11 changed files with 192 additions and 9 deletions
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,3 +1,14 @@
@@ -1,3 +1,14 @@
|
||||
2021-4-2 |
||||
版本:v0.7.0 |
||||
更新内容: |
||||
1. 新功能: 新的量化算法支持(mmse), 添加支持tensorflow的预量化模型导入 |
||||
2. 添加了Caffe新OP支持:relu6/ConvolutionDepthwise/Transpose/reorg |
||||
3. 修复一些已知的bug: |
||||
1) 增加concat的非channel维度,非4维输入的支持 |
||||
2) 修复了第一层是scale的预处理bug |
||||
3)更新了onnxruntime==1.7.0的版本 |
||||
4. 更新了文档,更新了OP支持列表 |
||||
|
||||
2021-3-1 |
||||
版本:v0.6.0 |
||||
更新内容: |
@ -0,0 +1,3 @@
@@ -0,0 +1,3 @@
|
||||
This demo shows how to load a quantized model. |
||||
Download address of inception_v3_quant_frozen.pb: |
||||
https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz |
After Width: | Height: | Size: 85 KiB |
@ -0,0 +1,164 @@
@@ -0,0 +1,164 @@
|
||||
import numpy as np |
||||
import cv2 |
||||
import os |
||||
import urllib |
||||
import tarfile |
||||
import shutil |
||||
import traceback |
||||
import time |
||||
import sys |
||||
from rknn.api import RKNN |
||||
|
||||
PB_FILE = './inception_v3_quant_frozen.pb' |
||||
RKNN_MODEL_PATH = './inception_v3_quant_frozen.rknn' |
||||
INPUTS = ['input'] |
||||
OUTPUTS = ['InceptionV3/Logits/SpatialSqueeze'] |
||||
IMG_PATH = './goldfish_299x299.jpg' |
||||
INPUT_SIZE = 299 |
||||
|
||||
def show_outputs(outputs): |
||||
output = outputs[0][0] |
||||
output_sorted = sorted(output, reverse=True) |
||||
top5_str = 'inception_v3\n-----TOP 5-----\n' |
||||
for i in range(5): |
||||
value = output_sorted[i] |
||||
index = np.where(output == value) |
||||
for j in range(len(index)): |
||||
if (i + j) >= 5: |
||||
break |
||||
if value > 0: |
||||
topi = '{}: {}\n'.format(index[j], value) |
||||
else: |
||||
topi = '-1: 0.0\n' |
||||
top5_str += topi |
||||
print(top5_str) |
||||
|
||||
|
||||
def readable_speed(speed): |
||||
speed_bytes = float(speed) |
||||
speed_kbytes = speed_bytes / 1024 |
||||
if speed_kbytes > 1024: |
||||
speed_mbytes = speed_kbytes / 1024 |
||||
if speed_mbytes > 1024: |
||||
speed_gbytes = speed_mbytes / 1024 |
||||
return "{:.2f} GB/s".format(speed_gbytes) |
||||
else: |
||||
return "{:.2f} MB/s".format(speed_mbytes) |
||||
else: |
||||
return "{:.2f} KB/s".format(speed_kbytes) |
||||
|
||||
|
||||
def show_progress(blocknum, blocksize, totalsize): |
||||
speed = (blocknum * blocksize) / (time.time() - start_time) |
||||
speed_str = " Speed: {}".format(readable_speed(speed)) |
||||
recv_size = blocknum * blocksize |
||||
|
||||
f = sys.stdout |
||||
progress = (recv_size / totalsize) |
||||
progress_str = "{:.2f}%".format(progress * 100) |
||||
n = round(progress * 50) |
||||
s = ('#' * n).ljust(50, '-') |
||||
f.write(progress_str.ljust(8, ' ') + '[' + s + ']' + speed_str) |
||||
f.flush() |
||||
f.write('\r\n') |
||||
|
||||
if __name__ == '__main__': |
||||
|
||||
# Create RKNN object |
||||
rknn = RKNN() |
||||
|
||||
# If inception_v3_quant_frozen.pb does not exist, download it. |
||||
# Download address: |
||||
# https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz |
||||
if not os.path.exists(PB_FILE): |
||||
print('--> Download {}'.format(PB_FILE)) |
||||
url = 'https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz' |
||||
download_file = 'inception_v3_quant.tgz' |
||||
try: |
||||
start_time = time.time() |
||||
urllib.request.urlretrieve(url, download_file, show_progress) |
||||
except: |
||||
print('Download {} failed.'.format(download_file)) |
||||
print(traceback.format_exc()) |
||||
exit(-1) |
||||
try: |
||||
tar = tarfile.open(download_file) |
||||
target_dir = os.path.splitext(download_file)[0] |
||||
if os.path.isdir(target_dir): |
||||
pass |
||||
else: |
||||
os.mkdir(target_dir) |
||||
tar.extractall(target_dir) |
||||
tar.close() |
||||
except: |
||||
print('Extract {} failed.'.format(download_file)) |
||||
exit(-1) |
||||
pb_file = os.path.join(target_dir, PB_FILE) |
||||
if os.path.exists(pb_file): |
||||
shutil.copyfile(pb_file, './inception_v3_quant_frozen.pb') |
||||
shutil.rmtree(target_dir) |
||||
os.remove(download_file) |
||||
print('done') |
||||
# pre-process config |
||||
print('--> Config model') |
||||
rknn.config(reorder_channel=False) |
||||
print('done') |
||||
|
||||
# Load tensorflow model |
||||
print('--> Loading model') |
||||
ret = rknn.load_tensorflow(tf_pb=PB_FILE, |
||||
inputs=INPUTS, |
||||
outputs=OUTPUTS, |
||||
input_size_list=[[1, INPUT_SIZE, INPUT_SIZE, 3]], |
||||
predef_file=None, |
||||
mean_values=[[128]], |
||||
std_values=[[128]]) |
||||
if ret != 0: |
||||
print('Load inception_v3_quant_frozen failed!') |
||||
exit(ret) |
||||
print('done') |
||||
|
||||
# Build model |
||||
print('--> Building model') |
||||
ret = rknn.build(do_quantization=False) |
||||
if ret != 0: |
||||
print('Build inception_v3_quant_frozen.rknn failed!') |
||||
exit(ret) |
||||
print('done') |
||||
|
||||
# Export rknn model |
||||
print('--> Export RKNN model') |
||||
ret = rknn.export_rknn(RKNN_MODEL_PATH) |
||||
if ret != 0: |
||||
print('Export inception_v3_quant_frozen.rknn failed!') |
||||
exit(ret) |
||||
print('done') |
||||
|
||||
# Set inputs |
||||
img = cv2.imread(IMG_PATH) |
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
||||
|
||||
# init runtime environment |
||||
print('--> Init runtime environment') |
||||
ret = rknn.init_runtime() |
||||
if ret != 0: |
||||
print('Init runtime environment failed') |
||||
exit(ret) |
||||
print('done') |
||||
|
||||
# Inference |
||||
print('--> Running model') |
||||
outputs = rknn.inference(inputs=[img]) |
||||
x = outputs[0] |
||||
output = np.exp(x)/np.sum(np.exp(x)) |
||||
outputs = [output] |
||||
show_outputs(outputs) |
||||
print('done') |
||||
|
||||
# perf |
||||
print('--> Begin evaluate model performance') |
||||
perf_results = rknn.eval_perf(inputs=[img]) |
||||
print('done') |
||||
|
||||
rknn.release() |
||||
|
Loading…
Reference in new issue