIC that has the ARAT "always running APIC timer" feature
* (CPUID 0x06, EAX bit 2); for the more accurate sys_clock_cycle_get_32(),
* the invariant TSC feature (CPUID 0x80000007: EDX bit 8) is also required.
* (Ultimately systems with invariant TSCs should use a TSC-based driver,
* and the TSC-related parts should be stripped from this implementation.)
* legacy ("tickful") mode only. The driver will work with any APIC that has
* the ARAT "always running APIC timer" feature (CPUID 0x06, EAX bit 2).
*
* Configuration:
*
@ -31,15 +27,6 @@ BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP), "APIC timer doesn't support SMP"); @@ -31,15 +27,6 @@ BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP), "APIC timer doesn't support SMP");
*
* CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=<hz> must contain the frequency seen
* by the local APIC timer block (before it gets to the timer divider).
*
* CONFIG_APIC_TIMER_TSC=y enables the more accurate TSC-based cycle counter
* for sys_clock_cycle_get_32(). This also requires the next options be set.
*
* CONFIG_APIC_TIMER_TSC_N=<n>
* CONFIG_APIC_TIMER_TSC_M=<m>
* When CONFIG_APIC_TIMER_TSC=y, these are set to indicate the ratio of
* the TSC frequency to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC. This can be
* found via CPUID 0x15 (n = EBX, m = EAX) on most CPUs.
*/
/* These should be merged into include/drivers/interrupt_controller/loapic.h. */
@ -47,139 +34,24 @@ BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP), "APIC timer doesn't support SMP"); @@ -47,139 +34,24 @@ BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP), "APIC timer doesn't support SMP");
#define DCR_DIVIDER_MASK 0x0000000F /* divider bits */
#define DCR_DIVIDER 0x0000000B /* divide by 1 */
#define LVT_MODE_MASK 0x00060000 /* timer mode bits */
#define LVT_MODE 0x00000000 /* one-shot */
#define LVT_MODE 0x00020000 /* periodic mode */
#if defined(CONFIG_TEST)
const int32_t z_sys_timer_irq_for_test = CONFIG_APIC_TIMER_IRQ;
#endif
/*
* CYCLES_PER_TICK must always be at least '2', otherwise MAX_TICKS
* will overflow int32_t, which is how 'ticks' are currently represented.
*/
#define CYCLES_PER_TICK \
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
BUILD_ASSERT(CYCLES_PER_TICK >= 2, "APIC timer: bad CYCLES_PER_TICK");
/* max number of ticks we can load into the timer in one shot */
#define MAX_TICKS (0xFFFFFFFFU / CYCLES_PER_TICK)
/*
* The spinlock protects all access to the local APIC timer registers,
* as well as 'total_cycles', 'last_announcement', and 'cached_icr'.
*
* One important invariant that must be observed: `total_cycles` + `cached_icr`
* is always an integral multiple of CYCLE_PER_TICK; this is, timer interrupts
* are only ever scheduled to occur at tick boundaries.
*/
static struct k_spinlock lock;
static uint64_t total_cycles;
static uint32_t cached_icr = CYCLES_PER_TICK;
BUILD_ASSERT(CYCLES_PER_TICK >= 1, "APIC timer: bad CYCLES_PER_TICK");
#ifdef CONFIG_TICKLESS_KERNEL
static uint64_t last_announcement; /* last time we called sys_clock_announce() */
void sys_clock_set_timeout(int32_t n, bool idle)
{
ARG_UNUSED(idle);
uint32_t ccr;
int full_ticks; /* number of complete ticks we'll wait */
uint32_t full_cycles; /* full_ticks represented as cycles */
uint32_t partial_cycles; /* number of cycles to first tick boundary */
if (n < 1) {
full_ticks = 0;
} else if ((n == K_TICKS_FOREVER) || (n > MAX_TICKS)) {
full_ticks = MAX_TICKS - 1;
} else {
full_ticks = n - 1;
}
full_cycles = full_ticks * CYCLES_PER_TICK;
/*
* There's a wee race condition here. The timer may expire while
* we're busy reprogramming it; an interrupt will be queued at the
* local APIC and the ISR will be called too early, roughly right
* after we unlock, and not because the count we just programmed has
* counted down. Luckily this situation is easy to detect, which is
* why the ISR actually checks to be sure the CCR is 0 before acting.
*/
k_spinlock_key_t key = k_spin_lock(&lock);
ccr = x86_read_loapic(LOAPIC_TIMER_CCR);
total_cycles += (cached_icr - ccr);
partial_cycles = CYCLES_PER_TICK - (total_cycles % CYCLES_PER_TICK);
cached_icr = full_cycles + partial_cycles;
x86_write_loapic(LOAPIC_TIMER_ICR, cached_icr);
k_spin_unlock(&lock, key);
}
uint32_t sys_clock_elapsed(void)
{
uint32_t ccr;
uint32_t ticks;
k_spinlock_key_t key = k_spin_lock(&lock);
ccr = x86_read_loapic(LOAPIC_TIMER_CCR);
ticks = total_cycles - last_announcement;
ticks += cached_icr - ccr;
k_spin_unlock(&lock, key);
ticks /= CYCLES_PER_TICK;
return ticks;
}
static volatile uint64_t total_cycles;
static void isr(const void *arg)
{
ARG_UNUSED(arg);
uint32_t cycles;
int32_t ticks;
k_spinlock_key_t key = k_spin_lock(&lock);
/*
* If we get here and the CCR isn't zero, then this interrupt is
* stale: it was queued while sys_clock_set_timeout() was setting
* a new counter. Just ignore it. See above for more info.
*/
if (x86_read_loapic(LOAPIC_TIMER_CCR) != 0) {
k_spin_unlock(&lock, key);
return;
}
/* Restart the timer as early as possible to minimize drift... */
x86_write_loapic(LOAPIC_TIMER_ICR, MAX_TICKS * CYCLES_PER_TICK);
cycles = cached_icr;
cached_icr = MAX_TICKS * CYCLES_PER_TICK;
total_cycles += cycles;
ticks = (total_cycles - last_announcement) / CYCLES_PER_TICK;
last_announcement = total_cycles;
k_spin_unlock(&lock, key);
sys_clock_announce(ticks);
}
#else
static void isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
total_cycles += CYCLES_PER_TICK;
x86_write_loapic(LOAPIC_TIMER_ICR, cached_icr);
k_spin_unlock(&lock, key);
sys_clock_announce(1);
}
@ -188,36 +60,32 @@ uint32_t sys_clock_elapsed(void) @@ -188,36 +60,32 @@ uint32_t sys_clock_elapsed(void)
return 0U;
}
#endif /* CONFIG_TICKLESS_KERNEL */
#ifdef CONFIG_APIC_TIMER_TSC
uint32_t sys_clock_cycle_get_32(void)
uint64_t sys_clock_cycle_get_64(void)
{
uint64_t tsc = z_tsc_read();
uint32_t cycles;
cycles = (tsc * CONFIG_APIC_TIMER_TSC_M) / CONFIG_APIC_TIMER_TSC_N;
return cycles;
uint32_t ccr_1st, ccr_2nd;
uint64_t cycles;
/*
* We may race with CCR reaching 0 and reloading, and the interrupt
* handler updating total_cycles. Let's make sure we sample everything
* away from this roll-over transition by ensuring consecutive CCR
* values are descending so we're sure the enclosed (volatile)
* total_cycles sample and CCR value are coherent with each other.
*/
do {
ccr_1st = x86_read_loapic(LOAPIC_TIMER_CCR);
cycles = total_cycles;
ccr_2nd = x86_read_loapic(LOAPIC_TIMER_CCR);
} while (ccr_2nd > ccr_1st);
return cycles + (CYCLES_PER_TICK - ccr_2nd);
}
#else
uint32_t sys_clock_cycle_get_32(void)
{
uint32_t ret;
uint32_t ccr;
k_spinlock_key_t key = k_spin_lock(&lock);
ccr = x86_read_loapic(LOAPIC_TIMER_CCR);
ret = total_cycles + (cached_icr - ccr);
k_spin_unlock(&lock, key);
return ret;
return (uint32_t)sys_clock_cycle_get_64();
}
#endif
static int sys_clock_driver_init(void)
{
uint32_t val;
@ -239,7 +107,7 @@ static int sys_clock_driver_init(void) @@ -239,7 +107,7 @@ static int sys_clock_driver_init(void)
CONFIG_APIC_TIMER_IRQ_PRIORITY,
isr, 0, 0);
x86_write_loapic(LOAPIC_TIMER_ICR, cached_icr);
x86_write_loapic(LOAPIC_TIMER_ICR, CYCLES_PER_TICK);
irq_enable(CONFIG_APIC_TIMER_IRQ);
return 0;

Loading…
Cancel
Save