mirror of https://github.com/pybind/pybind11
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2232 lines
87 KiB
2232 lines
87 KiB
/* |
|
pybind11/numpy.h: Basic NumPy support, vectorize() wrapper |
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> |
|
|
|
All rights reserved. Use of this source code is governed by a |
|
BSD-style license that can be found in the LICENSE file. |
|
*/ |
|
|
|
#pragma once |
|
|
|
#include "pybind11.h" |
|
#include "detail/common.h" |
|
#include "complex.h" |
|
#include "gil_safe_call_once.h" |
|
#include "pytypes.h" |
|
|
|
#include <algorithm> |
|
#include <array> |
|
#include <cstdint> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <functional> |
|
#include <numeric> |
|
#include <sstream> |
|
#include <string> |
|
#include <type_traits> |
|
#include <typeindex> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#if defined(PYBIND11_NUMPY_1_ONLY) && !defined(PYBIND11_INTERNAL_NUMPY_1_ONLY_DETECTED) |
|
# error PYBIND11_NUMPY_1_ONLY must be defined before any pybind11 header is included. |
|
#endif |
|
|
|
/* This will be true on all flat address space platforms and allows us to reduce the |
|
whole npy_intp / ssize_t / Py_intptr_t business down to just ssize_t for all size |
|
and dimension types (e.g. shape, strides, indexing), instead of inflicting this |
|
upon the library user. |
|
Note that NumPy 2 now uses ssize_t for `npy_intp` to simplify this. */ |
|
static_assert(sizeof(::pybind11::ssize_t) == sizeof(Py_intptr_t), "ssize_t != Py_intptr_t"); |
|
static_assert(std::is_signed<Py_intptr_t>::value, "Py_intptr_t must be signed"); |
|
// We now can reinterpret_cast between py::ssize_t and Py_intptr_t (MSVC + PyPy cares) |
|
|
|
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) |
|
|
|
PYBIND11_WARNING_DISABLE_MSVC(4127) |
|
|
|
class dtype; // Forward declaration |
|
class array; // Forward declaration |
|
|
|
PYBIND11_NAMESPACE_BEGIN(detail) |
|
|
|
template <> |
|
struct handle_type_name<dtype> { |
|
static constexpr auto name = const_name("numpy.dtype"); |
|
}; |
|
|
|
template <> |
|
struct handle_type_name<array> { |
|
static constexpr auto name = const_name("numpy.ndarray"); |
|
}; |
|
|
|
template <typename type, typename SFINAE = void> |
|
struct npy_format_descriptor; |
|
|
|
/* NumPy 1 proxy (always includes legacy fields) */ |
|
struct PyArrayDescr1_Proxy { |
|
PyObject_HEAD |
|
PyObject *typeobj; |
|
char kind; |
|
char type; |
|
char byteorder; |
|
char flags; |
|
int type_num; |
|
int elsize; |
|
int alignment; |
|
char *subarray; |
|
PyObject *fields; |
|
PyObject *names; |
|
}; |
|
|
|
#ifndef PYBIND11_NUMPY_1_ONLY |
|
struct PyArrayDescr_Proxy { |
|
PyObject_HEAD |
|
PyObject *typeobj; |
|
char kind; |
|
char type; |
|
char byteorder; |
|
char _former_flags; |
|
int type_num; |
|
/* Additional fields are NumPy version specific. */ |
|
}; |
|
#else |
|
/* NumPy 1.x only, we can expose all fields */ |
|
using PyArrayDescr_Proxy = PyArrayDescr1_Proxy; |
|
#endif |
|
|
|
/* NumPy 2 proxy, including legacy fields */ |
|
struct PyArrayDescr2_Proxy { |
|
PyObject_HEAD |
|
PyObject *typeobj; |
|
char kind; |
|
char type; |
|
char byteorder; |
|
char _former_flags; |
|
int type_num; |
|
std::uint64_t flags; |
|
ssize_t elsize; |
|
ssize_t alignment; |
|
PyObject *metadata; |
|
Py_hash_t hash; |
|
void *reserved_null[2]; |
|
/* The following fields only exist if 0 <= type_num < 2056 */ |
|
char *subarray; |
|
PyObject *fields; |
|
PyObject *names; |
|
}; |
|
|
|
struct PyArray_Proxy { |
|
PyObject_HEAD |
|
char *data; |
|
int nd; |
|
ssize_t *dimensions; |
|
ssize_t *strides; |
|
PyObject *base; |
|
PyObject *descr; |
|
int flags; |
|
}; |
|
|
|
struct PyVoidScalarObject_Proxy { |
|
PyObject_VAR_HEAD char *obval; |
|
PyArrayDescr_Proxy *descr; |
|
int flags; |
|
PyObject *base; |
|
}; |
|
|
|
struct numpy_type_info { |
|
PyObject *dtype_ptr; |
|
std::string format_str; |
|
}; |
|
|
|
struct numpy_internals { |
|
std::unordered_map<std::type_index, numpy_type_info> registered_dtypes; |
|
|
|
numpy_type_info *get_type_info(const std::type_info &tinfo, bool throw_if_missing = true) { |
|
auto it = registered_dtypes.find(std::type_index(tinfo)); |
|
if (it != registered_dtypes.end()) { |
|
return &(it->second); |
|
} |
|
if (throw_if_missing) { |
|
pybind11_fail(std::string("NumPy type info missing for ") + tinfo.name()); |
|
} |
|
return nullptr; |
|
} |
|
|
|
template <typename T> |
|
numpy_type_info *get_type_info(bool throw_if_missing = true) { |
|
return get_type_info(typeid(typename std::remove_cv<T>::type), throw_if_missing); |
|
} |
|
}; |
|
|
|
PYBIND11_NOINLINE void load_numpy_internals(numpy_internals *&ptr) { |
|
ptr = &get_or_create_shared_data<numpy_internals>("_numpy_internals"); |
|
} |
|
|
|
inline numpy_internals &get_numpy_internals() { |
|
static numpy_internals *ptr = nullptr; |
|
if (!ptr) { |
|
load_numpy_internals(ptr); |
|
} |
|
return *ptr; |
|
} |
|
|
|
PYBIND11_NOINLINE module_ import_numpy_core_submodule(const char *submodule_name) { |
|
module_ numpy = module_::import("numpy"); |
|
str version_string = numpy.attr("__version__"); |
|
|
|
module_ numpy_lib = module_::import("numpy.lib"); |
|
object numpy_version = numpy_lib.attr("NumpyVersion")(version_string); |
|
int major_version = numpy_version.attr("major").cast<int>(); |
|
|
|
#ifdef PYBIND11_NUMPY_1_ONLY |
|
if (major_version >= 2) { |
|
throw std::runtime_error( |
|
"This extension was built with PYBIND11_NUMPY_1_ONLY defined, " |
|
"but NumPy 2 is used in this process. For NumPy2 compatibility, " |
|
"this extension needs to be rebuilt without the PYBIND11_NUMPY_1_ONLY define."); |
|
} |
|
#endif |
|
/* `numpy.core` was renamed to `numpy._core` in NumPy 2.0 as it officially |
|
became a private module. */ |
|
std::string numpy_core_path = major_version >= 2 ? "numpy._core" : "numpy.core"; |
|
return module_::import((numpy_core_path + "." + submodule_name).c_str()); |
|
} |
|
|
|
template <typename T> |
|
struct same_size { |
|
template <typename U> |
|
using as = bool_constant<sizeof(T) == sizeof(U)>; |
|
}; |
|
|
|
template <typename Concrete> |
|
constexpr int platform_lookup() { |
|
return -1; |
|
} |
|
|
|
// Lookup a type according to its size, and return a value corresponding to the NumPy typenum. |
|
template <typename Concrete, typename T, typename... Ts, typename... Ints> |
|
constexpr int platform_lookup(int I, Ints... Is) { |
|
return sizeof(Concrete) == sizeof(T) ? I : platform_lookup<Concrete, Ts...>(Is...); |
|
} |
|
|
|
struct npy_api { |
|
// If you change this code, please review `normalized_dtype_num` below. |
|
enum constants { |
|
NPY_ARRAY_C_CONTIGUOUS_ = 0x0001, |
|
NPY_ARRAY_F_CONTIGUOUS_ = 0x0002, |
|
NPY_ARRAY_OWNDATA_ = 0x0004, |
|
NPY_ARRAY_FORCECAST_ = 0x0010, |
|
NPY_ARRAY_ENSUREARRAY_ = 0x0040, |
|
NPY_ARRAY_ALIGNED_ = 0x0100, |
|
NPY_ARRAY_WRITEABLE_ = 0x0400, |
|
NPY_BOOL_ = 0, |
|
NPY_BYTE_, |
|
NPY_UBYTE_, |
|
NPY_SHORT_, |
|
NPY_USHORT_, |
|
NPY_INT_, |
|
NPY_UINT_, |
|
NPY_LONG_, |
|
NPY_ULONG_, |
|
NPY_LONGLONG_, |
|
NPY_ULONGLONG_, |
|
NPY_FLOAT_, |
|
NPY_DOUBLE_, |
|
NPY_LONGDOUBLE_, |
|
NPY_CFLOAT_, |
|
NPY_CDOUBLE_, |
|
NPY_CLONGDOUBLE_, |
|
NPY_OBJECT_ = 17, |
|
NPY_STRING_, |
|
NPY_UNICODE_, |
|
NPY_VOID_, |
|
// Platform-dependent normalization |
|
NPY_INT8_ = NPY_BYTE_, |
|
NPY_UINT8_ = NPY_UBYTE_, |
|
NPY_INT16_ = NPY_SHORT_, |
|
NPY_UINT16_ = NPY_USHORT_, |
|
// `npy_common.h` defines the integer aliases. In order, it checks: |
|
// NPY_BITSOF_LONG, NPY_BITSOF_LONGLONG, NPY_BITSOF_INT, NPY_BITSOF_SHORT, NPY_BITSOF_CHAR |
|
// and assigns the alias to the first matching size, so we should check in this order. |
|
NPY_INT32_ |
|
= platform_lookup<std::int32_t, long, int, short>(NPY_LONG_, NPY_INT_, NPY_SHORT_), |
|
NPY_UINT32_ = platform_lookup<std::uint32_t, unsigned long, unsigned int, unsigned short>( |
|
NPY_ULONG_, NPY_UINT_, NPY_USHORT_), |
|
NPY_INT64_ |
|
= platform_lookup<std::int64_t, long, long long, int>(NPY_LONG_, NPY_LONGLONG_, NPY_INT_), |
|
NPY_UINT64_ |
|
= platform_lookup<std::uint64_t, unsigned long, unsigned long long, unsigned int>( |
|
NPY_ULONG_, NPY_ULONGLONG_, NPY_UINT_), |
|
}; |
|
|
|
unsigned int PyArray_RUNTIME_VERSION_; |
|
|
|
struct PyArray_Dims { |
|
Py_intptr_t *ptr; |
|
int len; |
|
}; |
|
|
|
static npy_api &get() { |
|
PYBIND11_CONSTINIT static gil_safe_call_once_and_store<npy_api> storage; |
|
return storage.call_once_and_store_result(lookup).get_stored(); |
|
} |
|
|
|
bool PyArray_Check_(PyObject *obj) const { |
|
return PyObject_TypeCheck(obj, PyArray_Type_) != 0; |
|
} |
|
bool PyArrayDescr_Check_(PyObject *obj) const { |
|
return PyObject_TypeCheck(obj, PyArrayDescr_Type_) != 0; |
|
} |
|
|
|
unsigned int (*PyArray_GetNDArrayCFeatureVersion_)(); |
|
PyObject *(*PyArray_DescrFromType_)(int); |
|
PyObject *(*PyArray_NewFromDescr_)(PyTypeObject *, |
|
PyObject *, |
|
int, |
|
Py_intptr_t const *, |
|
Py_intptr_t const *, |
|
void *, |
|
int, |
|
PyObject *); |
|
// Unused. Not removed because that affects ABI of the class. |
|
PyObject *(*PyArray_DescrNewFromType_)(int); |
|
int (*PyArray_CopyInto_)(PyObject *, PyObject *); |
|
PyObject *(*PyArray_NewCopy_)(PyObject *, int); |
|
PyTypeObject *PyArray_Type_; |
|
PyTypeObject *PyVoidArrType_Type_; |
|
PyTypeObject *PyArrayDescr_Type_; |
|
PyObject *(*PyArray_DescrFromScalar_)(PyObject *); |
|
PyObject *(*PyArray_FromAny_)(PyObject *, PyObject *, int, int, int, PyObject *); |
|
int (*PyArray_DescrConverter_)(PyObject *, PyObject **); |
|
bool (*PyArray_EquivTypes_)(PyObject *, PyObject *); |
|
#ifdef PYBIND11_NUMPY_1_ONLY |
|
int (*PyArray_GetArrayParamsFromObject_)(PyObject *, |
|
PyObject *, |
|
unsigned char, |
|
PyObject **, |
|
int *, |
|
Py_intptr_t *, |
|
PyObject **, |
|
PyObject *); |
|
#endif |
|
PyObject *(*PyArray_Squeeze_)(PyObject *); |
|
// Unused. Not removed because that affects ABI of the class. |
|
int (*PyArray_SetBaseObject_)(PyObject *, PyObject *); |
|
PyObject *(*PyArray_Resize_)(PyObject *, PyArray_Dims *, int, int); |
|
PyObject *(*PyArray_Newshape_)(PyObject *, PyArray_Dims *, int); |
|
PyObject *(*PyArray_View_)(PyObject *, PyObject *, PyObject *); |
|
|
|
private: |
|
enum functions { |
|
API_PyArray_GetNDArrayCFeatureVersion = 211, |
|
API_PyArray_Type = 2, |
|
API_PyArrayDescr_Type = 3, |
|
API_PyVoidArrType_Type = 39, |
|
API_PyArray_DescrFromType = 45, |
|
API_PyArray_DescrFromScalar = 57, |
|
API_PyArray_FromAny = 69, |
|
API_PyArray_Resize = 80, |
|
// CopyInto was slot 82 and 50 was effectively an alias. NumPy 2 removed 82. |
|
API_PyArray_CopyInto = 50, |
|
API_PyArray_NewCopy = 85, |
|
API_PyArray_NewFromDescr = 94, |
|
API_PyArray_DescrNewFromType = 96, |
|
API_PyArray_Newshape = 135, |
|
API_PyArray_Squeeze = 136, |
|
API_PyArray_View = 137, |
|
API_PyArray_DescrConverter = 174, |
|
API_PyArray_EquivTypes = 182, |
|
#ifdef PYBIND11_NUMPY_1_ONLY |
|
API_PyArray_GetArrayParamsFromObject = 278, |
|
#endif |
|
API_PyArray_SetBaseObject = 282 |
|
}; |
|
|
|
static npy_api lookup() { |
|
module_ m = detail::import_numpy_core_submodule("multiarray"); |
|
auto c = m.attr("_ARRAY_API"); |
|
void **api_ptr = (void **) PyCapsule_GetPointer(c.ptr(), nullptr); |
|
if (api_ptr == nullptr) { |
|
raise_from(PyExc_SystemError, "FAILURE obtaining numpy _ARRAY_API pointer."); |
|
throw error_already_set(); |
|
} |
|
npy_api api; |
|
#define DECL_NPY_API(Func) api.Func##_ = (decltype(api.Func##_)) api_ptr[API_##Func]; |
|
DECL_NPY_API(PyArray_GetNDArrayCFeatureVersion); |
|
api.PyArray_RUNTIME_VERSION_ = api.PyArray_GetNDArrayCFeatureVersion_(); |
|
if (api.PyArray_RUNTIME_VERSION_ < 0x7) { |
|
pybind11_fail("pybind11 numpy support requires numpy >= 1.7.0"); |
|
} |
|
DECL_NPY_API(PyArray_Type); |
|
DECL_NPY_API(PyVoidArrType_Type); |
|
DECL_NPY_API(PyArrayDescr_Type); |
|
DECL_NPY_API(PyArray_DescrFromType); |
|
DECL_NPY_API(PyArray_DescrFromScalar); |
|
DECL_NPY_API(PyArray_FromAny); |
|
DECL_NPY_API(PyArray_Resize); |
|
DECL_NPY_API(PyArray_CopyInto); |
|
DECL_NPY_API(PyArray_NewCopy); |
|
DECL_NPY_API(PyArray_NewFromDescr); |
|
DECL_NPY_API(PyArray_DescrNewFromType); |
|
DECL_NPY_API(PyArray_Newshape); |
|
DECL_NPY_API(PyArray_Squeeze); |
|
DECL_NPY_API(PyArray_View); |
|
DECL_NPY_API(PyArray_DescrConverter); |
|
DECL_NPY_API(PyArray_EquivTypes); |
|
#ifdef PYBIND11_NUMPY_1_ONLY |
|
DECL_NPY_API(PyArray_GetArrayParamsFromObject); |
|
#endif |
|
DECL_NPY_API(PyArray_SetBaseObject); |
|
|
|
#undef DECL_NPY_API |
|
return api; |
|
} |
|
}; |
|
|
|
// This table normalizes typenums by mapping NPY_INT_, NPY_LONG, ... to NPY_INT32_, NPY_INT64, ... |
|
// This is needed to correctly handle situations where multiple typenums map to the same type, |
|
// e.g. NPY_LONG_ may be equivalent to NPY_INT_ or NPY_LONGLONG_ despite having a different |
|
// typenum. The normalized typenum should always match the values used in npy_format_descriptor. |
|
// If you change this code, please review `enum constants` above. |
|
static constexpr int normalized_dtype_num[npy_api::NPY_VOID_ + 1] = { |
|
// NPY_BOOL_ => |
|
npy_api::NPY_BOOL_, |
|
// NPY_BYTE_ => |
|
npy_api::NPY_BYTE_, |
|
// NPY_UBYTE_ => |
|
npy_api::NPY_UBYTE_, |
|
// NPY_SHORT_ => |
|
npy_api::NPY_INT16_, |
|
// NPY_USHORT_ => |
|
npy_api::NPY_UINT16_, |
|
// NPY_INT_ => |
|
sizeof(int) == sizeof(std::int16_t) ? npy_api::NPY_INT16_ |
|
: sizeof(int) == sizeof(std::int32_t) ? npy_api::NPY_INT32_ |
|
: sizeof(int) == sizeof(std::int64_t) ? npy_api::NPY_INT64_ |
|
: npy_api::NPY_INT_, |
|
// NPY_UINT_ => |
|
sizeof(unsigned int) == sizeof(std::uint16_t) ? npy_api::NPY_UINT16_ |
|
: sizeof(unsigned int) == sizeof(std::uint32_t) ? npy_api::NPY_UINT32_ |
|
: sizeof(unsigned int) == sizeof(std::uint64_t) ? npy_api::NPY_UINT64_ |
|
: npy_api::NPY_UINT_, |
|
// NPY_LONG_ => |
|
sizeof(long) == sizeof(std::int16_t) ? npy_api::NPY_INT16_ |
|
: sizeof(long) == sizeof(std::int32_t) ? npy_api::NPY_INT32_ |
|
: sizeof(long) == sizeof(std::int64_t) ? npy_api::NPY_INT64_ |
|
: npy_api::NPY_LONG_, |
|
// NPY_ULONG_ => |
|
sizeof(unsigned long) == sizeof(std::uint16_t) ? npy_api::NPY_UINT16_ |
|
: sizeof(unsigned long) == sizeof(std::uint32_t) ? npy_api::NPY_UINT32_ |
|
: sizeof(unsigned long) == sizeof(std::uint64_t) ? npy_api::NPY_UINT64_ |
|
: npy_api::NPY_ULONG_, |
|
// NPY_LONGLONG_ => |
|
sizeof(long long) == sizeof(std::int16_t) ? npy_api::NPY_INT16_ |
|
: sizeof(long long) == sizeof(std::int32_t) ? npy_api::NPY_INT32_ |
|
: sizeof(long long) == sizeof(std::int64_t) ? npy_api::NPY_INT64_ |
|
: npy_api::NPY_LONGLONG_, |
|
// NPY_ULONGLONG_ => |
|
sizeof(unsigned long long) == sizeof(std::uint16_t) ? npy_api::NPY_UINT16_ |
|
: sizeof(unsigned long long) == sizeof(std::uint32_t) ? npy_api::NPY_UINT32_ |
|
: sizeof(unsigned long long) == sizeof(std::uint64_t) ? npy_api::NPY_UINT64_ |
|
: npy_api::NPY_ULONGLONG_, |
|
// NPY_FLOAT_ => |
|
npy_api::NPY_FLOAT_, |
|
// NPY_DOUBLE_ => |
|
npy_api::NPY_DOUBLE_, |
|
// NPY_LONGDOUBLE_ => |
|
npy_api::NPY_LONGDOUBLE_, |
|
// NPY_CFLOAT_ => |
|
npy_api::NPY_CFLOAT_, |
|
// NPY_CDOUBLE_ => |
|
npy_api::NPY_CDOUBLE_, |
|
// NPY_CLONGDOUBLE_ => |
|
npy_api::NPY_CLONGDOUBLE_, |
|
// NPY_OBJECT_ => |
|
npy_api::NPY_OBJECT_, |
|
// NPY_STRING_ => |
|
npy_api::NPY_STRING_, |
|
// NPY_UNICODE_ => |
|
npy_api::NPY_UNICODE_, |
|
// NPY_VOID_ => |
|
npy_api::NPY_VOID_, |
|
}; |
|
|
|
inline PyArray_Proxy *array_proxy(void *ptr) { return reinterpret_cast<PyArray_Proxy *>(ptr); } |
|
|
|
inline const PyArray_Proxy *array_proxy(const void *ptr) { |
|
return reinterpret_cast<const PyArray_Proxy *>(ptr); |
|
} |
|
|
|
inline PyArrayDescr_Proxy *array_descriptor_proxy(PyObject *ptr) { |
|
return reinterpret_cast<PyArrayDescr_Proxy *>(ptr); |
|
} |
|
|
|
inline const PyArrayDescr_Proxy *array_descriptor_proxy(const PyObject *ptr) { |
|
return reinterpret_cast<const PyArrayDescr_Proxy *>(ptr); |
|
} |
|
|
|
inline const PyArrayDescr1_Proxy *array_descriptor1_proxy(const PyObject *ptr) { |
|
return reinterpret_cast<const PyArrayDescr1_Proxy *>(ptr); |
|
} |
|
|
|
inline const PyArrayDescr2_Proxy *array_descriptor2_proxy(const PyObject *ptr) { |
|
return reinterpret_cast<const PyArrayDescr2_Proxy *>(ptr); |
|
} |
|
|
|
inline bool check_flags(const void *ptr, int flag) { |
|
return (flag == (array_proxy(ptr)->flags & flag)); |
|
} |
|
|
|
template <typename T> |
|
struct is_std_array : std::false_type {}; |
|
template <typename T, size_t N> |
|
struct is_std_array<std::array<T, N>> : std::true_type {}; |
|
template <typename T> |
|
struct is_complex : std::false_type {}; |
|
template <typename T> |
|
struct is_complex<std::complex<T>> : std::true_type {}; |
|
|
|
template <typename T> |
|
struct array_info_scalar { |
|
using type = T; |
|
static constexpr bool is_array = false; |
|
static constexpr bool is_empty = false; |
|
static constexpr auto extents = const_name(""); |
|
static void append_extents(list & /* shape */) {} |
|
}; |
|
// Computes underlying type and a comma-separated list of extents for array |
|
// types (any mix of std::array and built-in arrays). An array of char is |
|
// treated as scalar because it gets special handling. |
|
template <typename T> |
|
struct array_info : array_info_scalar<T> {}; |
|
template <typename T, size_t N> |
|
struct array_info<std::array<T, N>> { |
|
using type = typename array_info<T>::type; |
|
static constexpr bool is_array = true; |
|
static constexpr bool is_empty = (N == 0) || array_info<T>::is_empty; |
|
static constexpr size_t extent = N; |
|
|
|
// appends the extents to shape |
|
static void append_extents(list &shape) { |
|
shape.append(N); |
|
array_info<T>::append_extents(shape); |
|
} |
|
|
|
static constexpr auto extents = const_name<array_info<T>::is_array>( |
|
::pybind11::detail::concat(const_name<N>(), array_info<T>::extents), const_name<N>()); |
|
}; |
|
// For numpy we have special handling for arrays of characters, so we don't include |
|
// the size in the array extents. |
|
template <size_t N> |
|
struct array_info<char[N]> : array_info_scalar<char[N]> {}; |
|
template <size_t N> |
|
struct array_info<std::array<char, N>> : array_info_scalar<std::array<char, N>> {}; |
|
template <typename T, size_t N> |
|
struct array_info<T[N]> : array_info<std::array<T, N>> {}; |
|
template <typename T> |
|
using remove_all_extents_t = typename array_info<T>::type; |
|
|
|
template <typename T> |
|
using is_pod_struct |
|
= all_of<std::is_standard_layout<T>, // since we're accessing directly in memory |
|
// we need a standard layout type |
|
#if defined(__GLIBCXX__) \ |
|
&& (__GLIBCXX__ < 20150422 || __GLIBCXX__ == 20150426 || __GLIBCXX__ == 20150623 \ |
|
|| __GLIBCXX__ == 20150626 || __GLIBCXX__ == 20160803) |
|
// libstdc++ < 5 (including versions 4.8.5, 4.9.3 and 4.9.4 which were released after |
|
// 5) don't implement is_trivially_copyable, so approximate it |
|
std::is_trivially_destructible<T>, |
|
satisfies_any_of<T, std::has_trivial_copy_constructor, std::has_trivial_copy_assign>, |
|
#else |
|
std::is_trivially_copyable<T>, |
|
#endif |
|
satisfies_none_of<T, |
|
std::is_reference, |
|
std::is_array, |
|
is_std_array, |
|
std::is_arithmetic, |
|
is_complex, |
|
std::is_enum>>; |
|
|
|
// Replacement for std::is_pod (deprecated in C++20) |
|
template <typename T> |
|
using is_pod = all_of<std::is_standard_layout<T>, std::is_trivial<T>>; |
|
|
|
template <ssize_t Dim = 0, typename Strides> |
|
ssize_t byte_offset_unsafe(const Strides &) { |
|
return 0; |
|
} |
|
template <ssize_t Dim = 0, typename Strides, typename... Ix> |
|
ssize_t byte_offset_unsafe(const Strides &strides, ssize_t i, Ix... index) { |
|
return i * strides[Dim] + byte_offset_unsafe<Dim + 1>(strides, index...); |
|
} |
|
|
|
/** |
|
* Proxy class providing unsafe, unchecked const access to array data. This is constructed through |
|
* the `unchecked<T, N>()` method of `array` or the `unchecked<N>()` method of `array_t<T>`. `Dims` |
|
* will be -1 for dimensions determined at runtime. |
|
*/ |
|
template <typename T, ssize_t Dims> |
|
class unchecked_reference { |
|
protected: |
|
static constexpr bool Dynamic = Dims < 0; |
|
const unsigned char *data_; |
|
// Storing the shape & strides in local variables (i.e. these arrays) allows the compiler to |
|
// make large performance gains on big, nested loops, but requires compile-time dimensions |
|
conditional_t<Dynamic, const ssize_t *, std::array<ssize_t, (size_t) Dims>> shape_, strides_; |
|
const ssize_t dims_; |
|
|
|
friend class pybind11::array; |
|
// Constructor for compile-time dimensions: |
|
template <bool Dyn = Dynamic> |
|
unchecked_reference(const void *data, |
|
const ssize_t *shape, |
|
const ssize_t *strides, |
|
enable_if_t<!Dyn, ssize_t>) |
|
: data_{reinterpret_cast<const unsigned char *>(data)}, dims_{Dims} { |
|
for (size_t i = 0; i < (size_t) dims_; i++) { |
|
shape_[i] = shape[i]; |
|
strides_[i] = strides[i]; |
|
} |
|
} |
|
// Constructor for runtime dimensions: |
|
template <bool Dyn = Dynamic> |
|
unchecked_reference(const void *data, |
|
const ssize_t *shape, |
|
const ssize_t *strides, |
|
enable_if_t<Dyn, ssize_t> dims) |
|
: data_{reinterpret_cast<const unsigned char *>(data)}, shape_{shape}, strides_{strides}, |
|
dims_{dims} {} |
|
|
|
public: |
|
/** |
|
* Unchecked const reference access to data at the given indices. For a compile-time known |
|
* number of dimensions, this requires the correct number of arguments; for run-time |
|
* dimensionality, this is not checked (and so is up to the caller to use safely). |
|
*/ |
|
template <typename... Ix> |
|
const T &operator()(Ix... index) const { |
|
static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic, |
|
"Invalid number of indices for unchecked array reference"); |
|
return *reinterpret_cast<const T *>(data_ |
|
+ byte_offset_unsafe(strides_, ssize_t(index)...)); |
|
} |
|
/** |
|
* Unchecked const reference access to data; this operator only participates if the reference |
|
* is to a 1-dimensional array. When present, this is exactly equivalent to `obj(index)`. |
|
*/ |
|
template <ssize_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>> |
|
const T &operator[](ssize_t index) const { |
|
return operator()(index); |
|
} |
|
|
|
/// Pointer access to the data at the given indices. |
|
template <typename... Ix> |
|
const T *data(Ix... ix) const { |
|
return &operator()(ssize_t(ix)...); |
|
} |
|
|
|
/// Returns the item size, i.e. sizeof(T) |
|
constexpr static ssize_t itemsize() { return sizeof(T); } |
|
|
|
/// Returns the shape (i.e. size) of dimension `dim` |
|
ssize_t shape(ssize_t dim) const { return shape_[(size_t) dim]; } |
|
|
|
/// Returns the number of dimensions of the array |
|
ssize_t ndim() const { return dims_; } |
|
|
|
/// Returns the total number of elements in the referenced array, i.e. the product of the |
|
/// shapes |
|
template <bool Dyn = Dynamic> |
|
enable_if_t<!Dyn, ssize_t> size() const { |
|
return std::accumulate( |
|
shape_.begin(), shape_.end(), (ssize_t) 1, std::multiplies<ssize_t>()); |
|
} |
|
template <bool Dyn = Dynamic> |
|
enable_if_t<Dyn, ssize_t> size() const { |
|
return std::accumulate(shape_, shape_ + ndim(), (ssize_t) 1, std::multiplies<ssize_t>()); |
|
} |
|
|
|
/// Returns the total number of bytes used by the referenced data. Note that the actual span |
|
/// in memory may be larger if the referenced array has non-contiguous strides (e.g. for a |
|
/// slice). |
|
ssize_t nbytes() const { return size() * itemsize(); } |
|
}; |
|
|
|
template <typename T, ssize_t Dims> |
|
class unchecked_mutable_reference : public unchecked_reference<T, Dims> { |
|
friend class pybind11::array; |
|
using ConstBase = unchecked_reference<T, Dims>; |
|
using ConstBase::ConstBase; |
|
using ConstBase::Dynamic; |
|
|
|
public: |
|
// Bring in const-qualified versions from base class |
|
using ConstBase::operator(); |
|
using ConstBase::operator[]; |
|
|
|
/// Mutable, unchecked access to data at the given indices. |
|
template <typename... Ix> |
|
T &operator()(Ix... index) { |
|
static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic, |
|
"Invalid number of indices for unchecked array reference"); |
|
return const_cast<T &>(ConstBase::operator()(index...)); |
|
} |
|
/** |
|
* Mutable, unchecked access data at the given index; this operator only participates if the |
|
* reference is to a 1-dimensional array (or has runtime dimensions). When present, this is |
|
* exactly equivalent to `obj(index)`. |
|
*/ |
|
template <ssize_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>> |
|
T &operator[](ssize_t index) { |
|
return operator()(index); |
|
} |
|
|
|
/// Mutable pointer access to the data at the given indices. |
|
template <typename... Ix> |
|
T *mutable_data(Ix... ix) { |
|
return &operator()(ssize_t(ix)...); |
|
} |
|
}; |
|
|
|
template <typename T, ssize_t Dim> |
|
struct type_caster<unchecked_reference<T, Dim>> { |
|
static_assert(Dim == 0 && Dim > 0 /* always fail */, |
|
"unchecked array proxy object is not castable"); |
|
}; |
|
template <typename T, ssize_t Dim> |
|
struct type_caster<unchecked_mutable_reference<T, Dim>> |
|
: type_caster<unchecked_reference<T, Dim>> {}; |
|
|
|
PYBIND11_NAMESPACE_END(detail) |
|
|
|
class dtype : public object { |
|
public: |
|
PYBIND11_OBJECT_DEFAULT(dtype, object, detail::npy_api::get().PyArrayDescr_Check_) |
|
|
|
explicit dtype(const buffer_info &info) { |
|
dtype descr(_dtype_from_pep3118()(pybind11::str(info.format))); |
|
// If info.itemsize == 0, use the value calculated from the format string |
|
m_ptr = descr.strip_padding(info.itemsize != 0 ? info.itemsize : descr.itemsize()) |
|
.release() |
|
.ptr(); |
|
} |
|
|
|
explicit dtype(const pybind11::str &format) : dtype(from_args(format)) {} |
|
|
|
explicit dtype(const std::string &format) : dtype(pybind11::str(format)) {} |
|
|
|
explicit dtype(const char *format) : dtype(pybind11::str(format)) {} |
|
|
|
dtype(list names, list formats, list offsets, ssize_t itemsize) { |
|
dict args; |
|
args["names"] = std::move(names); |
|
args["formats"] = std::move(formats); |
|
args["offsets"] = std::move(offsets); |
|
args["itemsize"] = pybind11::int_(itemsize); |
|
m_ptr = from_args(args).release().ptr(); |
|
} |
|
|
|
/// Return dtype for the given typenum (one of the NPY_TYPES). |
|
/// https://numpy.org/devdocs/reference/c-api/array.html#c.PyArray_DescrFromType |
|
explicit dtype(int typenum) |
|
: object(detail::npy_api::get().PyArray_DescrFromType_(typenum), stolen_t{}) { |
|
if (m_ptr == nullptr) { |
|
throw error_already_set(); |
|
} |
|
} |
|
|
|
/// This is essentially the same as calling numpy.dtype(args) in Python. |
|
static dtype from_args(const object &args) { |
|
PyObject *ptr = nullptr; |
|
if ((detail::npy_api::get().PyArray_DescrConverter_(args.ptr(), &ptr) == 0) || !ptr) { |
|
throw error_already_set(); |
|
} |
|
return reinterpret_steal<dtype>(ptr); |
|
} |
|
|
|
/// Return dtype associated with a C++ type. |
|
template <typename T> |
|
static dtype of() { |
|
return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::dtype(); |
|
} |
|
|
|
/// Return the type number associated with a C++ type. |
|
/// This is the constexpr equivalent of `dtype::of<T>().num()`. |
|
template <typename T> |
|
static constexpr int num_of() { |
|
return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::value; |
|
} |
|
|
|
/// Size of the data type in bytes. |
|
#ifdef PYBIND11_NUMPY_1_ONLY |
|
ssize_t itemsize() const { return detail::array_descriptor_proxy(m_ptr)->elsize; } |
|
#else |
|
ssize_t itemsize() const { |
|
if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) { |
|
return detail::array_descriptor1_proxy(m_ptr)->elsize; |
|
} |
|
return detail::array_descriptor2_proxy(m_ptr)->elsize; |
|
} |
|
#endif |
|
|
|
/// Returns true for structured data types. |
|
#ifdef PYBIND11_NUMPY_1_ONLY |
|
bool has_fields() const { return detail::array_descriptor_proxy(m_ptr)->names != nullptr; } |
|
#else |
|
bool has_fields() const { |
|
if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) { |
|
return detail::array_descriptor1_proxy(m_ptr)->names != nullptr; |
|
} |
|
const auto *proxy = detail::array_descriptor2_proxy(m_ptr); |
|
if (proxy->type_num < 0 || proxy->type_num >= 2056) { |
|
return false; |
|
} |
|
return proxy->names != nullptr; |
|
} |
|
#endif |
|
|
|
/// Single-character code for dtype's kind. |
|
/// For example, floating point types are 'f' and integral types are 'i'. |
|
char kind() const { return detail::array_descriptor_proxy(m_ptr)->kind; } |
|
|
|
/// Single-character for dtype's type. |
|
/// For example, ``float`` is 'f', ``double`` 'd', ``int`` 'i', and ``long`` 'l'. |
|
char char_() const { |
|
// Note: The signature, `dtype::char_` follows the naming of NumPy's |
|
// public Python API (i.e., ``dtype.char``), rather than its internal |
|
// C API (``PyArray_Descr::type``). |
|
return detail::array_descriptor_proxy(m_ptr)->type; |
|
} |
|
|
|
/// Type number of dtype. Note that different values may be returned for equivalent types, |
|
/// e.g. even though ``long`` may be equivalent to ``int`` or ``long long``, they still have |
|
/// different type numbers. Consider using `normalized_num` to avoid this. |
|
int num() const { |
|
// Note: The signature, `dtype::num` follows the naming of NumPy's public |
|
// Python API (i.e., ``dtype.num``), rather than its internal |
|
// C API (``PyArray_Descr::type_num``). |
|
return detail::array_descriptor_proxy(m_ptr)->type_num; |
|
} |
|
|
|
/// Type number of dtype, normalized to match the return value of `num_of` for equivalent |
|
/// types. This function can be used to write switch statements that correctly handle |
|
/// equivalent types with different type numbers. |
|
int normalized_num() const { |
|
int value = num(); |
|
if (value >= 0 && value <= detail::npy_api::NPY_VOID_) { |
|
return detail::normalized_dtype_num[value]; |
|
} |
|
return value; |
|
} |
|
|
|
/// Single character for byteorder |
|
char byteorder() const { return detail::array_descriptor_proxy(m_ptr)->byteorder; } |
|
|
|
/// Alignment of the data type |
|
#ifdef PYBIND11_NUMPY_1_ONLY |
|
int alignment() const { return detail::array_descriptor_proxy(m_ptr)->alignment; } |
|
#else |
|
ssize_t alignment() const { |
|
if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) { |
|
return detail::array_descriptor1_proxy(m_ptr)->alignment; |
|
} |
|
return detail::array_descriptor2_proxy(m_ptr)->alignment; |
|
} |
|
#endif |
|
|
|
/// Flags for the array descriptor |
|
#ifdef PYBIND11_NUMPY_1_ONLY |
|
char flags() const { return detail::array_descriptor_proxy(m_ptr)->flags; } |
|
#else |
|
std::uint64_t flags() const { |
|
if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) { |
|
return (unsigned char) detail::array_descriptor1_proxy(m_ptr)->flags; |
|
} |
|
return detail::array_descriptor2_proxy(m_ptr)->flags; |
|
} |
|
#endif |
|
|
|
private: |
|
static object &_dtype_from_pep3118() { |
|
PYBIND11_CONSTINIT static gil_safe_call_once_and_store<object> storage; |
|
return storage |
|
.call_once_and_store_result([]() { |
|
return detail::import_numpy_core_submodule("_internal") |
|
.attr("_dtype_from_pep3118"); |
|
}) |
|
.get_stored(); |
|
} |
|
|
|
dtype strip_padding(ssize_t itemsize) { |
|
// Recursively strip all void fields with empty names that are generated for |
|
// padding fields (as of NumPy v1.11). |
|
if (!has_fields()) { |
|
return *this; |
|
} |
|
|
|
struct field_descr { |
|
pybind11::str name; |
|
object format; |
|
pybind11::int_ offset; |
|
field_descr(pybind11::str &&name, object &&format, pybind11::int_ &&offset) |
|
: name{std::move(name)}, format{std::move(format)}, offset{std::move(offset)} {}; |
|
}; |
|
auto field_dict = attr("fields").cast<dict>(); |
|
std::vector<field_descr> field_descriptors; |
|
field_descriptors.reserve(field_dict.size()); |
|
|
|
for (auto field : field_dict.attr("items")()) { |
|
auto spec = field.cast<tuple>(); |
|
auto name = spec[0].cast<pybind11::str>(); |
|
auto spec_fo = spec[1].cast<tuple>(); |
|
auto format = spec_fo[0].cast<dtype>(); |
|
auto offset = spec_fo[1].cast<pybind11::int_>(); |
|
if ((len(name) == 0u) && format.kind() == 'V') { |
|
continue; |
|
} |
|
field_descriptors.emplace_back( |
|
std::move(name), format.strip_padding(format.itemsize()), std::move(offset)); |
|
} |
|
|
|
std::sort(field_descriptors.begin(), |
|
field_descriptors.end(), |
|
[](const field_descr &a, const field_descr &b) { |
|
return a.offset.cast<int>() < b.offset.cast<int>(); |
|
}); |
|
|
|
list names, formats, offsets; |
|
for (auto &descr : field_descriptors) { |
|
names.append(std::move(descr.name)); |
|
formats.append(std::move(descr.format)); |
|
offsets.append(std::move(descr.offset)); |
|
} |
|
return dtype(std::move(names), std::move(formats), std::move(offsets), itemsize); |
|
} |
|
}; |
|
|
|
class array : public buffer { |
|
public: |
|
PYBIND11_OBJECT_CVT(array, buffer, detail::npy_api::get().PyArray_Check_, raw_array) |
|
|
|
enum { |
|
c_style = detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_, |
|
f_style = detail::npy_api::NPY_ARRAY_F_CONTIGUOUS_, |
|
forcecast = detail::npy_api::NPY_ARRAY_FORCECAST_ |
|
}; |
|
|
|
array() : array(0, static_cast<const double *>(nullptr)) {} |
|
|
|
using ShapeContainer = detail::any_container<ssize_t>; |
|
using StridesContainer = detail::any_container<ssize_t>; |
|
|
|
// Constructs an array taking shape/strides from arbitrary container types |
|
array(const pybind11::dtype &dt, |
|
ShapeContainer shape, |
|
StridesContainer strides, |
|
const void *ptr = nullptr, |
|
handle base = handle()) { |
|
|
|
if (strides->empty()) { |
|
*strides = detail::c_strides(*shape, dt.itemsize()); |
|
} |
|
|
|
auto ndim = shape->size(); |
|
if (ndim != strides->size()) { |
|
pybind11_fail("NumPy: shape ndim doesn't match strides ndim"); |
|
} |
|
auto descr = dt; |
|
|
|
int flags = 0; |
|
if (base && ptr) { |
|
if (isinstance<array>(base)) { |
|
/* Copy flags from base (except ownership bit) */ |
|
flags = reinterpret_borrow<array>(base).flags() |
|
& ~detail::npy_api::NPY_ARRAY_OWNDATA_; |
|
} else { |
|
/* Writable by default, easy to downgrade later on if needed */ |
|
flags = detail::npy_api::NPY_ARRAY_WRITEABLE_; |
|
} |
|
} |
|
|
|
auto &api = detail::npy_api::get(); |
|
auto tmp = reinterpret_steal<object>(api.PyArray_NewFromDescr_( |
|
api.PyArray_Type_, |
|
descr.release().ptr(), |
|
(int) ndim, |
|
// Use reinterpret_cast for PyPy on Windows (remove if fixed, checked on 7.3.1) |
|
reinterpret_cast<Py_intptr_t *>(shape->data()), |
|
reinterpret_cast<Py_intptr_t *>(strides->data()), |
|
const_cast<void *>(ptr), |
|
flags, |
|
nullptr)); |
|
if (!tmp) { |
|
throw error_already_set(); |
|
} |
|
if (ptr) { |
|
if (base) { |
|
api.PyArray_SetBaseObject_(tmp.ptr(), base.inc_ref().ptr()); |
|
} else { |
|
tmp = reinterpret_steal<object>( |
|
api.PyArray_NewCopy_(tmp.ptr(), -1 /* any order */)); |
|
} |
|
} |
|
m_ptr = tmp.release().ptr(); |
|
} |
|
|
|
array(const pybind11::dtype &dt, |
|
ShapeContainer shape, |
|
const void *ptr = nullptr, |
|
handle base = handle()) |
|
: array(dt, std::move(shape), {}, ptr, base) {} |
|
|
|
template <typename T, |
|
typename |
|
= detail::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>> |
|
array(const pybind11::dtype &dt, T count, const void *ptr = nullptr, handle base = handle()) |
|
: array(dt, {{count}}, ptr, base) {} |
|
|
|
template <typename T> |
|
array(ShapeContainer shape, StridesContainer strides, const T *ptr, handle base = handle()) |
|
: array(pybind11::dtype::of<T>(), |
|
std::move(shape), |
|
std::move(strides), |
|
reinterpret_cast<const void *>(ptr), |
|
base) {} |
|
|
|
template <typename T> |
|
array(ShapeContainer shape, const T *ptr, handle base = handle()) |
|
: array(std::move(shape), {}, ptr, base) {} |
|
|
|
template <typename T> |
|
explicit array(ssize_t count, const T *ptr, handle base = handle()) |
|
: array({count}, {}, ptr, base) {} |
|
|
|
explicit array(const buffer_info &info, handle base = handle()) |
|
: array(pybind11::dtype(info), info.shape, info.strides, info.ptr, base) {} |
|
|
|
/// Array descriptor (dtype) |
|
pybind11::dtype dtype() const { |
|
return reinterpret_borrow<pybind11::dtype>(detail::array_proxy(m_ptr)->descr); |
|
} |
|
|
|
/// Total number of elements |
|
ssize_t size() const { |
|
return std::accumulate(shape(), shape() + ndim(), (ssize_t) 1, std::multiplies<ssize_t>()); |
|
} |
|
|
|
/// Byte size of a single element |
|
ssize_t itemsize() const { return dtype().itemsize(); } |
|
|
|
/// Total number of bytes |
|
ssize_t nbytes() const { return size() * itemsize(); } |
|
|
|
/// Number of dimensions |
|
ssize_t ndim() const { return detail::array_proxy(m_ptr)->nd; } |
|
|
|
/// Base object |
|
object base() const { return reinterpret_borrow<object>(detail::array_proxy(m_ptr)->base); } |
|
|
|
/// Dimensions of the array |
|
const ssize_t *shape() const { return detail::array_proxy(m_ptr)->dimensions; } |
|
|
|
/// Dimension along a given axis |
|
ssize_t shape(ssize_t dim) const { |
|
if (dim >= ndim()) { |
|
fail_dim_check(dim, "invalid axis"); |
|
} |
|
return shape()[dim]; |
|
} |
|
|
|
/// Strides of the array |
|
const ssize_t *strides() const { return detail::array_proxy(m_ptr)->strides; } |
|
|
|
/// Stride along a given axis |
|
ssize_t strides(ssize_t dim) const { |
|
if (dim >= ndim()) { |
|
fail_dim_check(dim, "invalid axis"); |
|
} |
|
return strides()[dim]; |
|
} |
|
|
|
/// Return the NumPy array flags |
|
int flags() const { return detail::array_proxy(m_ptr)->flags; } |
|
|
|
/// If set, the array is writeable (otherwise the buffer is read-only) |
|
bool writeable() const { |
|
return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_WRITEABLE_); |
|
} |
|
|
|
/// If set, the array owns the data (will be freed when the array is deleted) |
|
bool owndata() const { |
|
return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_OWNDATA_); |
|
} |
|
|
|
/// Pointer to the contained data. If index is not provided, points to the |
|
/// beginning of the buffer. May throw if the index would lead to out of bounds access. |
|
template <typename... Ix> |
|
const void *data(Ix... index) const { |
|
return static_cast<const void *>(detail::array_proxy(m_ptr)->data + offset_at(index...)); |
|
} |
|
|
|
/// Mutable pointer to the contained data. If index is not provided, points to the |
|
/// beginning of the buffer. May throw if the index would lead to out of bounds access. |
|
/// May throw if the array is not writeable. |
|
template <typename... Ix> |
|
void *mutable_data(Ix... index) { |
|
check_writeable(); |
|
return static_cast<void *>(detail::array_proxy(m_ptr)->data + offset_at(index...)); |
|
} |
|
|
|
/// Byte offset from beginning of the array to a given index (full or partial). |
|
/// May throw if the index would lead to out of bounds access. |
|
template <typename... Ix> |
|
ssize_t offset_at(Ix... index) const { |
|
if ((ssize_t) sizeof...(index) > ndim()) { |
|
fail_dim_check(sizeof...(index), "too many indices for an array"); |
|
} |
|
return byte_offset(ssize_t(index)...); |
|
} |
|
|
|
ssize_t offset_at() const { return 0; } |
|
|
|
/// Item count from beginning of the array to a given index (full or partial). |
|
/// May throw if the index would lead to out of bounds access. |
|
template <typename... Ix> |
|
ssize_t index_at(Ix... index) const { |
|
return offset_at(index...) / itemsize(); |
|
} |
|
|
|
/** |
|
* Returns a proxy object that provides access to the array's data without bounds or |
|
* dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with |
|
* care: the array must not be destroyed or reshaped for the duration of the returned object, |
|
* and the caller must take care not to access invalid dimensions or dimension indices. |
|
*/ |
|
template <typename T, ssize_t Dims = -1> |
|
detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() & { |
|
if (Dims >= 0 && ndim() != Dims) { |
|
throw std::domain_error("array has incorrect number of dimensions: " |
|
+ std::to_string(ndim()) + "; expected " |
|
+ std::to_string(Dims)); |
|
} |
|
return detail::unchecked_mutable_reference<T, Dims>( |
|
mutable_data(), shape(), strides(), ndim()); |
|
} |
|
|
|
/** |
|
* Returns a proxy object that provides const access to the array's data without bounds or |
|
* dimensionality checking. Unlike `mutable_unchecked()`, this does not require that the |
|
* underlying array have the `writable` flag. Use with care: the array must not be destroyed |
|
* or reshaped for the duration of the returned object, and the caller must take care not to |
|
* access invalid dimensions or dimension indices. |
|
*/ |
|
template <typename T, ssize_t Dims = -1> |
|
detail::unchecked_reference<T, Dims> unchecked() const & { |
|
if (Dims >= 0 && ndim() != Dims) { |
|
throw std::domain_error("array has incorrect number of dimensions: " |
|
+ std::to_string(ndim()) + "; expected " |
|
+ std::to_string(Dims)); |
|
} |
|
return detail::unchecked_reference<T, Dims>(data(), shape(), strides(), ndim()); |
|
} |
|
|
|
/// Return a new view with all of the dimensions of length 1 removed |
|
array squeeze() { |
|
auto &api = detail::npy_api::get(); |
|
return reinterpret_steal<array>(api.PyArray_Squeeze_(m_ptr)); |
|
} |
|
|
|
/// Resize array to given shape |
|
/// If refcheck is true and more that one reference exist to this array |
|
/// then resize will succeed only if it makes a reshape, i.e. original size doesn't change |
|
void resize(ShapeContainer new_shape, bool refcheck = true) { |
|
detail::npy_api::PyArray_Dims d |
|
= {// Use reinterpret_cast for PyPy on Windows (remove if fixed, checked on 7.3.1) |
|
reinterpret_cast<Py_intptr_t *>(new_shape->data()), |
|
int(new_shape->size())}; |
|
// try to resize, set ordering param to -1 cause it's not used anyway |
|
auto new_array = reinterpret_steal<object>( |
|
detail::npy_api::get().PyArray_Resize_(m_ptr, &d, int(refcheck), -1)); |
|
if (!new_array) { |
|
throw error_already_set(); |
|
} |
|
if (isinstance<array>(new_array)) { |
|
*this = std::move(new_array); |
|
} |
|
} |
|
|
|
/// Optional `order` parameter omitted, to be added as needed. |
|
array reshape(ShapeContainer new_shape) { |
|
detail::npy_api::PyArray_Dims d |
|
= {reinterpret_cast<Py_intptr_t *>(new_shape->data()), int(new_shape->size())}; |
|
auto new_array |
|
= reinterpret_steal<array>(detail::npy_api::get().PyArray_Newshape_(m_ptr, &d, 0)); |
|
if (!new_array) { |
|
throw error_already_set(); |
|
} |
|
return new_array; |
|
} |
|
|
|
/// Create a view of an array in a different data type. |
|
/// This function may fundamentally reinterpret the data in the array. |
|
/// It is the responsibility of the caller to ensure that this is safe. |
|
/// Only supports the `dtype` argument, the `type` argument is omitted, |
|
/// to be added as needed. |
|
array view(const std::string &dtype) { |
|
auto &api = detail::npy_api::get(); |
|
auto new_view = reinterpret_steal<array>(api.PyArray_View_( |
|
m_ptr, dtype::from_args(pybind11::str(dtype)).release().ptr(), nullptr)); |
|
if (!new_view) { |
|
throw error_already_set(); |
|
} |
|
return new_view; |
|
} |
|
|
|
/// Ensure that the argument is a NumPy array |
|
/// In case of an error, nullptr is returned and the Python error is cleared. |
|
static array ensure(handle h, int ExtraFlags = 0) { |
|
auto result = reinterpret_steal<array>(raw_array(h.ptr(), ExtraFlags)); |
|
if (!result) { |
|
PyErr_Clear(); |
|
} |
|
return result; |
|
} |
|
|
|
protected: |
|
template <typename, typename> |
|
friend struct detail::npy_format_descriptor; |
|
|
|
void fail_dim_check(ssize_t dim, const std::string &msg) const { |
|
throw index_error(msg + ": " + std::to_string(dim) + " (ndim = " + std::to_string(ndim()) |
|
+ ')'); |
|
} |
|
|
|
template <typename... Ix> |
|
ssize_t byte_offset(Ix... index) const { |
|
check_dimensions(index...); |
|
return detail::byte_offset_unsafe(strides(), ssize_t(index)...); |
|
} |
|
|
|
void check_writeable() const { |
|
if (!writeable()) { |
|
throw std::domain_error("array is not writeable"); |
|
} |
|
} |
|
|
|
template <typename... Ix> |
|
void check_dimensions(Ix... index) const { |
|
check_dimensions_impl(ssize_t(0), shape(), ssize_t(index)...); |
|
} |
|
|
|
void check_dimensions_impl(ssize_t, const ssize_t *) const {} |
|
|
|
template <typename... Ix> |
|
void check_dimensions_impl(ssize_t axis, const ssize_t *shape, ssize_t i, Ix... index) const { |
|
if (i >= *shape) { |
|
throw index_error(std::string("index ") + std::to_string(i) |
|
+ " is out of bounds for axis " + std::to_string(axis) |
|
+ " with size " + std::to_string(*shape)); |
|
} |
|
check_dimensions_impl(axis + 1, shape + 1, index...); |
|
} |
|
|
|
/// Create array from any object -- always returns a new reference |
|
static PyObject *raw_array(PyObject *ptr, int ExtraFlags = 0) { |
|
if (ptr == nullptr) { |
|
set_error(PyExc_ValueError, "cannot create a pybind11::array from a nullptr"); |
|
return nullptr; |
|
} |
|
return detail::npy_api::get().PyArray_FromAny_( |
|
ptr, nullptr, 0, 0, detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr); |
|
} |
|
}; |
|
|
|
template <typename T, int ExtraFlags = array::forcecast> |
|
class array_t : public array { |
|
private: |
|
struct private_ctor {}; |
|
// Delegating constructor needed when both moving and accessing in the same constructor |
|
array_t(private_ctor, |
|
ShapeContainer &&shape, |
|
StridesContainer &&strides, |
|
const T *ptr, |
|
handle base) |
|
: array(std::move(shape), std::move(strides), ptr, base) {} |
|
|
|
public: |
|
static_assert(!detail::array_info<T>::is_array, "Array types cannot be used with array_t"); |
|
|
|
using value_type = T; |
|
|
|
array_t() : array(0, static_cast<const T *>(nullptr)) {} |
|
array_t(handle h, borrowed_t) : array(h, borrowed_t{}) {} |
|
array_t(handle h, stolen_t) : array(h, stolen_t{}) {} |
|
|
|
PYBIND11_DEPRECATED("Use array_t<T>::ensure() instead") |
|
array_t(handle h, bool is_borrowed) : array(raw_array_t(h.ptr()), stolen_t{}) { |
|
if (!m_ptr) { |
|
PyErr_Clear(); |
|
} |
|
if (!is_borrowed) { |
|
Py_XDECREF(h.ptr()); |
|
} |
|
} |
|
|
|
// NOLINTNEXTLINE(google-explicit-constructor) |
|
array_t(const object &o) : array(raw_array_t(o.ptr()), stolen_t{}) { |
|
if (!m_ptr) { |
|
throw error_already_set(); |
|
} |
|
} |
|
|
|
explicit array_t(const buffer_info &info, handle base = handle()) : array(info, base) {} |
|
|
|
array_t(ShapeContainer shape, |
|
StridesContainer strides, |
|
const T *ptr = nullptr, |
|
handle base = handle()) |
|
: array(std::move(shape), std::move(strides), ptr, base) {} |
|
|
|
explicit array_t(ShapeContainer shape, const T *ptr = nullptr, handle base = handle()) |
|
: array_t(private_ctor{}, |
|
std::move(shape), |
|
(ExtraFlags & f_style) != 0 ? detail::f_strides(*shape, itemsize()) |
|
: detail::c_strides(*shape, itemsize()), |
|
ptr, |
|
base) {} |
|
|
|
explicit array_t(ssize_t count, const T *ptr = nullptr, handle base = handle()) |
|
: array({count}, {}, ptr, base) {} |
|
|
|
constexpr ssize_t itemsize() const { return sizeof(T); } |
|
|
|
template <typename... Ix> |
|
ssize_t index_at(Ix... index) const { |
|
return offset_at(index...) / itemsize(); |
|
} |
|
|
|
template <typename... Ix> |
|
const T *data(Ix... index) const { |
|
return static_cast<const T *>(array::data(index...)); |
|
} |
|
|
|
template <typename... Ix> |
|
T *mutable_data(Ix... index) { |
|
return static_cast<T *>(array::mutable_data(index...)); |
|
} |
|
|
|
// Reference to element at a given index |
|
template <typename... Ix> |
|
const T &at(Ix... index) const { |
|
if ((ssize_t) sizeof...(index) != ndim()) { |
|
fail_dim_check(sizeof...(index), "index dimension mismatch"); |
|
} |
|
return *(static_cast<const T *>(array::data()) |
|
+ byte_offset(ssize_t(index)...) / itemsize()); |
|
} |
|
|
|
// Mutable reference to element at a given index |
|
template <typename... Ix> |
|
T &mutable_at(Ix... index) { |
|
if ((ssize_t) sizeof...(index) != ndim()) { |
|
fail_dim_check(sizeof...(index), "index dimension mismatch"); |
|
} |
|
return *(static_cast<T *>(array::mutable_data()) |
|
+ byte_offset(ssize_t(index)...) / itemsize()); |
|
} |
|
|
|
/** |
|
* Returns a proxy object that provides access to the array's data without bounds or |
|
* dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with |
|
* care: the array must not be destroyed or reshaped for the duration of the returned object, |
|
* and the caller must take care not to access invalid dimensions or dimension indices. |
|
*/ |
|
template <ssize_t Dims = -1> |
|
detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() & { |
|
return array::mutable_unchecked<T, Dims>(); |
|
} |
|
|
|
/** |
|
* Returns a proxy object that provides const access to the array's data without bounds or |
|
* dimensionality checking. Unlike `mutable_unchecked()`, this does not require that the |
|
* underlying array have the `writable` flag. Use with care: the array must not be destroyed |
|
* or reshaped for the duration of the returned object, and the caller must take care not to |
|
* access invalid dimensions or dimension indices. |
|
*/ |
|
template <ssize_t Dims = -1> |
|
detail::unchecked_reference<T, Dims> unchecked() const & { |
|
return array::unchecked<T, Dims>(); |
|
} |
|
|
|
/// Ensure that the argument is a NumPy array of the correct dtype (and if not, try to convert |
|
/// it). In case of an error, nullptr is returned and the Python error is cleared. |
|
static array_t ensure(handle h) { |
|
auto result = reinterpret_steal<array_t>(raw_array_t(h.ptr())); |
|
if (!result) { |
|
PyErr_Clear(); |
|
} |
|
return result; |
|
} |
|
|
|
static bool check_(handle h) { |
|
const auto &api = detail::npy_api::get(); |
|
return api.PyArray_Check_(h.ptr()) |
|
&& api.PyArray_EquivTypes_(detail::array_proxy(h.ptr())->descr, |
|
dtype::of<T>().ptr()) |
|
&& detail::check_flags(h.ptr(), ExtraFlags & (array::c_style | array::f_style)); |
|
} |
|
|
|
protected: |
|
/// Create array from any object -- always returns a new reference |
|
static PyObject *raw_array_t(PyObject *ptr) { |
|
if (ptr == nullptr) { |
|
set_error(PyExc_ValueError, "cannot create a pybind11::array_t from a nullptr"); |
|
return nullptr; |
|
} |
|
return detail::npy_api::get().PyArray_FromAny_(ptr, |
|
dtype::of<T>().release().ptr(), |
|
0, |
|
0, |
|
detail::npy_api::NPY_ARRAY_ENSUREARRAY_ |
|
| ExtraFlags, |
|
nullptr); |
|
} |
|
}; |
|
|
|
template <typename T> |
|
struct format_descriptor<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> { |
|
static std::string format() { |
|
return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::format(); |
|
} |
|
}; |
|
|
|
template <size_t N> |
|
struct format_descriptor<char[N]> { |
|
static std::string format() { return std::to_string(N) + 's'; } |
|
}; |
|
template <size_t N> |
|
struct format_descriptor<std::array<char, N>> { |
|
static std::string format() { return std::to_string(N) + 's'; } |
|
}; |
|
|
|
template <typename T> |
|
struct format_descriptor<T, detail::enable_if_t<std::is_enum<T>::value>> { |
|
static std::string format() { |
|
return format_descriptor< |
|
typename std::remove_cv<typename std::underlying_type<T>::type>::type>::format(); |
|
} |
|
}; |
|
|
|
template <typename T> |
|
struct format_descriptor<T, detail::enable_if_t<detail::array_info<T>::is_array>> { |
|
static std::string format() { |
|
using namespace detail; |
|
static constexpr auto extents = const_name("(") + array_info<T>::extents + const_name(")"); |
|
return extents.text + format_descriptor<remove_all_extents_t<T>>::format(); |
|
} |
|
}; |
|
|
|
PYBIND11_NAMESPACE_BEGIN(detail) |
|
template <typename T, int ExtraFlags> |
|
struct pyobject_caster<array_t<T, ExtraFlags>> { |
|
using type = array_t<T, ExtraFlags>; |
|
|
|
bool load(handle src, bool convert) { |
|
if (!convert && !type::check_(src)) { |
|
return false; |
|
} |
|
value = type::ensure(src); |
|
return static_cast<bool>(value); |
|
} |
|
|
|
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) { |
|
return src.inc_ref(); |
|
} |
|
PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name); |
|
}; |
|
|
|
template <typename T> |
|
struct compare_buffer_info<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> { |
|
static bool compare(const buffer_info &b) { |
|
return npy_api::get().PyArray_EquivTypes_(dtype::of<T>().ptr(), dtype(b).ptr()); |
|
} |
|
}; |
|
|
|
template <typename T, typename = void> |
|
struct npy_format_descriptor_name; |
|
|
|
template <typename T> |
|
struct npy_format_descriptor_name<T, enable_if_t<std::is_integral<T>::value>> { |
|
static constexpr auto name = const_name<std::is_same<T, bool>::value>( |
|
const_name("bool"), |
|
const_name<std::is_signed<T>::value>("numpy.int", "numpy.uint") |
|
+ const_name<sizeof(T) * 8>()); |
|
}; |
|
|
|
template <typename T> |
|
struct npy_format_descriptor_name<T, enable_if_t<std::is_floating_point<T>::value>> { |
|
static constexpr auto name = const_name < std::is_same<T, float>::value |
|
|| std::is_same<T, const float>::value |
|
|| std::is_same<T, double>::value |
|
|| std::is_same<T, const double>::value |
|
> (const_name("numpy.float") + const_name<sizeof(T) * 8>(), |
|
const_name("numpy.longdouble")); |
|
}; |
|
|
|
template <typename T> |
|
struct npy_format_descriptor_name<T, enable_if_t<is_complex<T>::value>> { |
|
static constexpr auto name = const_name < std::is_same<typename T::value_type, float>::value |
|
|| std::is_same<typename T::value_type, const float>::value |
|
|| std::is_same<typename T::value_type, double>::value |
|
|| std::is_same<typename T::value_type, const double>::value |
|
> (const_name("numpy.complex") |
|
+ const_name<sizeof(typename T::value_type) * 16>(), |
|
const_name("numpy.longcomplex")); |
|
}; |
|
|
|
template <typename T> |
|
struct npy_format_descriptor< |
|
T, |
|
enable_if_t<satisfies_any_of<T, std::is_arithmetic, is_complex>::value>> |
|
: npy_format_descriptor_name<T> { |
|
private: |
|
// NB: the order here must match the one in common.h |
|
constexpr static const int values[15] = {npy_api::NPY_BOOL_, |
|
npy_api::NPY_BYTE_, |
|
npy_api::NPY_UBYTE_, |
|
npy_api::NPY_INT16_, |
|
npy_api::NPY_UINT16_, |
|
npy_api::NPY_INT32_, |
|
npy_api::NPY_UINT32_, |
|
npy_api::NPY_INT64_, |
|
npy_api::NPY_UINT64_, |
|
npy_api::NPY_FLOAT_, |
|
npy_api::NPY_DOUBLE_, |
|
npy_api::NPY_LONGDOUBLE_, |
|
npy_api::NPY_CFLOAT_, |
|
npy_api::NPY_CDOUBLE_, |
|
npy_api::NPY_CLONGDOUBLE_}; |
|
|
|
public: |
|
static constexpr int value = values[detail::is_fmt_numeric<T>::index]; |
|
|
|
static pybind11::dtype dtype() { return pybind11::dtype(/*typenum*/ value); } |
|
}; |
|
|
|
template <typename T> |
|
struct npy_format_descriptor< |
|
T, |
|
enable_if_t<is_same_ignoring_cvref<T, PyObject *>::value |
|
|| ((std::is_same<T, handle>::value || std::is_same<T, object>::value) |
|
&& sizeof(T) == sizeof(PyObject *))>> { |
|
static constexpr auto name = const_name("object"); |
|
|
|
static constexpr int value = npy_api::NPY_OBJECT_; |
|
|
|
static pybind11::dtype dtype() { return pybind11::dtype(/*typenum*/ value); } |
|
}; |
|
|
|
#define PYBIND11_DECL_CHAR_FMT \ |
|
static constexpr auto name = const_name("S") + const_name<N>(); \ |
|
static pybind11::dtype dtype() { \ |
|
return pybind11::dtype(std::string("S") + std::to_string(N)); \ |
|
} |
|
template <size_t N> |
|
struct npy_format_descriptor<char[N]> { |
|
PYBIND11_DECL_CHAR_FMT |
|
}; |
|
template <size_t N> |
|
struct npy_format_descriptor<std::array<char, N>> { |
|
PYBIND11_DECL_CHAR_FMT |
|
}; |
|
#undef PYBIND11_DECL_CHAR_FMT |
|
|
|
template <typename T> |
|
struct npy_format_descriptor<T, enable_if_t<array_info<T>::is_array>> { |
|
private: |
|
using base_descr = npy_format_descriptor<typename array_info<T>::type>; |
|
|
|
public: |
|
static_assert(!array_info<T>::is_empty, "Zero-sized arrays are not supported"); |
|
|
|
static constexpr auto name |
|
= const_name("(") + array_info<T>::extents + const_name(")") + base_descr::name; |
|
static pybind11::dtype dtype() { |
|
list shape; |
|
array_info<T>::append_extents(shape); |
|
return pybind11::dtype::from_args( |
|
pybind11::make_tuple(base_descr::dtype(), std::move(shape))); |
|
} |
|
}; |
|
|
|
template <typename T> |
|
struct npy_format_descriptor<T, enable_if_t<std::is_enum<T>::value>> { |
|
private: |
|
using base_descr = npy_format_descriptor<typename std::underlying_type<T>::type>; |
|
|
|
public: |
|
static constexpr auto name = base_descr::name; |
|
static pybind11::dtype dtype() { return base_descr::dtype(); } |
|
}; |
|
|
|
struct field_descriptor { |
|
const char *name; |
|
ssize_t offset; |
|
ssize_t size; |
|
std::string format; |
|
dtype descr; |
|
}; |
|
|
|
PYBIND11_NOINLINE void register_structured_dtype(any_container<field_descriptor> fields, |
|
const std::type_info &tinfo, |
|
ssize_t itemsize, |
|
bool (*direct_converter)(PyObject *, void *&)) { |
|
|
|
auto &numpy_internals = get_numpy_internals(); |
|
if (numpy_internals.get_type_info(tinfo, false)) { |
|
pybind11_fail("NumPy: dtype is already registered"); |
|
} |
|
|
|
// Use ordered fields because order matters as of NumPy 1.14: |
|
// https://docs.scipy.org/doc/numpy/release.html#multiple-field-indexing-assignment-of-structured-arrays |
|
std::vector<field_descriptor> ordered_fields(std::move(fields)); |
|
std::sort( |
|
ordered_fields.begin(), |
|
ordered_fields.end(), |
|
[](const field_descriptor &a, const field_descriptor &b) { return a.offset < b.offset; }); |
|
|
|
list names, formats, offsets; |
|
for (auto &field : ordered_fields) { |
|
if (!field.descr) { |
|
pybind11_fail(std::string("NumPy: unsupported field dtype: `") + field.name + "` @ " |
|
+ tinfo.name()); |
|
} |
|
names.append(pybind11::str(field.name)); |
|
formats.append(field.descr); |
|
offsets.append(pybind11::int_(field.offset)); |
|
} |
|
auto *dtype_ptr |
|
= pybind11::dtype(std::move(names), std::move(formats), std::move(offsets), itemsize) |
|
.release() |
|
.ptr(); |
|
|
|
// There is an existing bug in NumPy (as of v1.11): trailing bytes are |
|
// not encoded explicitly into the format string. This will supposedly |
|
// get fixed in v1.12; for further details, see these: |
|
// - https://github.com/numpy/numpy/issues/7797 |
|
// - https://github.com/numpy/numpy/pull/7798 |
|
// Because of this, we won't use numpy's logic to generate buffer format |
|
// strings and will just do it ourselves. |
|
ssize_t offset = 0; |
|
std::ostringstream oss; |
|
// mark the structure as unaligned with '^', because numpy and C++ don't |
|
// always agree about alignment (particularly for complex), and we're |
|
// explicitly listing all our padding. This depends on none of the fields |
|
// overriding the endianness. Putting the ^ in front of individual fields |
|
// isn't guaranteed to work due to https://github.com/numpy/numpy/issues/9049 |
|
oss << "^T{"; |
|
for (auto &field : ordered_fields) { |
|
if (field.offset > offset) { |
|
oss << (field.offset - offset) << 'x'; |
|
} |
|
oss << field.format << ':' << field.name << ':'; |
|
offset = field.offset + field.size; |
|
} |
|
if (itemsize > offset) { |
|
oss << (itemsize - offset) << 'x'; |
|
} |
|
oss << '}'; |
|
auto format_str = oss.str(); |
|
|
|
// Smoke test: verify that NumPy properly parses our buffer format string |
|
auto &api = npy_api::get(); |
|
auto arr = array(buffer_info(nullptr, itemsize, format_str, 1)); |
|
if (!api.PyArray_EquivTypes_(dtype_ptr, arr.dtype().ptr())) { |
|
pybind11_fail("NumPy: invalid buffer descriptor!"); |
|
} |
|
|
|
auto tindex = std::type_index(tinfo); |
|
numpy_internals.registered_dtypes[tindex] = {dtype_ptr, std::move(format_str)}; |
|
with_internals([tindex, &direct_converter](internals &internals) { |
|
internals.direct_conversions[tindex].push_back(direct_converter); |
|
}); |
|
} |
|
|
|
template <typename T, typename SFINAE> |
|
struct npy_format_descriptor { |
|
static_assert(is_pod_struct<T>::value, |
|
"Attempt to use a non-POD or unimplemented POD type as a numpy dtype"); |
|
|
|
static constexpr auto name = make_caster<T>::name; |
|
|
|
static pybind11::dtype dtype() { return reinterpret_borrow<pybind11::dtype>(dtype_ptr()); } |
|
|
|
static std::string format() { |
|
static auto format_str = get_numpy_internals().get_type_info<T>(true)->format_str; |
|
return format_str; |
|
} |
|
|
|
static void register_dtype(any_container<field_descriptor> fields) { |
|
register_structured_dtype(std::move(fields), |
|
typeid(typename std::remove_cv<T>::type), |
|
sizeof(T), |
|
&direct_converter); |
|
} |
|
|
|
private: |
|
static PyObject *dtype_ptr() { |
|
static PyObject *ptr = get_numpy_internals().get_type_info<T>(true)->dtype_ptr; |
|
return ptr; |
|
} |
|
|
|
static bool direct_converter(PyObject *obj, void *&value) { |
|
auto &api = npy_api::get(); |
|
if (!PyObject_TypeCheck(obj, api.PyVoidArrType_Type_)) { |
|
return false; |
|
} |
|
if (auto descr = reinterpret_steal<object>(api.PyArray_DescrFromScalar_(obj))) { |
|
if (api.PyArray_EquivTypes_(dtype_ptr(), descr.ptr())) { |
|
value = ((PyVoidScalarObject_Proxy *) obj)->obval; |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
}; |
|
|
|
#ifdef __CLION_IDE__ // replace heavy macro with dummy code for the IDE (doesn't affect code) |
|
# define PYBIND11_NUMPY_DTYPE(Type, ...) ((void) 0) |
|
# define PYBIND11_NUMPY_DTYPE_EX(Type, ...) ((void) 0) |
|
#else |
|
|
|
# define PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, Name) \ |
|
::pybind11::detail::field_descriptor { \ |
|
Name, offsetof(T, Field), sizeof(decltype(std::declval<T>().Field)), \ |
|
::pybind11::format_descriptor<decltype(std::declval<T>().Field)>::format(), \ |
|
::pybind11::detail::npy_format_descriptor< \ |
|
decltype(std::declval<T>().Field)>::dtype() \ |
|
} |
|
|
|
// Extract name, offset and format descriptor for a struct field |
|
# define PYBIND11_FIELD_DESCRIPTOR(T, Field) PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, #Field) |
|
|
|
// The main idea of this macro is borrowed from https://github.com/swansontec/map-macro |
|
// (C) William Swanson, Paul Fultz |
|
# define PYBIND11_EVAL0(...) __VA_ARGS__ |
|
# define PYBIND11_EVAL1(...) PYBIND11_EVAL0(PYBIND11_EVAL0(PYBIND11_EVAL0(__VA_ARGS__))) |
|
# define PYBIND11_EVAL2(...) PYBIND11_EVAL1(PYBIND11_EVAL1(PYBIND11_EVAL1(__VA_ARGS__))) |
|
# define PYBIND11_EVAL3(...) PYBIND11_EVAL2(PYBIND11_EVAL2(PYBIND11_EVAL2(__VA_ARGS__))) |
|
# define PYBIND11_EVAL4(...) PYBIND11_EVAL3(PYBIND11_EVAL3(PYBIND11_EVAL3(__VA_ARGS__))) |
|
# define PYBIND11_EVAL(...) PYBIND11_EVAL4(PYBIND11_EVAL4(PYBIND11_EVAL4(__VA_ARGS__))) |
|
# define PYBIND11_MAP_END(...) |
|
# define PYBIND11_MAP_OUT |
|
# define PYBIND11_MAP_COMMA , |
|
# define PYBIND11_MAP_GET_END() 0, PYBIND11_MAP_END |
|
# define PYBIND11_MAP_NEXT0(test, next, ...) next PYBIND11_MAP_OUT |
|
# define PYBIND11_MAP_NEXT1(test, next) PYBIND11_MAP_NEXT0(test, next, 0) |
|
# define PYBIND11_MAP_NEXT(test, next) PYBIND11_MAP_NEXT1(PYBIND11_MAP_GET_END test, next) |
|
# if defined(_MSC_VER) \ |
|
&& !defined(__clang__) // MSVC is not as eager to expand macros, hence this workaround |
|
# define PYBIND11_MAP_LIST_NEXT1(test, next) \ |
|
PYBIND11_EVAL0(PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0)) |
|
# else |
|
# define PYBIND11_MAP_LIST_NEXT1(test, next) \ |
|
PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0) |
|
# endif |
|
# define PYBIND11_MAP_LIST_NEXT(test, next) \ |
|
PYBIND11_MAP_LIST_NEXT1(PYBIND11_MAP_GET_END test, next) |
|
# define PYBIND11_MAP_LIST0(f, t, x, peek, ...) \ |
|
f(t, x) PYBIND11_MAP_LIST_NEXT(peek, PYBIND11_MAP_LIST1)(f, t, peek, __VA_ARGS__) |
|
# define PYBIND11_MAP_LIST1(f, t, x, peek, ...) \ |
|
f(t, x) PYBIND11_MAP_LIST_NEXT(peek, PYBIND11_MAP_LIST0)(f, t, peek, __VA_ARGS__) |
|
// PYBIND11_MAP_LIST(f, t, a1, a2, ...) expands to f(t, a1), f(t, a2), ... |
|
# define PYBIND11_MAP_LIST(f, t, ...) \ |
|
PYBIND11_EVAL(PYBIND11_MAP_LIST1(f, t, __VA_ARGS__, (), 0)) |
|
|
|
# define PYBIND11_NUMPY_DTYPE(Type, ...) \ |
|
::pybind11::detail::npy_format_descriptor<Type>::register_dtype( \ |
|
::std::vector<::pybind11::detail::field_descriptor>{ \ |
|
PYBIND11_MAP_LIST(PYBIND11_FIELD_DESCRIPTOR, Type, __VA_ARGS__)}) |
|
|
|
# if defined(_MSC_VER) && !defined(__clang__) |
|
# define PYBIND11_MAP2_LIST_NEXT1(test, next) \ |
|
PYBIND11_EVAL0(PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0)) |
|
# else |
|
# define PYBIND11_MAP2_LIST_NEXT1(test, next) \ |
|
PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0) |
|
# endif |
|
# define PYBIND11_MAP2_LIST_NEXT(test, next) \ |
|
PYBIND11_MAP2_LIST_NEXT1(PYBIND11_MAP_GET_END test, next) |
|
# define PYBIND11_MAP2_LIST0(f, t, x1, x2, peek, ...) \ |
|
f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT(peek, PYBIND11_MAP2_LIST1)(f, t, peek, __VA_ARGS__) |
|
# define PYBIND11_MAP2_LIST1(f, t, x1, x2, peek, ...) \ |
|
f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT(peek, PYBIND11_MAP2_LIST0)(f, t, peek, __VA_ARGS__) |
|
// PYBIND11_MAP2_LIST(f, t, a1, a2, ...) expands to f(t, a1, a2), f(t, a3, a4), ... |
|
# define PYBIND11_MAP2_LIST(f, t, ...) \ |
|
PYBIND11_EVAL(PYBIND11_MAP2_LIST1(f, t, __VA_ARGS__, (), 0)) |
|
|
|
# define PYBIND11_NUMPY_DTYPE_EX(Type, ...) \ |
|
::pybind11::detail::npy_format_descriptor<Type>::register_dtype( \ |
|
::std::vector<::pybind11::detail::field_descriptor>{ \ |
|
PYBIND11_MAP2_LIST(PYBIND11_FIELD_DESCRIPTOR_EX, Type, __VA_ARGS__)}) |
|
|
|
#endif // __CLION_IDE__ |
|
|
|
class common_iterator { |
|
public: |
|
using container_type = std::vector<ssize_t>; |
|
using value_type = container_type::value_type; |
|
using size_type = container_type::size_type; |
|
|
|
common_iterator() : m_strides() {} |
|
|
|
common_iterator(void *ptr, const container_type &strides, const container_type &shape) |
|
: p_ptr(reinterpret_cast<char *>(ptr)), m_strides(strides.size()) { |
|
m_strides.back() = static_cast<value_type>(strides.back()); |
|
for (size_type i = m_strides.size() - 1; i != 0; --i) { |
|
size_type j = i - 1; |
|
auto s = static_cast<value_type>(shape[i]); |
|
m_strides[j] = strides[j] + m_strides[i] - strides[i] * s; |
|
} |
|
} |
|
|
|
void increment(size_type dim) { p_ptr += m_strides[dim]; } |
|
|
|
void *data() const { return p_ptr; } |
|
|
|
private: |
|
char *p_ptr{nullptr}; |
|
container_type m_strides; |
|
}; |
|
|
|
template <size_t N> |
|
class multi_array_iterator { |
|
public: |
|
using container_type = std::vector<ssize_t>; |
|
|
|
multi_array_iterator(const std::array<buffer_info, N> &buffers, const container_type &shape) |
|
: m_shape(shape.size()), m_index(shape.size(), 0), m_common_iterator() { |
|
|
|
// Manual copy to avoid conversion warning if using std::copy |
|
for (size_t i = 0; i < shape.size(); ++i) { |
|
m_shape[i] = shape[i]; |
|
} |
|
|
|
container_type strides(shape.size()); |
|
for (size_t i = 0; i < N; ++i) { |
|
init_common_iterator(buffers[i], shape, m_common_iterator[i], strides); |
|
} |
|
} |
|
|
|
multi_array_iterator &operator++() { |
|
for (size_t j = m_index.size(); j != 0; --j) { |
|
size_t i = j - 1; |
|
if (++m_index[i] != m_shape[i]) { |
|
increment_common_iterator(i); |
|
break; |
|
} |
|
m_index[i] = 0; |
|
} |
|
return *this; |
|
} |
|
|
|
template <size_t K, class T = void> |
|
T *data() const { |
|
return reinterpret_cast<T *>(m_common_iterator[K].data()); |
|
} |
|
|
|
private: |
|
using common_iter = common_iterator; |
|
|
|
void init_common_iterator(const buffer_info &buffer, |
|
const container_type &shape, |
|
common_iter &iterator, |
|
container_type &strides) { |
|
auto buffer_shape_iter = buffer.shape.rbegin(); |
|
auto buffer_strides_iter = buffer.strides.rbegin(); |
|
auto shape_iter = shape.rbegin(); |
|
auto strides_iter = strides.rbegin(); |
|
|
|
while (buffer_shape_iter != buffer.shape.rend()) { |
|
if (*shape_iter == *buffer_shape_iter) { |
|
*strides_iter = *buffer_strides_iter; |
|
} else { |
|
*strides_iter = 0; |
|
} |
|
|
|
++buffer_shape_iter; |
|
++buffer_strides_iter; |
|
++shape_iter; |
|
++strides_iter; |
|
} |
|
|
|
std::fill(strides_iter, strides.rend(), 0); |
|
iterator = common_iter(buffer.ptr, strides, shape); |
|
} |
|
|
|
void increment_common_iterator(size_t dim) { |
|
for (auto &iter : m_common_iterator) { |
|
iter.increment(dim); |
|
} |
|
} |
|
|
|
container_type m_shape; |
|
container_type m_index; |
|
std::array<common_iter, N> m_common_iterator; |
|
}; |
|
|
|
enum class broadcast_trivial { non_trivial, c_trivial, f_trivial }; |
|
|
|
// Populates the shape and number of dimensions for the set of buffers. Returns a |
|
// broadcast_trivial enum value indicating whether the broadcast is "trivial"--that is, has each |
|
// buffer being either a singleton or a full-size, C-contiguous (`c_trivial`) or Fortran-contiguous |
|
// (`f_trivial`) storage buffer; returns `non_trivial` otherwise. |
|
template <size_t N> |
|
broadcast_trivial |
|
broadcast(const std::array<buffer_info, N> &buffers, ssize_t &ndim, std::vector<ssize_t> &shape) { |
|
ndim = std::accumulate( |
|
buffers.begin(), buffers.end(), ssize_t(0), [](ssize_t res, const buffer_info &buf) { |
|
return std::max(res, buf.ndim); |
|
}); |
|
|
|
shape.clear(); |
|
shape.resize((size_t) ndim, 1); |
|
|
|
// Figure out the output size, and make sure all input arrays conform (i.e. are either size 1 |
|
// or the full size). |
|
for (size_t i = 0; i < N; ++i) { |
|
auto res_iter = shape.rbegin(); |
|
auto end = buffers[i].shape.rend(); |
|
for (auto shape_iter = buffers[i].shape.rbegin(); shape_iter != end; |
|
++shape_iter, ++res_iter) { |
|
const auto &dim_size_in = *shape_iter; |
|
auto &dim_size_out = *res_iter; |
|
|
|
// Each input dimension can either be 1 or `n`, but `n` values must match across |
|
// buffers |
|
if (dim_size_out == 1) { |
|
dim_size_out = dim_size_in; |
|
} else if (dim_size_in != 1 && dim_size_in != dim_size_out) { |
|
pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!"); |
|
} |
|
} |
|
} |
|
|
|
bool trivial_broadcast_c = true; |
|
bool trivial_broadcast_f = true; |
|
for (size_t i = 0; i < N && (trivial_broadcast_c || trivial_broadcast_f); ++i) { |
|
if (buffers[i].size == 1) { |
|
continue; |
|
} |
|
|
|
// Require the same number of dimensions: |
|
if (buffers[i].ndim != ndim) { |
|
return broadcast_trivial::non_trivial; |
|
} |
|
|
|
// Require all dimensions be full-size: |
|
if (!std::equal(buffers[i].shape.cbegin(), buffers[i].shape.cend(), shape.cbegin())) { |
|
return broadcast_trivial::non_trivial; |
|
} |
|
|
|
// Check for C contiguity (but only if previous inputs were also C contiguous) |
|
if (trivial_broadcast_c) { |
|
ssize_t expect_stride = buffers[i].itemsize; |
|
auto end = buffers[i].shape.crend(); |
|
for (auto shape_iter = buffers[i].shape.crbegin(), |
|
stride_iter = buffers[i].strides.crbegin(); |
|
trivial_broadcast_c && shape_iter != end; |
|
++shape_iter, ++stride_iter) { |
|
if (expect_stride == *stride_iter) { |
|
expect_stride *= *shape_iter; |
|
} else { |
|
trivial_broadcast_c = false; |
|
} |
|
} |
|
} |
|
|
|
// Check for Fortran contiguity (if previous inputs were also F contiguous) |
|
if (trivial_broadcast_f) { |
|
ssize_t expect_stride = buffers[i].itemsize; |
|
auto end = buffers[i].shape.cend(); |
|
for (auto shape_iter = buffers[i].shape.cbegin(), |
|
stride_iter = buffers[i].strides.cbegin(); |
|
trivial_broadcast_f && shape_iter != end; |
|
++shape_iter, ++stride_iter) { |
|
if (expect_stride == *stride_iter) { |
|
expect_stride *= *shape_iter; |
|
} else { |
|
trivial_broadcast_f = false; |
|
} |
|
} |
|
} |
|
} |
|
|
|
return trivial_broadcast_c ? broadcast_trivial::c_trivial |
|
: trivial_broadcast_f ? broadcast_trivial::f_trivial |
|
: broadcast_trivial::non_trivial; |
|
} |
|
|
|
template <typename T> |
|
struct vectorize_arg { |
|
static_assert(!std::is_rvalue_reference<T>::value, |
|
"Functions with rvalue reference arguments cannot be vectorized"); |
|
// The wrapped function gets called with this type: |
|
using call_type = remove_reference_t<T>; |
|
// Is this a vectorized argument? |
|
static constexpr bool vectorize |
|
= satisfies_any_of<call_type, std::is_arithmetic, is_complex, is_pod>::value |
|
&& satisfies_none_of<call_type, |
|
std::is_pointer, |
|
std::is_array, |
|
is_std_array, |
|
std::is_enum>::value |
|
&& (!std::is_reference<T>::value |
|
|| (std::is_lvalue_reference<T>::value && std::is_const<call_type>::value)); |
|
// Accept this type: an array for vectorized types, otherwise the type as-is: |
|
using type = conditional_t<vectorize, array_t<remove_cv_t<call_type>, array::forcecast>, T>; |
|
}; |
|
|
|
// py::vectorize when a return type is present |
|
template <typename Func, typename Return, typename... Args> |
|
struct vectorize_returned_array { |
|
using Type = array_t<Return>; |
|
|
|
static Type create(broadcast_trivial trivial, const std::vector<ssize_t> &shape) { |
|
if (trivial == broadcast_trivial::f_trivial) { |
|
return array_t<Return, array::f_style>(shape); |
|
} |
|
return array_t<Return>(shape); |
|
} |
|
|
|
static Return *mutable_data(Type &array) { return array.mutable_data(); } |
|
|
|
static Return call(Func &f, Args &...args) { return f(args...); } |
|
|
|
static void call(Return *out, size_t i, Func &f, Args &...args) { out[i] = f(args...); } |
|
}; |
|
|
|
// py::vectorize when a return type is not present |
|
template <typename Func, typename... Args> |
|
struct vectorize_returned_array<Func, void, Args...> { |
|
using Type = none; |
|
|
|
static Type create(broadcast_trivial, const std::vector<ssize_t> &) { return none(); } |
|
|
|
static void *mutable_data(Type &) { return nullptr; } |
|
|
|
static detail::void_type call(Func &f, Args &...args) { |
|
f(args...); |
|
return {}; |
|
} |
|
|
|
static void call(void *, size_t, Func &f, Args &...args) { f(args...); } |
|
}; |
|
|
|
template <typename Func, typename Return, typename... Args> |
|
struct vectorize_helper { |
|
|
|
// NVCC for some reason breaks if NVectorized is private |
|
#ifdef __CUDACC__ |
|
public: |
|
#else |
|
private: |
|
#endif |
|
|
|
static constexpr size_t N = sizeof...(Args); |
|
static constexpr size_t NVectorized = constexpr_sum(vectorize_arg<Args>::vectorize...); |
|
static_assert( |
|
NVectorized >= 1, |
|
"pybind11::vectorize(...) requires a function with at least one vectorizable argument"); |
|
|
|
public: |
|
template <typename T, |
|
// SFINAE to prevent shadowing the copy constructor. |
|
typename = detail::enable_if_t< |
|
!std::is_same<vectorize_helper, typename std::decay<T>::type>::value>> |
|
explicit vectorize_helper(T &&f) : f(std::forward<T>(f)) {} |
|
|
|
object operator()(typename vectorize_arg<Args>::type... args) { |
|
return run(args..., |
|
make_index_sequence<N>(), |
|
select_indices<vectorize_arg<Args>::vectorize...>(), |
|
make_index_sequence<NVectorized>()); |
|
} |
|
|
|
private: |
|
remove_reference_t<Func> f; |
|
|
|
// Internal compiler error in MSVC 19.16.27025.1 (Visual Studio 2017 15.9.4), when compiling |
|
// with "/permissive-" flag when arg_call_types is manually inlined. |
|
using arg_call_types = std::tuple<typename vectorize_arg<Args>::call_type...>; |
|
template <size_t Index> |
|
using param_n_t = typename std::tuple_element<Index, arg_call_types>::type; |
|
|
|
using returned_array = vectorize_returned_array<Func, Return, Args...>; |
|
|
|
// Runs a vectorized function given arguments tuple and three index sequences: |
|
// - Index is the full set of 0 ... (N-1) argument indices; |
|
// - VIndex is the subset of argument indices with vectorized parameters, letting us access |
|
// vectorized arguments (anything not in this sequence is passed through) |
|
// - BIndex is a incremental sequence (beginning at 0) of the same size as VIndex, so that |
|
// we can store vectorized buffer_infos in an array (argument VIndex has its buffer at |
|
// index BIndex in the array). |
|
template <size_t... Index, size_t... VIndex, size_t... BIndex> |
|
object run(typename vectorize_arg<Args>::type &...args, |
|
index_sequence<Index...> i_seq, |
|
index_sequence<VIndex...> vi_seq, |
|
index_sequence<BIndex...> bi_seq) { |
|
|
|
// Pointers to values the function was called with; the vectorized ones set here will start |
|
// out as array_t<T> pointers, but they will be changed them to T pointers before we make |
|
// call the wrapped function. Non-vectorized pointers are left as-is. |
|
std::array<void *, N> params{{reinterpret_cast<void *>(&args)...}}; |
|
|
|
// The array of `buffer_info`s of vectorized arguments: |
|
std::array<buffer_info, NVectorized> buffers{ |
|
{reinterpret_cast<array *>(params[VIndex])->request()...}}; |
|
|
|
/* Determine dimensions parameters of output array */ |
|
ssize_t nd = 0; |
|
std::vector<ssize_t> shape(0); |
|
auto trivial = broadcast(buffers, nd, shape); |
|
auto ndim = (size_t) nd; |
|
|
|
size_t size |
|
= std::accumulate(shape.begin(), shape.end(), (size_t) 1, std::multiplies<size_t>()); |
|
|
|
// If all arguments are 0-dimension arrays (i.e. single values) return a plain value (i.e. |
|
// not wrapped in an array). |
|
if (size == 1 && ndim == 0) { |
|
PYBIND11_EXPAND_SIDE_EFFECTS(params[VIndex] = buffers[BIndex].ptr); |
|
return cast( |
|
returned_array::call(f, *reinterpret_cast<param_n_t<Index> *>(params[Index])...)); |
|
} |
|
|
|
auto result = returned_array::create(trivial, shape); |
|
|
|
PYBIND11_WARNING_PUSH |
|
#ifdef PYBIND11_DETECTED_CLANG_WITH_MISLEADING_CALL_STD_MOVE_EXPLICITLY_WARNING |
|
PYBIND11_WARNING_DISABLE_CLANG("-Wreturn-std-move") |
|
#endif |
|
|
|
if (size == 0) { |
|
return result; |
|
} |
|
|
|
/* Call the function */ |
|
auto *mutable_data = returned_array::mutable_data(result); |
|
if (trivial == broadcast_trivial::non_trivial) { |
|
apply_broadcast(buffers, params, mutable_data, size, shape, i_seq, vi_seq, bi_seq); |
|
} else { |
|
apply_trivial(buffers, params, mutable_data, size, i_seq, vi_seq, bi_seq); |
|
} |
|
|
|
return result; |
|
PYBIND11_WARNING_POP |
|
} |
|
|
|
template <size_t... Index, size_t... VIndex, size_t... BIndex> |
|
void apply_trivial(std::array<buffer_info, NVectorized> &buffers, |
|
std::array<void *, N> ¶ms, |
|
Return *out, |
|
size_t size, |
|
index_sequence<Index...>, |
|
index_sequence<VIndex...>, |
|
index_sequence<BIndex...>) { |
|
|
|
// Initialize an array of mutable byte references and sizes with references set to the |
|
// appropriate pointer in `params`; as we iterate, we'll increment each pointer by its size |
|
// (except for singletons, which get an increment of 0). |
|
std::array<std::pair<unsigned char *&, const size_t>, NVectorized> vecparams{ |
|
{std::pair<unsigned char *&, const size_t>( |
|
reinterpret_cast<unsigned char *&>(params[VIndex] = buffers[BIndex].ptr), |
|
buffers[BIndex].size == 1 ? 0 : sizeof(param_n_t<VIndex>))...}}; |
|
|
|
for (size_t i = 0; i < size; ++i) { |
|
returned_array::call( |
|
out, i, f, *reinterpret_cast<param_n_t<Index> *>(params[Index])...); |
|
for (auto &x : vecparams) { |
|
x.first += x.second; |
|
} |
|
} |
|
} |
|
|
|
template <size_t... Index, size_t... VIndex, size_t... BIndex> |
|
void apply_broadcast(std::array<buffer_info, NVectorized> &buffers, |
|
std::array<void *, N> ¶ms, |
|
Return *out, |
|
size_t size, |
|
const std::vector<ssize_t> &output_shape, |
|
index_sequence<Index...>, |
|
index_sequence<VIndex...>, |
|
index_sequence<BIndex...>) { |
|
|
|
multi_array_iterator<NVectorized> input_iter(buffers, output_shape); |
|
|
|
for (size_t i = 0; i < size; ++i, ++input_iter) { |
|
PYBIND11_EXPAND_SIDE_EFFECTS((params[VIndex] = input_iter.template data<BIndex>())); |
|
returned_array::call( |
|
out, i, f, *reinterpret_cast<param_n_t<Index> *>(std::get<Index>(params))...); |
|
} |
|
} |
|
}; |
|
|
|
template <typename Func, typename Return, typename... Args> |
|
vectorize_helper<Func, Return, Args...> vectorize_extractor(const Func &f, Return (*)(Args...)) { |
|
return detail::vectorize_helper<Func, Return, Args...>(f); |
|
} |
|
|
|
template <typename T, int Flags> |
|
struct handle_type_name<array_t<T, Flags>> { |
|
static constexpr auto name |
|
= const_name("numpy.ndarray[") + npy_format_descriptor<T>::name + const_name("]"); |
|
}; |
|
|
|
PYBIND11_NAMESPACE_END(detail) |
|
|
|
// Vanilla pointer vectorizer: |
|
template <typename Return, typename... Args> |
|
detail::vectorize_helper<Return (*)(Args...), Return, Args...> vectorize(Return (*f)(Args...)) { |
|
return detail::vectorize_helper<Return (*)(Args...), Return, Args...>(f); |
|
} |
|
|
|
// lambda vectorizer: |
|
template <typename Func, detail::enable_if_t<detail::is_lambda<Func>::value, int> = 0> |
|
auto vectorize(Func &&f) |
|
-> decltype(detail::vectorize_extractor(std::forward<Func>(f), |
|
(detail::function_signature_t<Func> *) nullptr)) { |
|
return detail::vectorize_extractor(std::forward<Func>(f), |
|
(detail::function_signature_t<Func> *) nullptr); |
|
} |
|
|
|
// Vectorize a class method (non-const): |
|
template <typename Return, |
|
typename Class, |
|
typename... Args, |
|
typename Helper = detail::vectorize_helper< |
|
decltype(std::mem_fn(std::declval<Return (Class::*)(Args...)>())), |
|
Return, |
|
Class *, |
|
Args...>> |
|
Helper vectorize(Return (Class::*f)(Args...)) { |
|
return Helper(std::mem_fn(f)); |
|
} |
|
|
|
// Vectorize a class method (const): |
|
template <typename Return, |
|
typename Class, |
|
typename... Args, |
|
typename Helper = detail::vectorize_helper< |
|
decltype(std::mem_fn(std::declval<Return (Class::*)(Args...) const>())), |
|
Return, |
|
const Class *, |
|
Args...>> |
|
Helper vectorize(Return (Class::*f)(Args...) const) { |
|
return Helper(std::mem_fn(f)); |
|
} |
|
|
|
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
|
|
|