You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
3.6 KiB
133 lines
3.6 KiB
import os |
|
import urllib |
|
import traceback |
|
import time |
|
import sys |
|
import numpy as np |
|
import cv2 |
|
from rknn.api import RKNN |
|
|
|
ONNX_MODEL = 'resnet50v2.onnx' |
|
RKNN_MODEL = 'resnet50v2.rknn' |
|
|
|
|
|
def show_outputs(outputs): |
|
output = outputs[0][0] |
|
output_sorted = sorted(output, reverse=True) |
|
top5_str = 'resnet50v2\n-----TOP 5-----\n' |
|
for i in range(5): |
|
value = output_sorted[i] |
|
index = np.where(output == value) |
|
for j in range(len(index)): |
|
if (i + j) >= 5: |
|
break |
|
if value > 0: |
|
topi = '{}: {}\n'.format(index[j], value) |
|
else: |
|
topi = '-1: 0.0\n' |
|
top5_str += topi |
|
print(top5_str) |
|
|
|
|
|
def readable_speed(speed): |
|
speed_bytes = float(speed) |
|
speed_kbytes = speed_bytes / 1024 |
|
if speed_kbytes > 1024: |
|
speed_mbytes = speed_kbytes / 1024 |
|
if speed_mbytes > 1024: |
|
speed_gbytes = speed_mbytes / 1024 |
|
return "{:.2f} GB/s".format(speed_gbytes) |
|
else: |
|
return "{:.2f} MB/s".format(speed_mbytes) |
|
else: |
|
return "{:.2f} KB/s".format(speed_kbytes) |
|
|
|
|
|
def show_progress(blocknum, blocksize, totalsize): |
|
speed = (blocknum * blocksize) / (time.time() - start_time) |
|
speed_str = " Speed: {}".format(readable_speed(speed)) |
|
recv_size = blocknum * blocksize |
|
|
|
f = sys.stdout |
|
progress = (recv_size / totalsize) |
|
progress_str = "{:.2f}%".format(progress * 100) |
|
n = round(progress * 50) |
|
s = ('#' * n).ljust(50, '-') |
|
f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str) |
|
f.flush() |
|
f.write('\r\n') |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
# Create RKNN object |
|
rknn = RKNN(verbose=True) |
|
|
|
# If resnet50v2 does not exist, download it. |
|
# Download address: |
|
# https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx |
|
if not os.path.exists(ONNX_MODEL): |
|
print('--> Download {}'.format(ONNX_MODEL)) |
|
url = 'https://s3.amazonaws.com/onnx-model-zoo/resnet/resnet50v2/resnet50v2.onnx' |
|
download_file = ONNX_MODEL |
|
try: |
|
start_time = time.time() |
|
urllib.request.urlretrieve(url, download_file, show_progress) |
|
except: |
|
print('Download {} failed.'.format(download_file)) |
|
print(traceback.format_exc()) |
|
exit(-1) |
|
print('done') |
|
|
|
# pre-process config |
|
print('--> config model') |
|
rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.82, 58.82, 58.82]) |
|
print('done') |
|
|
|
# Load model |
|
print('--> Loading model') |
|
ret = rknn.load_onnx(model=ONNX_MODEL) |
|
if ret != 0: |
|
print('Load model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
# Build model |
|
print('--> Building model') |
|
ret = rknn.build(do_quantization=True, dataset='./dataset.txt') |
|
if ret != 0: |
|
print('Build model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
# Export rknn model |
|
print('--> Export rknn model') |
|
ret = rknn.export_rknn(RKNN_MODEL) |
|
if ret != 0: |
|
print('Export rknn model failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
# Set inputs |
|
img = cv2.imread('./dog_224x224.jpg') |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
|
|
# Init runtime environment |
|
print('--> Init runtime environment') |
|
ret = rknn.init_runtime() |
|
if ret != 0: |
|
print('Init runtime environment failed!') |
|
exit(ret) |
|
print('done') |
|
|
|
# Inference |
|
print('--> Running model') |
|
outputs = rknn.inference(inputs=[img]) |
|
np.save('./onnx_resnet50v2_0.npy', outputs[0]) |
|
x = outputs[0] |
|
output = np.exp(x)/np.sum(np.exp(x)) |
|
outputs = [output] |
|
show_outputs(outputs) |
|
print('done') |
|
|
|
rknn.release()
|
|
|