You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

106 lines
2.5 KiB

import numpy as np
import cv2
from rknn.api import RKNN
import torchvision.models as models
import torch
def export_pytorch_model():
net = models.resnet18(pretrained=True)
net.eval()
trace_model = torch.jit.trace(net, torch.Tensor(1, 3, 224, 224))
trace_model.save('./resnet18.pt')
def show_outputs(output):
output_sorted = sorted(output, reverse=True)
top5_str = '\n-----TOP 5-----\n'
for i in range(5):
value = output_sorted[i]
index = np.where(output == value)
for j in range(len(index)):
if (i + j) >= 5:
break
if value > 0:
topi = '{}: {}\n'.format(index[j], value)
else:
topi = '-1: 0.0\n'
top5_str += topi
print(top5_str)
def show_perfs(perfs):
perfs = 'perfs: {}\n'.format(perfs)
print(perfs)
def softmax(x):
return np.exp(x)/sum(np.exp(x))
if __name__ == '__main__':
export_pytorch_model()
model = './resnet18.pt'
input_size_list = [[1, 3, 224, 224]]
# Create RKNN object
rknn = RKNN()
# pre-process config
print('--> config model')
rknn.config(mean_values=[123.675, 116.28, 103.53], std_values=[58.395, 58.395, 58.395])
print('done')
# Load pytorch model
print('--> Loading model')
ret = rknn.load_pytorch(model=model, input_size_list=input_size_list)
if ret != 0:
print('Load pytorch model failed!')
exit(ret)
print('done')
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
if ret != 0:
print('Build pytorch failed!')
exit(ret)
print('done')
# Export rknn model
print('--> Export RKNN model')
ret = rknn.export_rknn('./resnet_18.rknn')
if ret != 0:
print('Export resnet_18.rknn failed!')
exit(ret)
print('done')
ret = rknn.load_rknn('./resnet_18.rknn')
# Set inputs
img = cv2.imread('./space_shuttle_224.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# init runtime environment
print('--> Init runtime environment')
ret = rknn.init_runtime()
if ret != 0:
print('Init runtime environment failed')
exit(ret)
print('done')
# Inference
print('--> Running model')
outputs = rknn.inference(inputs=[img])
show_outputs(softmax(np.array(outputs[0][0])))
print('done')
# # perf
# print('--> Begin evaluate model performance')
# perf_results = rknn.eval_perf(inputs=[img])
# print('done')
rknn.release()