Browse Source

drivers: mspi: add APMemory APS Z8 pSRAM driver

The APS Z8 driver would just support APS51216BA for now.

Signed-off-by: Swift Tian <swift.tian@ambiq.com>
pull/91733/merge
Swift Tian 3 months ago committed by Benjamin Cabé
parent
commit
8ef0792eec
  1. 7
      boards/ambiq/apollo510_evb/Kconfig.defconfig
  2. 41
      boards/ambiq/apollo510_evb/apollo510_evb.dts
  3. 3
      drivers/memc/CMakeLists.txt
  4. 9
      drivers/memc/Kconfig.mspi
  5. 619
      drivers/memc/memc_mspi_aps_z8.c
  6. 115
      drivers/memc/memc_mspi_aps_z8.h
  7. 8
      dts/bindings/mtd/mspi-aps-z8.yaml
  8. 2
      samples/drivers/memc/CMakeLists.txt
  9. 6
      samples/drivers/memc/boards/apollo510_evb.conf
  10. 19
      samples/drivers/memc/boards/apollo510_evb.overlay
  11. 14
      samples/drivers/memc/src/main.c

7
boards/ambiq/apollo510_evb/Kconfig.defconfig

@ -19,4 +19,11 @@ config MSPI_INIT_PRIORITY @@ -19,4 +19,11 @@ config MSPI_INIT_PRIORITY
endif # MSPI
if MEMC
config MEMC_INIT_PRIORITY
default 50
endif # MEMC
endif # BOARD_APOLLO510_EVB

41
boards/ambiq/apollo510_evb/apollo510_evb.dts

@ -120,6 +120,47 @@ @@ -120,6 +120,47 @@
status = "okay";
};
&mspi0 {
pinctrl-0 = <&mspi0_default>;
pinctrl-1 = <&mspi0_sleep>;
pinctrl-2 = <&mspi0_psram>;
pinctrl-names = "default","sleep","psram";
status = "disabled";
zephyr,pm-device-runtime-auto;
ce-gpios = <&gpio192_223 7 GPIO_ACTIVE_LOW>;
cmdq-buffer-location = "SRAM_NO_CACHE";
cmdq-buffer-size = <256>;
ambiq,apmemory;
dqs-support;
aps51216ba: aps_z8@0 {
compatible = "ambiq,mspi-device", "mspi-aps-z8";
size = <DT_SIZE_M(512)>;
reg = <0>;
status = "disabled";
mspi-max-frequency = <125000000>;
mspi-io-mode = "MSPI_IO_MODE_HEX_8_8_16";
mspi-data-rate = "MSPI_DATA_RATE_S_D_D";
mspi-hardware-ce-num = <0>;
mspi-dqs-enable;
read-command = <0x20>;
write-command = <0xA0>;
command-length = "INSTR_1_BYTE";
address-length = "ADDR_4_BYTE";
rx-dummy = <7>;
tx-dummy = <8>;
xip-config = <1 0 DT_SIZE_M(64) 0>;
ce-break-config = <1024 4>;
ambiq,timing-config-mask = <0x62>;
ambiq,timing-config = <8 7 1 0 0 3 10 0>;
zephyr,pm-device-runtime-auto;
};
};
&gpio0_31 {
status = "okay";
};

3
drivers/memc/CMakeLists.txt

@ -15,7 +15,8 @@ if((DEFINED CONFIG_FLASH_MCUX_FLEXSPI_XIP) AND (DEFINED CONFIG_FLASH)) @@ -15,7 +15,8 @@ if((DEFINED CONFIG_FLASH_MCUX_FLEXSPI_XIP) AND (DEFINED CONFIG_FLASH))
endif()
zephyr_library_sources_ifdef(CONFIG_MEMC_MSPI_APS6404L memc_mspi_aps6404l.c)
zephyr_library_include_directories_ifdef(CONFIG_MEMC_MSPI_APS6404L ${ZEPHYR_BASE}/drivers/mspi)
zephyr_library_sources_ifdef(CONFIG_MEMC_MSPI_APS_Z8 memc_mspi_aps_z8.c)
zephyr_library_include_directories_ifdef(CONFIG_MEMC_MSPI ${ZEPHYR_BASE}/drivers/mspi)
zephyr_library_sources_ifdef(CONFIG_MEMC_NXP_S32_QSPI memc_nxp_s32_qspi.c)
zephyr_library_sources_ifdef(CONFIG_MEMC_RENESAS_RA_SDRAM memc_renesas_ra_sdram.c)

9
drivers/memc/Kconfig.mspi

@ -1,4 +1,4 @@ @@ -1,4 +1,4 @@
# Copyright (c) 2024, Ambiq Micro Inc. <www.ambiq.com>
# Copyright (c) 2025, Ambiq Micro Inc. <www.ambiq.com>
# SPDX-License-Identifier: Apache-2.0
menu "MSPI MEMC device driver"
@ -16,4 +16,11 @@ config MEMC_MSPI_APS6404L @@ -16,4 +16,11 @@ config MEMC_MSPI_APS6404L
select MEMC_MSPI
select MSPI_AMBIQ_CONTROLLER if SOC_FAMILY_AMBIQ
config MEMC_MSPI_APS_Z8
bool "MSPI AP Memory gen Z8 pSRAM driver"
default y
depends on DT_HAS_MSPI_APS_Z8_ENABLED
select MEMC_MSPI
select MSPI_AMBIQ_CONTROLLER if SOC_FAMILY_AMBIQ
endmenu

619
drivers/memc/memc_mspi_aps_z8.c

@ -0,0 +1,619 @@ @@ -0,0 +1,619 @@
/*
* Copyright (c) 2025, Ambiq Micro Inc. <www.ambiq.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT mspi_aps_z8
#include <zephyr/kernel.h>
#include <zephyr/pm/device.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/util.h>
#include <zephyr/cache.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/mspi.h>
#include <zephyr/pm/device_runtime.h>
#include "memc_mspi_aps_z8.h"
#if CONFIG_SOC_FAMILY_AMBIQ
#include "mspi_ambiq.h"
typedef struct mspi_ambiq_timing_cfg mspi_timing_cfg;
typedef enum mspi_ambiq_timing_param mspi_timing_param;
#else
typedef struct mspi_timing_cfg mspi_timing_cfg;
typedef enum mspi_timing_param mspi_timing_param;
#endif
LOG_MODULE_REGISTER(memc_mspi_aps_z8, CONFIG_MEMC_LOG_LEVEL);
#define APM_VENDOR_ID 0xD
#define APS_Z8_SYNC_WRITE 0x80
#define APS_Z8_SYNC_READ 0x00
#define APS_Z8_LINEAR_BURST_WRITE 0xA0
#define APS_Z8_LINEAR_BURST_READ 0x20
#define APS_Z8_GLOBAL_RESET 0xFF
#define APS_Z8_WRITE_REGISTER 0xC0
#define APS_Z8_READ_REGISTER 0x40
struct memc_mspi_aps_z8_config {
uint32_t port;
uint32_t mem_size;
const struct device *bus;
struct mspi_dev_id dev_id;
struct mspi_dev_cfg octal_cfg;
struct mspi_dev_cfg tar_dev_cfg;
MSPI_XIP_CFG_STRUCT_DECLARE(tar_xip_cfg)
MSPI_SCRAMBLE_CFG_STRUCT_DECLARE(tar_scramble_cfg)
MSPI_TIMING_CFG_STRUCT_DECLARE(tar_timing_cfg)
MSPI_TIMING_PARAM_DECLARE(timing_cfg_mask)
bool sw_multi_periph;
bool pm_dev_rt_auto;
};
struct memc_mspi_aps_z8_data {
struct memc_mspi_aps_z8_reg regs;
struct mspi_dev_cfg dev_cfg;
struct mspi_xip_cfg xip_cfg;
struct mspi_scramble_cfg scramble_cfg;
mspi_timing_cfg timing_cfg;
struct mspi_xfer trans;
struct mspi_xfer_packet packet;
struct k_sem lock;
uint16_t dummy;
};
static int memc_mspi_aps_z8_command_write(const struct device *psram, uint8_t cmd,
uint32_t addr, uint8_t *wdata, uint32_t length)
{
const struct memc_mspi_aps_z8_config *cfg = psram->config;
struct memc_mspi_aps_z8_data *data = psram->data;
int ret;
data->packet.dir = MSPI_TX;
data->packet.cmd = cmd;
data->packet.address = addr;
data->packet.data_buf = wdata;
data->packet.num_bytes = length;
data->trans.async = false;
data->trans.xfer_mode = MSPI_PIO;
data->trans.tx_dummy = 0;
data->trans.rx_dummy = data->dev_cfg.rx_dummy;
data->trans.cmd_length = data->dev_cfg.cmd_length;
data->trans.addr_length = data->dev_cfg.addr_length;
data->trans.hold_ce = false;
data->trans.packets = &data->packet;
data->trans.num_packet = 1;
data->trans.timeout = 10;
ret = mspi_transceive(cfg->bus, &cfg->dev_id, (const struct mspi_xfer *)&data->trans);
if (ret) {
LOG_ERR("MSPI write transaction failed with code: %d/%u", ret, __LINE__);
return -EIO;
}
return ret;
}
static int memc_mspi_aps_z8_command_read(const struct device *psram, uint8_t cmd,
uint32_t addr, uint8_t *rdata, uint32_t length)
{
const struct memc_mspi_aps_z8_config *cfg = psram->config;
struct memc_mspi_aps_z8_data *data = psram->data;
int ret;
data->packet.dir = MSPI_RX;
data->packet.cmd = cmd;
data->packet.address = addr;
data->packet.data_buf = rdata;
data->packet.num_bytes = length;
data->trans.async = false;
data->trans.xfer_mode = MSPI_PIO;
data->trans.tx_dummy = data->dev_cfg.tx_dummy;
data->trans.rx_dummy = data->dev_cfg.rx_dummy;
data->trans.cmd_length = data->dev_cfg.cmd_length;
data->trans.addr_length = data->dev_cfg.addr_length;
data->trans.hold_ce = false;
data->trans.packets = &data->packet;
data->trans.num_packet = 1;
data->trans.timeout = 10;
ret = mspi_transceive(cfg->bus, &cfg->dev_id, (const struct mspi_xfer *)&data->trans);
if (ret) {
LOG_ERR("MSPI read transaction failed with code: %d/%u", ret, __LINE__);
return -EIO;
}
return ret;
}
static int memc_mspi_aps_z8_enter_command_mode(const struct device *psram)
{
const struct memc_mspi_aps_z8_config *cfg = psram->config;
struct memc_mspi_aps_z8_data *data = psram->data;
int ret;
if (cfg->octal_cfg.io_mode == data->dev_cfg.io_mode) {
return 0;
}
ret = mspi_dev_config(cfg->bus, &cfg->dev_id,
MSPI_DEVICE_CONFIG_ALL, &cfg->octal_cfg);
if (ret) {
LOG_ERR("Failed to reconfigure MSPI while entering command mode/%u", __LINE__);
return -EIO;
}
data->dev_cfg = cfg->octal_cfg;
data->regs.MR8_b.IOM = 0x0;
ret = memc_mspi_aps_z8_command_write(psram, APS_Z8_WRITE_REGISTER, 8, &data->regs.MR8, 1);
if (ret) {
LOG_ERR("Failed to exit hex mode/%u", __LINE__);
return -EIO;
}
return 0;
}
static int memc_mspi_aps_z8_exit_command_mode(const struct device *psram)
{
const struct memc_mspi_aps_z8_config *cfg = psram->config;
struct memc_mspi_aps_z8_data *data = psram->data;
int ret;
if (cfg->tar_dev_cfg.io_mode == data->dev_cfg.io_mode) {
return 0;
}
data->regs.MR8_b.IOM = 0x1;
ret = memc_mspi_aps_z8_command_write(psram, APS_Z8_WRITE_REGISTER, 8, &data->regs.MR8, 1);
if (ret) {
LOG_ERR("Failed to enter hex mode/%u", __LINE__);
return -EIO;
}
ret = mspi_dev_config(cfg->bus, &cfg->dev_id,
MSPI_DEVICE_CONFIG_ALL, &cfg->tar_dev_cfg);
if (ret) {
LOG_ERR("Failed to reconfigure MSPI while exiting command mode/%u", __LINE__);
return -EIO;
}
data->dev_cfg = cfg->tar_dev_cfg;
return 0;
}
#if CONFIG_PM_DEVICE
static void acquire(const struct device *psram)
{
const struct memc_mspi_aps_z8_config *cfg = psram->config;
struct memc_mspi_aps_z8_data *data = psram->data;
k_sem_take(&data->lock, K_FOREVER);
if (cfg->sw_multi_periph) {
while (mspi_dev_config(cfg->bus, &cfg->dev_id,
MSPI_DEVICE_CONFIG_ALL, &data->dev_cfg)) {
;
}
} else {
while (mspi_dev_config(cfg->bus, &cfg->dev_id,
MSPI_DEVICE_CONFIG_NONE, NULL)) {
;
}
}
}
#endif /* CONFIG_PM_DEVICE */
static void release(const struct device *psram)
{
const struct memc_mspi_aps_z8_config *cfg = psram->config;
struct memc_mspi_aps_z8_data *data = psram->data;
while (mspi_get_channel_status(cfg->bus, cfg->port)) {
;
}
k_sem_give(&data->lock);
}
static int memc_mspi_aps_z8_reset(const struct device *psram)
{
struct memc_mspi_aps_z8_data *data = psram->data;
int ret = 0;
LOG_DBG("Resetting APS Z8/%u", __LINE__);
ret = memc_mspi_aps_z8_command_write(psram, APS_Z8_GLOBAL_RESET, 0,
(uint8_t *)&data->dummy, 2);
if (ret) {
return ret;
}
/** We need to delay 2us minimum to allow APS pSRAM to reinitialize */
k_busy_wait(2);
return ret;
}
static int memc_mspi_aps_z8_get_vendor_id(const struct device *psram)
{
struct memc_mspi_aps_z8_data *data = psram->data;
int ret;
ret = memc_mspi_aps_z8_command_read(psram, APS_Z8_READ_REGISTER, 1, &data->regs.MR1, 1);
LOG_DBG("MR1 reg: %x/%u", data->regs.MR1, __LINE__);
if (data->regs.MR1_b.VID != APM_VENDOR_ID) {
return -EIO;
}
return ret;
}
static int memc_mspi_aps_z8_get_rlc(uint8_t rx_dummy, enum memc_mspi_aps_z8_rlc *rlc)
{
switch (rx_dummy) {
case 4:
*rlc = MEMC_MSPI_APS_Z8_RLC_4;
break;
case 5:
*rlc = MEMC_MSPI_APS_Z8_RLC_5;
break;
case 6:
*rlc = MEMC_MSPI_APS_Z8_RLC_6;
break;
case 7:
*rlc = MEMC_MSPI_APS_Z8_RLC_7;
break;
case 8:
*rlc = MEMC_MSPI_APS_Z8_RLC_8;
break;
case 9:
*rlc = MEMC_MSPI_APS_Z8_RLC_9;
break;
default:
return -EINVAL;
}
return 0;
}
static int memc_mspi_aps_z8_get_wlc(uint8_t tx_dummy, enum memc_mspi_aps_z8_wlc *wlc)
{
switch (tx_dummy) {
case 5:
*wlc = MEMC_MSPI_APS_Z8_WLC_5;
break;
case 6:
*wlc = MEMC_MSPI_APS_Z8_WLC_6;
break;
case 7:
*wlc = MEMC_MSPI_APS_Z8_WLC_7;
break;
case 8:
*wlc = MEMC_MSPI_APS_Z8_WLC_8;
break;
case 9:
*wlc = MEMC_MSPI_APS_Z8_WLC_9;
break;
case 10:
*wlc = MEMC_MSPI_APS_Z8_WLC_10;
break;
default:
return -EINVAL;
}
return 0;
}
#if CONFIG_PM_DEVICE
static int memc_mspi_aps_z8_half_sleep_enter(const struct device *psram)
{
const struct memc_mspi_aps_z8_config *cfg = psram->config;
struct memc_mspi_aps_z8_data *data = psram->data;
struct mspi_xip_cfg xip_cfg = data->xip_cfg;
int ret;
if (xip_cfg.enable) {
sys_cache_data_flush_and_invd_all();
}
#if CONFIG_MSPI_XIP
xip_cfg.enable = false;
if (mspi_xip_config(cfg->bus, &cfg->dev_id, &xip_cfg)) {
LOG_ERR("Failed to disable XIP/%u", __LINE__);
return -EIO;
}
#endif /* CONFIG_MSPI_XIP */
LOG_DBG("Putting APS Z8 to half sleep/%u", __LINE__);
ret = memc_mspi_aps_z8_enter_command_mode(psram);
if (ret) {
return ret;
}
data->regs.MR6 = 0xF0;
ret = memc_mspi_aps_z8_command_write(psram, APS_Z8_WRITE_REGISTER, 6, &data->regs.MR6, 1);
if (ret) {
LOG_ERR("Failed to enter half sleep/%u", __LINE__);
return ret;
}
/* Minimum half sleep duration time(tHS) */
k_busy_wait(150);
return ret;
}
static int memc_mspi_aps_z8_half_sleep_exit(const struct device *psram)
{
const struct memc_mspi_aps_z8_config *cfg = psram->config;
struct memc_mspi_aps_z8_data *data = psram->data;
int ret = 0;
LOG_DBG("Waking up aps_z8 from half sleep/%u", __LINE__);
ret = memc_mspi_aps_z8_command_write(psram, 0, 0, (uint8_t *)&data->dummy, 2);
if (ret) {
LOG_ERR("Failed to exit from half sleep/%u", __LINE__);
return ret;
}
/* Minimum half sleep exit CE to CLK setup time(tXHS) */
k_busy_wait(150);
ret = memc_mspi_aps_z8_exit_command_mode(psram);
if (ret) {
return ret;
}
#if CONFIG_MSPI_XIP
if (mspi_xip_config(cfg->bus, &cfg->dev_id, &data->xip_cfg)) {
LOG_ERR("Failed to enable XIP/%u", __LINE__);
return -EIO;
}
#endif /* CONFIG_MSPI_XIP */
return ret;
}
static int memc_mspi_aps_z8_pm_action(const struct device *psram, enum pm_device_action action)
{
struct memc_mspi_aps_z8_data *data = psram->data;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
if (data->regs.MR1_b.ULP) {
acquire(psram);
memc_mspi_aps_z8_half_sleep_exit(psram);
}
break;
case PM_DEVICE_ACTION_SUSPEND:
if (data->regs.MR1_b.ULP) {
memc_mspi_aps_z8_half_sleep_enter(psram);
release(psram);
}
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif /* IS_ENABLED(CONFIG_PM_DEVICE) */
static int memc_mspi_aps_z8_init(const struct device *psram)
{
const struct memc_mspi_aps_z8_config *cfg = psram->config;
struct memc_mspi_aps_z8_data *data = psram->data;
if (!device_is_ready(cfg->bus)) {
LOG_ERR("Controller device not ready/%u", __LINE__);
return -ENODEV;
}
switch (cfg->tar_dev_cfg.io_mode) {
case MSPI_IO_MODE_OCTAL:
case MSPI_IO_MODE_HEX_8_8_16:
break;
default:
LOG_ERR("Bus mode %d not supported/%u", cfg->tar_dev_cfg.io_mode, __LINE__);
return -EIO;
}
if (cfg->tar_dev_cfg.data_rate != MSPI_DATA_RATE_S_D_D) {
LOG_ERR("Data rate %d not supported/%u", cfg->tar_dev_cfg.data_rate, __LINE__);
return -EIO;
}
if (mspi_dev_config(cfg->bus, &cfg->dev_id, MSPI_DEVICE_CONFIG_ALL, &cfg->octal_cfg)) {
LOG_ERR("Failed to config mspi controller/%u", __LINE__);
return -EIO;
}
data->dev_cfg = cfg->octal_cfg;
if (memc_mspi_aps_z8_reset(psram)) {
LOG_ERR("Could not reset pSRAM/%u", __LINE__);
return -EIO;
}
if (memc_mspi_aps_z8_get_vendor_id(psram)) {
LOG_ERR("Could not read vendor id/%u", __LINE__);
return -EIO;
}
if (memc_mspi_aps_z8_command_read(psram, APS_Z8_READ_REGISTER, 0, &data->regs.MR0, 1)) {
LOG_ERR("Could not read MR0 register/%u", __LINE__);
return -EIO;
}
if (memc_mspi_aps_z8_command_read(psram, APS_Z8_READ_REGISTER, 2, &data->regs.MR2, 1)) {
LOG_ERR("Could not read MR2 register/%u", __LINE__);
return -EIO;
}
if (memc_mspi_aps_z8_command_read(psram, APS_Z8_READ_REGISTER, 3, &data->regs.MR3, 1)) {
LOG_ERR("Could not read MR3 register/%u", __LINE__);
return -EIO;
}
if (memc_mspi_aps_z8_command_read(psram, APS_Z8_READ_REGISTER, 4, &data->regs.MR4, 1)) {
LOG_ERR("Could not read MR4 register/%u", __LINE__);
return -EIO;
}
if (memc_mspi_aps_z8_command_read(psram, APS_Z8_READ_REGISTER, 6, &data->regs.MR6, 1)) {
LOG_ERR("Could not read MR2 register/%u", __LINE__);
return -EIO;
}
if (memc_mspi_aps_z8_command_read(psram, APS_Z8_READ_REGISTER, 8, &data->regs.MR8, 1)) {
LOG_ERR("Could not read MR8 register/%u", __LINE__);
return -EIO;
}
enum memc_mspi_aps_z8_rlc rlc;
if (memc_mspi_aps_z8_get_rlc(cfg->tar_dev_cfg.rx_dummy, &rlc)) {
LOG_ERR("rx_dummy:%d not supported/%u", cfg->tar_dev_cfg.rx_dummy, __LINE__);
return -EIO;
}
data->regs.MR0_b.RLC = rlc;
enum memc_mspi_aps_z8_wlc wlc;
if (memc_mspi_aps_z8_get_wlc(cfg->tar_dev_cfg.tx_dummy, &wlc)) {
LOG_ERR("tx_dummy:%d not supported/%u", cfg->tar_dev_cfg.tx_dummy, __LINE__);
return -EIO;
}
data->regs.MR4_b.WLC = wlc;
data->regs.MR0_b.LT = !cfg->tar_dev_cfg.dqs_enable;
if (memc_mspi_aps_z8_command_write(psram, APS_Z8_WRITE_REGISTER, 0, &data->regs.MR0, 1)) {
LOG_ERR("Could not write MR0 register/%u", __LINE__);
return -EIO;
}
if (memc_mspi_aps_z8_command_write(psram, APS_Z8_WRITE_REGISTER, 4, &data->regs.MR4, 1)) {
LOG_ERR("Could not write MR4 register/%u", __LINE__);
return -EIO;
}
if (cfg->tar_dev_cfg.io_mode == MSPI_IO_MODE_HEX_8_8_16) {
data->regs.MR8_b.IOM = 1;
if (memc_mspi_aps_z8_command_write(psram, APS_Z8_WRITE_REGISTER, 8,
&data->regs.MR8, 1)) {
LOG_ERR("Could not write MR8 register/%u", __LINE__);
return -EIO;
}
}
if (mspi_dev_config(cfg->bus, &cfg->dev_id, MSPI_DEVICE_CONFIG_ALL, &cfg->tar_dev_cfg)) {
LOG_ERR("Failed to config mspi controller/%u", __LINE__);
return -EIO;
}
data->dev_cfg = cfg->tar_dev_cfg;
#if CONFIG_MSPI_TIMING
if (mspi_timing_config(cfg->bus, &cfg->dev_id, cfg->timing_cfg_mask,
(void *)&cfg->tar_timing_cfg)) {
LOG_ERR("Failed to config mspi timing/%u", __LINE__);
return -EIO;
}
data->timing_cfg = cfg->tar_timing_cfg;
#endif /* CONFIG_MSPI_TIMING */
#if CONFIG_MSPI_XIP
if (cfg->tar_xip_cfg.enable) {
if (mspi_xip_config(cfg->bus, &cfg->dev_id, &cfg->tar_xip_cfg)) {
LOG_ERR("Failed to enable XIP/%u", __LINE__);
return -EIO;
}
data->xip_cfg = cfg->tar_xip_cfg;
}
#endif /* CONFIG_MSPI_XIP */
#if CONFIG_MSPI_SCRAMBLE
if (cfg->tar_scramble_cfg.enable) {
if (mspi_scramble_config(cfg->bus, &cfg->dev_id, &cfg->tar_scramble_cfg)) {
LOG_ERR("Failed to enable scrambling/%u", __LINE__);
return -EIO;
}
data->scramble_cfg = cfg->tar_scramble_cfg;
}
#endif /* MSPI_SCRAMBLE */
if (!IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME) ||
!cfg->pm_dev_rt_auto) {
release(psram);
}
return 0;
}
#define MSPI_DEVICE_CONFIG_OCTAL(n) \
{ \
.ce_num = DT_INST_PROP(n, mspi_hardware_ce_num), \
.freq = 24000000, \
.io_mode = MSPI_IO_MODE_OCTAL, \
.data_rate = MSPI_DATA_RATE_S_D_D, \
.cpp = MSPI_CPP_MODE_0, \
.endian = MSPI_XFER_LITTLE_ENDIAN, \
.ce_polarity = MSPI_CE_ACTIVE_LOW, \
.dqs_enable = DT_INST_PROP(n, mspi_dqs_enable), \
.rx_dummy = MEMC_MSPI_APS_Z8_RX_DUMMY_DEFAULT, \
.tx_dummy = MEMC_MSPI_APS_Z8_TX_DUMMY_DEFAULT, \
.read_cmd = APS_Z8_LINEAR_BURST_READ, \
.write_cmd = APS_Z8_LINEAR_BURST_WRITE, \
.cmd_length = MEMC_MSPI_APS_Z8_CMD_LENGTH_DEFAULT, \
.addr_length = MEMC_MSPI_APS_Z8_ADDR_LENGTH_DEFAULT, \
.mem_boundary = 1024, \
.time_to_break = 4, \
}
#define MSPI_TIMING_CONFIG(n) \
COND_CODE_1(CONFIG_SOC_FAMILY_AMBIQ, \
(MSPI_AMBIQ_TIMING_CONFIG(n)), ({})) \
#define MSPI_TIMING_CONFIG_MASK(n) \
COND_CODE_1(CONFIG_SOC_FAMILY_AMBIQ, \
(MSPI_AMBIQ_TIMING_CONFIG_MASK(n)), (MSPI_TIMING_PARAM_DUMMY)) \
#define MSPI_PORT(n) \
COND_CODE_1(CONFIG_SOC_FAMILY_AMBIQ, \
(MSPI_AMBIQ_PORT(n)), (0)) \
#define MEMC_MSPI_APS_Z8(n) \
static const struct memc_mspi_aps_z8_config \
memc_mspi_aps_z8_config_##n = { \
.port = MSPI_PORT(n), \
.mem_size = DT_INST_PROP(n, size) / 8, \
.bus = DEVICE_DT_GET(DT_INST_BUS(n)), \
.dev_id = MSPI_DEVICE_ID_DT_INST(n), \
.octal_cfg = MSPI_DEVICE_CONFIG_OCTAL(n), \
.tar_dev_cfg = MSPI_DEVICE_CONFIG_DT_INST(n), \
MSPI_OPTIONAL_CFG_STRUCT_INIT(CONFIG_MSPI_XIP, \
tar_xip_cfg, MSPI_XIP_CONFIG_DT_INST(n)) \
MSPI_OPTIONAL_CFG_STRUCT_INIT(CONFIG_MSPI_SCRAMBLE, \
tar_scramble_cfg, MSPI_SCRAMBLE_CONFIG_DT_INST(n)) \
MSPI_OPTIONAL_CFG_STRUCT_INIT(CONFIG_MSPI_TIMING, \
tar_timing_cfg, MSPI_TIMING_CONFIG(n)) \
MSPI_OPTIONAL_CFG_STRUCT_INIT(CONFIG_MSPI_TIMING, \
timing_cfg_mask, MSPI_TIMING_CONFIG_MASK(n)) \
.sw_multi_periph = DT_PROP(DT_INST_BUS(n), software_multiperipheral), \
.pm_dev_rt_auto = DT_INST_PROP(n, zephyr_pm_device_runtime_auto) \
}; \
static struct memc_mspi_aps_z8_data \
memc_mspi_aps_z8_data_##n = { \
.lock = Z_SEM_INITIALIZER(memc_mspi_aps_z8_data_##n.lock, 0, 1), \
.dummy = 0, \
}; \
PM_DEVICE_DT_INST_DEFINE(n, memc_mspi_aps_z8_pm_action); \
DEVICE_DT_INST_DEFINE(n, \
memc_mspi_aps_z8_init, \
PM_DEVICE_DT_INST_GET(n), \
&memc_mspi_aps_z8_data_##n, \
&memc_mspi_aps_z8_config_##n, \
POST_KERNEL, \
CONFIG_MEMC_INIT_PRIORITY, \
NULL);
DT_INST_FOREACH_STATUS_OKAY(MEMC_MSPI_APS_Z8)

115
drivers/memc/memc_mspi_aps_z8.h

@ -0,0 +1,115 @@ @@ -0,0 +1,115 @@
/*
* Copyright (c) 2025, Ambiq Micro Inc. <www.ambiq.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
enum memc_mspi_aps_z8_rlc {
MEMC_MSPI_APS_Z8_RLC_4,
MEMC_MSPI_APS_Z8_RLC_5,
MEMC_MSPI_APS_Z8_RLC_6,
MEMC_MSPI_APS_Z8_RLC_7,
MEMC_MSPI_APS_Z8_RLC_8,
MEMC_MSPI_APS_Z8_RLC_9,
};
enum memc_mspi_aps_z8_wlc {
MEMC_MSPI_APS_Z8_WLC_3, /* reserved for APS51216BA */
MEMC_MSPI_APS_Z8_WLC_7,
MEMC_MSPI_APS_Z8_WLC_5,
MEMC_MSPI_APS_Z8_WLC_9, /* reserved for APS25616N */
MEMC_MSPI_APS_Z8_WLC_4, /* reserved for APS51216BA */
MEMC_MSPI_APS_Z8_WLC_8, /* reserved for APS25616N */
MEMC_MSPI_APS_Z8_WLC_6,
MEMC_MSPI_APS_Z8_WLC_10, /* reserved for APS25616N */
};
/* default for APS51216BA */
#define MEMC_MSPI_APS_Z8_RX_DUMMY_DEFAULT 6
#define MEMC_MSPI_APS_Z8_TX_DUMMY_DEFAULT 6
#define MEMC_MSPI_APS_Z8_CMD_LENGTH_DEFAULT 1
#define MEMC_MSPI_APS_Z8_ADDR_LENGTH_DEFAULT 4
enum memc_mspi_aps_z8_ds {
MEMC_MSPI_APS_Z8_DRIVE_STRENGTH_FULL,
MEMC_MSPI_APS_Z8_DRIVE_STRENGTH_HALF,
MEMC_MSPI_APS_Z8_DRIVE_STRENGTH_QUARTER,
MEMC_MSPI_APS_Z8_DRIVE_STRENGTH_OCTUPLE,
};
struct memc_mspi_aps_z8_reg {
union {
uint8_t MR0; /* Mode register 0 */
struct {
uint8_t DS: 2; /* [0..1] drive strength */
uint8_t RLC: 3; /* [2..4] Read latency code. */
uint8_t LT: 1; /* [5..5] Latency type */
uint8_t: 1;
uint8_t TSO: 1; /* [7..7] Temperature Sensor Override */
} MR0_b;
};
union {
uint8_t MR1; /* Mode register 1 */
struct {
uint8_t VID: 5; /* [0..4] Vendor ID */
uint8_t: 2;
uint8_t ULP: 1; /* [7..7] Half sleep. */
} MR1_b;
};
union {
uint8_t MR2; /* Mode register 2 */
struct {
uint8_t DENSITY: 3; /* [0..2] Density */
uint8_t GENERATION: 2; /* [3..4] Generation */
uint8_t GB: 3; /* [5..7] Good or bad */
} MR2_b;
};
union {
uint8_t MR3; /* Mode register 3 */
struct {
uint8_t: 4;
uint8_t SRF: 2; /* [4..5] Self refresh flag */
uint8_t: 1;
uint8_t RBXen: 1; /* [7..7] Row Boundary Crossing Enable */
} MR3_b;
};
union {
uint8_t MR4; /* Mode register 4 */
struct {
uint8_t PASR: 3; /* [0..2] control refresh address space */
uint8_t RFS: 2; /* [3..4] Refresh Frequency setting */
uint8_t WLC: 3; /* [5..7] Write latency code. */
} MR4_b;
};
union {
uint8_t MR6; /* Mode register 6 */
struct {
uint8_t ULPM: 8; /* [0..7] ULP modes */
} MR6_b;
};
union {
uint8_t MR8; /* Mode register 8 */
struct {
uint8_t BL: 2; /* [0..1] Burst Length */
uint8_t BT: 1; /* [2..2] Burst type */
uint8_t RBX: 1; /* [3..3] Row Boundary Crossing Read EN */
uint8_t: 2;
uint8_t IOM: 1; /* [6..6] IO mode */
uint8_t: 1;
} MR8_b;
};
};

8
dts/bindings/mtd/mspi-aps-z8.yaml

@ -0,0 +1,8 @@ @@ -0,0 +1,8 @@
# Copyright (c) 2025, Ambiq Micro Inc. <www.ambiq.com>
# SPDX-License-Identifier: Apache-2.0
description: AP Memory pSRAM Version Z8 on MSPI bus
compatible: "mspi-aps-z8"
include: [mspi-device.yaml, "jedec,jesd216.yaml"]

2
samples/drivers/memc/CMakeLists.txt

@ -10,7 +10,7 @@ if(CONFIG_MEMC_MCUX_FLEXSPI) @@ -10,7 +10,7 @@ if(CONFIG_MEMC_MCUX_FLEXSPI)
target_include_directories(app PRIVATE ${ZEPHYR_BASE}/drivers/memc)
endif()
if(CONFIG_MEMC_MSPI_APS6404L)
if(CONFIG_MEMC_MSPI)
target_include_directories(app PRIVATE ${ZEPHYR_BASE}/include/zephyr/drivers)
target_include_directories(app PRIVATE ${ZEPHYR_BASE}/drivers/mspi)
endif()

6
samples/drivers/memc/boards/apollo510_evb.conf

@ -0,0 +1,6 @@ @@ -0,0 +1,6 @@
# Copyright (c) 2025 Ambiq Micro Inc. <www.ambiq.com>
# SPDX-License-Identifier: Apache-2.0
CONFIG_MEMC=y
CONFIG_LOG=y
CONFIG_LOG_DEFAULT_LEVEL=0

19
samples/drivers/memc/boards/apollo510_evb.overlay

@ -0,0 +1,19 @@ @@ -0,0 +1,19 @@
/*
* Copyright (c) 2025, Ambiq Micro Inc. <www.ambiq.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
/ {
aliases {
psram0 = &aps51216ba;
};
};
&mspi0 {
status = "okay";
};
&aps51216ba {
status = "okay";
};

14
samples/drivers/memc/src/main.c

@ -7,23 +7,27 @@ @@ -7,23 +7,27 @@
#include <zephyr/kernel.h>
#include <string.h>
#include <zephyr/drivers/mspi.h>
#include <zephyr/pm/device_runtime.h>
#if DT_HAS_COMPAT_STATUS_OKAY(nxp_imx_flexspi)
/* Use memc API to get AHB base address for the device */
#include "memc_mcux_flexspi.h"
#define FLEXSPI_DEV DEVICE_DT_GET(DT_PARENT(DT_ALIAS(sram_ext)))
#define MEMC_DEV DT_ALIAS(sram_ext)
#define MEMC_PORT DT_REG_ADDR(DT_ALIAS(sram_ext))
#define MEMC_BASE ((void *)memc_flexspi_get_ahb_address(FLEXSPI_DEV, MEMC_PORT, 0))
#define MEMC_SIZE (DT_PROP(DT_ALIAS(sram_ext), size) / 8)
#elif DT_HAS_COMPAT_STATUS_OKAY(renesas_smartbond_nor_psram)
#include <da1469x_config.h>
#define MEMC_DEV DT_ALIAS(sram_ext)
#define MEMC_BASE ((void *)MCU_QSPIR_M_BASE)
#define MEMC_SIZE (DT_PROP(DT_ALIAS(sram_ext), dev_size) / 8)
#elif DT_HAS_COMPAT_STATUS_OKAY(ambiq_mspi_controller)
#define MSPI_ DT_BUS(DT_ALIAS(psram0))
#define MEMC_DEV DT_ALIAS(psram0)
#define MSPI_BUS DT_BUS(MEMC_DEV)
#define mspi_get_xip_address(controller) DT_REG_ADDR_BY_IDX(controller, 1)
#define MEMC_BASE (void *)(mspi_get_xip_address(MSPI_))
#define MEMC_SIZE (DT_PROP(DT_ALIAS(psram0), size) / 8)
#define MEMC_BASE (void *)(mspi_get_xip_address(MSPI_BUS))
#define MEMC_SIZE (DT_PROP(MEMC_DEV, size) / 8)
#else
#error At least one driver should be selected!
#endif
@ -65,6 +69,9 @@ int main(void) @@ -65,6 +69,9 @@ int main(void)
for (i = 0; i < BUF_SIZE; i++) {
memc_write_buffer[i] = (uint8_t)i;
}
pm_device_runtime_get(DEVICE_DT_GET(MEMC_DEV));
printk("Writing to memory region with base %p, size 0x%0x\n\n",
memc, MEMC_SIZE);
/* Copy write buffer into memc region */
@ -99,6 +106,7 @@ int main(void) @@ -99,6 +106,7 @@ int main(void)
printk("First 1KB of Data in memory:\n");
printk("===========================\n");
dump_memory(memc, MIN(MEMC_SIZE, KB(1)));
pm_device_runtime_put(DEVICE_DT_GET(MEMC_DEV));
printk("Read data matches written data\n");
return 0;
}

Loading…
Cancel
Save