You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
4.8 KiB
125 lines
4.8 KiB
// MIT License |
|
// |
|
// Copyright (c) 2023-2024 Advanced Micro Devices, Inc. All rights reserved. |
|
// |
|
// Permission is hereby granted, free of charge, to any person obtaining a copy |
|
// of this software and associated documentation files (the "Software"), to deal |
|
// in the Software without restriction, including without limitation the rights |
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
// copies of the Software, and to permit persons to whom the Software is |
|
// furnished to do so, subject to the following conditions: |
|
// |
|
// The above copyright notice and this permission notice shall be included in all |
|
// copies or substantial portions of the Software. |
|
// |
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
|
// SOFTWARE. |
|
|
|
#include "cmdparser.hpp" |
|
#include "example_utils.hpp" |
|
#include "hipsolver_utils.hpp" |
|
|
|
#include <hipsolver/hipsolver.h> |
|
|
|
#include <hip/hip_runtime.h> |
|
|
|
#include <algorithm> |
|
#include <cstdlib> |
|
#include <iostream> |
|
#include <numeric> |
|
#include <vector> |
|
|
|
int main(const int argc, const char* argv[]) |
|
{ |
|
// Parse user inputs. |
|
cli::Parser parser(argc, argv); |
|
parser.set_optional<int>("m", "m", 3, "Number of rows of input matrix A"); |
|
parser.set_optional<int>("n", "n", 3, "Number of columns of input matrix A"); |
|
parser.run_and_exit_if_error(); |
|
|
|
// Get input matrix rows (m) and columns (n). |
|
const int m = parser.get<int>("m"); |
|
if(m <= 0) |
|
{ |
|
std::cout << "Value of 'm' should be greater than 0" << std::endl; |
|
return error_exit_code; |
|
} |
|
|
|
const int n = parser.get<int>("n"); |
|
if(n <= 0) |
|
{ |
|
std::cout << "Value of 'n' should be greater than 0" << std::endl; |
|
return error_exit_code; |
|
} |
|
|
|
// Initialize leading dimensions of input matrix A and output matrix LU. |
|
const int lda = m; |
|
|
|
// Define input and output matrices' sizes. |
|
const unsigned int size_A = lda * n; |
|
const unsigned int size_Ipiv = std::min(m, n); |
|
|
|
// Initialize input matrix with sequence 1, 2, 3, ... . |
|
std::vector<double> A(size_A); |
|
std::iota(A.begin(), A.end(), 1.0); |
|
|
|
// We want to obtain the factorization P * A = L * U. Initialize the right-hand matrices: |
|
// - LU is an m x n matrix consisting of a lower triangular and upper triangular matrix, the lower triangular diagonal values are the "unit elements". |
|
// - Ipiv is an min(m,n) vector, the vector of pivot indices. The full matrix P of the factorization can be derived from Ipiv. |
|
std::vector<double> LU(size_A, 0); |
|
std::vector<int> Ipiv(size_Ipiv, 0); |
|
|
|
// Allocate host and device memory for the info variable. |
|
int info{}; |
|
int* d_info{}; |
|
HIP_CHECK(hipMalloc(&d_info, sizeof(int))); |
|
|
|
// Allocate device memory for the matrices needed and copy input matrix A from host to device. |
|
double* d_A{}; |
|
int* d_Ipiv{}; // Array of dimension min(m,n). |
|
HIP_CHECK(hipMalloc(&d_A, sizeof(double) * size_A)); |
|
HIP_CHECK(hipMalloc(&d_Ipiv, sizeof(int) * size_Ipiv)); |
|
HIP_CHECK(hipMemcpy(d_A, A.data(), sizeof(double) * size_A, hipMemcpyHostToDevice)); |
|
|
|
// Use the hipSOLVER API to create a handle. |
|
hipsolverHandle_t handle; |
|
HIPSOLVER_CHECK(hipsolverCreate(&handle)); |
|
|
|
// Query and allocate the amount of working memory required for getrf. |
|
int d_work_size; |
|
HIPSOLVER_CHECK(hipsolverDgetrf_bufferSize(handle, m, n, d_A, lda, &d_work_size)); |
|
double* d_work; |
|
HIP_CHECK(hipMalloc(&d_work, d_work_size)); |
|
|
|
// Invoke getrf() to compute the LU factorization. |
|
// The triangular matrices L and U are both stored in A. |
|
HIPSOLVER_CHECK(hipsolverDgetrf(handle, m, n, d_A, lda, d_work, d_work_size, d_Ipiv, d_info)); |
|
|
|
// Copy device output data to host. |
|
HIP_CHECK(hipMemcpy(LU.data(), d_A, sizeof(double) * size_A, hipMemcpyDeviceToHost)); |
|
HIP_CHECK(hipMemcpy(Ipiv.data(), d_Ipiv, sizeof(int) * size_Ipiv, hipMemcpyDeviceToHost)); |
|
HIP_CHECK(hipMemcpy(&info, d_info, sizeof(int), hipMemcpyDeviceToHost)); |
|
|
|
// Print trace message for LU factorization. |
|
if(info > 0) |
|
{ |
|
std::cout << "U is singular. U[" << info << "," << info << "] is the first zero pivot." |
|
<< std::endl; |
|
} |
|
else if(info == 0) |
|
{ |
|
std::cout << "Successful exit." << std::endl; |
|
} |
|
|
|
// Free resources. |
|
HIP_CHECK(hipFree(d_A)); |
|
HIP_CHECK(hipFree(d_Ipiv)); |
|
HIP_CHECK(hipFree(d_info)); |
|
HIP_CHECK(hipFree(d_work)); |
|
HIPSOLVER_CHECK(hipsolverDestroy(handle)); |
|
}
|
|
|