You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

246 lines
8.6 KiB

// MIT License
//
// Copyright (c) 2022-2024 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include "cmdparser.hpp"
#include "example_utils.hpp"
#include "rocblas_utils.hpp"
#include <rocblas/rocblas.h>
#include <hip/hip_runtime.h>
#include <algorithm>
#include <cstdlib>
#include <functional>
#include <iostream>
#include <limits>
#include <numeric>
#include <utility>
#include <vector>
/// \brief Computes a general matrix-vector product:
/// y := alpha * A * x + beta * y
/// where A is optionally transposed before the multiplication.
/// The result is computed in-place, and stored in `y`.
void gemv_reference(const rocblas_operation transpose_a,
const rocblas_int rows,
const rocblas_int cols,
const rocblas_float alpha,
const rocblas_float* const a,
const rocblas_int lda,
const rocblas_float* const x,
const rocblas_int incx,
const rocblas_float beta,
rocblas_float* const y,
const rocblas_int incy)
{
if(transpose_a != rocblas_operation_none)
{
for(rocblas_int i = 0; i < cols; ++i)
{
rocblas_float result = beta * y[incy * i];
for(rocblas_int j = 0; j < rows; ++j)
result += alpha * a[i * lda + j] * x[incx * j];
y[incy * i] = result;
}
}
else
{
for(rocblas_int i = 0; i < rows; ++i)
{
rocblas_float result = beta * y[incy * i];
for(rocblas_int j = 0; j < cols; ++j)
result += alpha * a[j * lda + i] * x[incx * j];
y[incy * i] = result;
}
}
}
int main(const int argc, const char** argv)
{
// Parse user inputs
cli::Parser parser(argc, argv);
parser.set_optional<float>("a", "alpha", 1.f, "Alpha scalar");
parser.set_optional<float>("b", "beta", 1.f, "Beta scalar");
parser.set_optional<int>("x", "incx", 1, "Increment for x vector");
parser.set_optional<int>("y", "incy", 1, "Increment for y vector");
parser.set_optional<int>("n", "n", 5, "Number of matrix columns");
parser.set_optional<int>("m", "m", 5, "Number of matrix rows");
parser.run_and_exit_if_error();
// Increment between consecutive values of the x vector.
const rocblas_int incx = parser.get<int>("x");
if(incx <= 0)
{
std::cout << "Value of 'x' should be greater than 0" << std::endl;
return error_exit_code;
}
// Increment between consecutive values of the y vector.
const rocblas_int incy = parser.get<int>("y");
if(incy <= 0)
{
std::cout << "Value of 'y' should be greater than 0" << std::endl;
return error_exit_code;
}
// Number of columns in the matrix.
const rocblas_int cols = parser.get<int>("n");
if(cols <= 0)
{
std::cout << "Value of 'n' should be greater than 0" << std::endl;
return error_exit_code;
}
// Number of rows in the matrix.
const rocblas_int rows = parser.get<int>("m");
if(rows <= 0)
{
std::cout << "Value of 'm' should be greater than 0" << std::endl;
return error_exit_code;
}
// Alpha scalar multiplier.
const rocblas_float h_alpha = parser.get<float>("a");
// Beta scalar multiplier.
const rocblas_float h_beta = parser.get<float>("b");
// The leading dimension (the stride between column starts) of the matrix A.
// The matrix is packed into memory, so the leading dimension is equal to
// the actual dimension.
const size_t lda = rows;
// The size of the A matrix, in elements.
const size_t size_a = lda * cols;
// Specify whether the matrix is transposed before the matrix-vector product is computed.
const rocblas_operation transpose_a = rocblas_operation_none;
size_t dim_x = cols;
size_t dim_y = rows;
// If the matrix is transposed before the operation, the required
// dimensions of the x and y vector are swapped.
if(transpose_a != rocblas_operation_none)
{
std::swap(dim_x, dim_y);
}
// The size of the x vector, in elements (including stride).
const size_t size_x = dim_x * incx;
// The size of the y vector, in elements (including stride).
const size_t size_y = dim_y * incy;
// Initialize identity matrix h_a.
std::vector<float> h_a(size_a);
for(rocblas_int i = 0; i < cols; ++i)
{
for(rocblas_int j = 0; j < rows; ++j)
{
h_a[i * lda + j] = i == j;
}
}
// Initialize x vector with the sequence 1, 2, 3, ...
std::vector<float> h_x(size_x);
std::iota(h_x.begin(), h_x.end(), 1.0f);
// Initalize the y vector with the sequence -1, -2, -3, ...
std::vector<float> h_y(size_y);
std::iota(h_y.begin(), h_y.end(), 1.0f);
std::transform(h_y.begin(), h_y.end(), h_y.begin(), std::negate<float>());
// Compute reference on CPU.
std::vector<float> h_y_gold(h_y);
gemv_reference(transpose_a,
rows,
cols,
h_alpha,
h_a.data(),
lda,
h_x.data(),
incx,
h_beta,
h_y_gold.data(),
incy);
// Allocate device memory using hipMalloc.
rocblas_float* d_a{};
rocblas_float* d_x{};
rocblas_float* d_y{};
HIP_CHECK(hipMalloc(&d_a, size_a * sizeof(rocblas_float)));
HIP_CHECK(hipMalloc(&d_x, size_x * sizeof(rocblas_float)));
HIP_CHECK(hipMalloc(&d_y, size_y * sizeof(rocblas_float)));
// Copy the input from the host to the device.
HIP_CHECK(hipMemcpy(d_a, h_a.data(), size_a * sizeof(rocblas_float), hipMemcpyHostToDevice));
HIP_CHECK(hipMemcpy(d_x, h_x.data(), size_x * sizeof(rocblas_float), hipMemcpyHostToDevice));
HIP_CHECK(hipMemcpy(d_y, h_y.data(), size_y * sizeof(rocblas_float), hipMemcpyHostToDevice));
// Initialize a rocBLAS API handle.
rocblas_handle handle;
ROCBLAS_CHECK(rocblas_create_handle(&handle));
ROCBLAS_CHECK(rocblas_set_pointer_mode(handle, rocblas_pointer_mode_host));
// Invoke the GEMV operation on the device.
ROCBLAS_CHECK(rocblas_sgemv(handle,
transpose_a,
rows,
cols,
&h_alpha,
d_a,
lda,
d_x,
incx,
&h_beta,
d_y,
incy));
// Fetch the results from the device to the host. These functions automatically wait until the above
// computation is finished.
HIP_CHECK(hipMemcpy(h_y.data(), d_y, size_y * sizeof(rocblas_float), hipMemcpyDeviceToHost));
// Destroy the rocBLAS handle.
ROCBLAS_CHECK(rocblas_destroy_handle(handle));
// Free device memory as it is no longer required.
HIP_CHECK(hipFree(d_a));
HIP_CHECK(hipFree(d_x));
HIP_CHECK(hipFree(d_y));
// Check the relative error between output generated by the rocBLAS API and the CPU.
constexpr float eps = 10.f * std::numeric_limits<float>::epsilon();
unsigned int errors = 0;
for(size_t i = 0; i < size_y; i++)
{
errors += std::fabs(h_y[i] - h_y_gold[i]) > eps;
}
if(errors)
{
std::cout << "Validation failed. Errors: " << errors << std::endl;
return error_exit_code;
}
std::cout << "Validation passed." << std::endl;
}