mirror of https://github.com/pybind/pybind11
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
386 lines
14 KiB
386 lines
14 KiB
.. _numpy: |
|
|
|
NumPy |
|
##### |
|
|
|
Buffer protocol |
|
=============== |
|
|
|
Python supports an extremely general and convenient approach for exchanging |
|
data between plugin libraries. Types can expose a buffer view [#f2]_, which |
|
provides fast direct access to the raw internal data representation. Suppose we |
|
want to bind the following simplistic Matrix class: |
|
|
|
.. code-block:: cpp |
|
|
|
class Matrix { |
|
public: |
|
Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) { |
|
m_data = new float[rows*cols]; |
|
} |
|
float *data() { return m_data; } |
|
size_t rows() const { return m_rows; } |
|
size_t cols() const { return m_cols; } |
|
private: |
|
size_t m_rows, m_cols; |
|
float *m_data; |
|
}; |
|
|
|
The following binding code exposes the ``Matrix`` contents as a buffer object, |
|
making it possible to cast Matrices into NumPy arrays. It is even possible to |
|
completely avoid copy operations with Python expressions like |
|
``np.array(matrix_instance, copy = False)``. |
|
|
|
.. code-block:: cpp |
|
|
|
py::class_<Matrix>(m, "Matrix", py::buffer_protocol()) |
|
.def_buffer([](Matrix &m) -> py::buffer_info { |
|
return py::buffer_info( |
|
m.data(), /* Pointer to buffer */ |
|
sizeof(float), /* Size of one scalar */ |
|
py::format_descriptor<float>::format(), /* Python struct-style format descriptor */ |
|
2, /* Number of dimensions */ |
|
{ m.rows(), m.cols() }, /* Buffer dimensions */ |
|
{ sizeof(float) * m.cols(), /* Strides (in bytes) for each index */ |
|
sizeof(float) } |
|
); |
|
}); |
|
|
|
Supporting the buffer protocol in a new type involves specifying the special |
|
``py::buffer_protocol()`` tag in the ``py::class_`` constructor and calling the |
|
``def_buffer()`` method with a lambda function that creates a |
|
``py::buffer_info`` description record on demand describing a given matrix |
|
instance. The contents of ``py::buffer_info`` mirror the Python buffer protocol |
|
specification. |
|
|
|
.. code-block:: cpp |
|
|
|
struct buffer_info { |
|
void *ptr; |
|
ssize_t itemsize; |
|
std::string format; |
|
ssize_t ndim; |
|
std::vector<ssize_t> shape; |
|
std::vector<ssize_t> strides; |
|
}; |
|
|
|
To create a C++ function that can take a Python buffer object as an argument, |
|
simply use the type ``py::buffer`` as one of its arguments. Buffers can exist |
|
in a great variety of configurations, hence some safety checks are usually |
|
necessary in the function body. Below, you can see an basic example on how to |
|
define a custom constructor for the Eigen double precision matrix |
|
(``Eigen::MatrixXd``) type, which supports initialization from compatible |
|
buffer objects (e.g. a NumPy matrix). |
|
|
|
.. code-block:: cpp |
|
|
|
/* Bind MatrixXd (or some other Eigen type) to Python */ |
|
typedef Eigen::MatrixXd Matrix; |
|
|
|
typedef Matrix::Scalar Scalar; |
|
constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit; |
|
|
|
py::class_<Matrix>(m, "Matrix", py::buffer_protocol()) |
|
.def("__init__", [](Matrix &m, py::buffer b) { |
|
typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides; |
|
|
|
/* Request a buffer descriptor from Python */ |
|
py::buffer_info info = b.request(); |
|
|
|
/* Some sanity checks ... */ |
|
if (info.format != py::format_descriptor<Scalar>::format()) |
|
throw std::runtime_error("Incompatible format: expected a double array!"); |
|
|
|
if (info.ndim != 2) |
|
throw std::runtime_error("Incompatible buffer dimension!"); |
|
|
|
auto strides = Strides( |
|
info.strides[rowMajor ? 0 : 1] / (py::ssize_t)sizeof(Scalar), |
|
info.strides[rowMajor ? 1 : 0] / (py::ssize_t)sizeof(Scalar)); |
|
|
|
auto map = Eigen::Map<Matrix, 0, Strides>( |
|
static_cast<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides); |
|
|
|
new (&m) Matrix(map); |
|
}); |
|
|
|
For reference, the ``def_buffer()`` call for this Eigen data type should look |
|
as follows: |
|
|
|
.. code-block:: cpp |
|
|
|
.def_buffer([](Matrix &m) -> py::buffer_info { |
|
return py::buffer_info( |
|
m.data(), /* Pointer to buffer */ |
|
sizeof(Scalar), /* Size of one scalar */ |
|
py::format_descriptor<Scalar>::format(), /* Python struct-style format descriptor */ |
|
2, /* Number of dimensions */ |
|
{ m.rows(), m.cols() }, /* Buffer dimensions */ |
|
{ sizeof(Scalar) * (rowMajor ? m.cols() : 1), |
|
sizeof(Scalar) * (rowMajor ? 1 : m.rows()) } |
|
/* Strides (in bytes) for each index */ |
|
); |
|
}) |
|
|
|
For a much easier approach of binding Eigen types (although with some |
|
limitations), refer to the section on :doc:`/advanced/cast/eigen`. |
|
|
|
.. seealso:: |
|
|
|
The file :file:`tests/test_buffers.cpp` contains a complete example |
|
that demonstrates using the buffer protocol with pybind11 in more detail. |
|
|
|
.. [#f2] http://docs.python.org/3/c-api/buffer.html |
|
|
|
Arrays |
|
====== |
|
|
|
By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can |
|
restrict the function so that it only accepts NumPy arrays (rather than any |
|
type of Python object satisfying the buffer protocol). |
|
|
|
In many situations, we want to define a function which only accepts a NumPy |
|
array of a certain data type. This is possible via the ``py::array_t<T>`` |
|
template. For instance, the following function requires the argument to be a |
|
NumPy array containing double precision values. |
|
|
|
.. code-block:: cpp |
|
|
|
void f(py::array_t<double> array); |
|
|
|
When it is invoked with a different type (e.g. an integer or a list of |
|
integers), the binding code will attempt to cast the input into a NumPy array |
|
of the requested type. Note that this feature requires the |
|
:file:`pybind11/numpy.h` header to be included. |
|
|
|
Data in NumPy arrays is not guaranteed to packed in a dense manner; |
|
furthermore, entries can be separated by arbitrary column and row strides. |
|
Sometimes, it can be useful to require a function to only accept dense arrays |
|
using either the C (row-major) or Fortran (column-major) ordering. This can be |
|
accomplished via a second template argument with values ``py::array::c_style`` |
|
or ``py::array::f_style``. |
|
|
|
.. code-block:: cpp |
|
|
|
void f(py::array_t<double, py::array::c_style | py::array::forcecast> array); |
|
|
|
The ``py::array::forcecast`` argument is the default value of the second |
|
template parameter, and it ensures that non-conforming arguments are converted |
|
into an array satisfying the specified requirements instead of trying the next |
|
function overload. |
|
|
|
Structured types |
|
================ |
|
|
|
In order for ``py::array_t`` to work with structured (record) types, we first |
|
need to register the memory layout of the type. This can be done via |
|
``PYBIND11_NUMPY_DTYPE`` macro, called in the plugin definition code, which |
|
expects the type followed by field names: |
|
|
|
.. code-block:: cpp |
|
|
|
struct A { |
|
int x; |
|
double y; |
|
}; |
|
|
|
struct B { |
|
int z; |
|
A a; |
|
}; |
|
|
|
// ... |
|
PYBIND11_MODULE(test, m) { |
|
// ... |
|
|
|
PYBIND11_NUMPY_DTYPE(A, x, y); |
|
PYBIND11_NUMPY_DTYPE(B, z, a); |
|
/* now both A and B can be used as template arguments to py::array_t */ |
|
} |
|
|
|
The structure should consist of fundamental arithmetic types, ``std::complex``, |
|
previously registered substructures, and arrays of any of the above. Both C++ |
|
arrays and ``std::array`` are supported. While there is a static assertion to |
|
prevent many types of unsupported structures, it is still the user's |
|
responsibility to use only "plain" structures that can be safely manipulated as |
|
raw memory without violating invariants. |
|
|
|
Vectorizing functions |
|
===================== |
|
|
|
Suppose we want to bind a function with the following signature to Python so |
|
that it can process arbitrary NumPy array arguments (vectors, matrices, general |
|
N-D arrays) in addition to its normal arguments: |
|
|
|
.. code-block:: cpp |
|
|
|
double my_func(int x, float y, double z); |
|
|
|
After including the ``pybind11/numpy.h`` header, this is extremely simple: |
|
|
|
.. code-block:: cpp |
|
|
|
m.def("vectorized_func", py::vectorize(my_func)); |
|
|
|
Invoking the function like below causes 4 calls to be made to ``my_func`` with |
|
each of the array elements. The significant advantage of this compared to |
|
solutions like ``numpy.vectorize()`` is that the loop over the elements runs |
|
entirely on the C++ side and can be crunched down into a tight, optimized loop |
|
by the compiler. The result is returned as a NumPy array of type |
|
``numpy.dtype.float64``. |
|
|
|
.. code-block:: pycon |
|
|
|
>>> x = np.array([[1, 3],[5, 7]]) |
|
>>> y = np.array([[2, 4],[6, 8]]) |
|
>>> z = 3 |
|
>>> result = vectorized_func(x, y, z) |
|
|
|
The scalar argument ``z`` is transparently replicated 4 times. The input |
|
arrays ``x`` and ``y`` are automatically converted into the right types (they |
|
are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and |
|
``numpy.dtype.float32``, respectively). |
|
|
|
.. note:: |
|
|
|
Only arithmetic, complex, and POD types passed by value or by ``const &`` |
|
reference are vectorized; all other arguments are passed through as-is. |
|
Functions taking rvalue reference arguments cannot be vectorized. |
|
|
|
In cases where the computation is too complicated to be reduced to |
|
``vectorize``, it will be necessary to create and access the buffer contents |
|
manually. The following snippet contains a complete example that shows how this |
|
works (the code is somewhat contrived, since it could have been done more |
|
simply using ``vectorize``). |
|
|
|
.. code-block:: cpp |
|
|
|
#include <pybind11/pybind11.h> |
|
#include <pybind11/numpy.h> |
|
|
|
namespace py = pybind11; |
|
|
|
py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) { |
|
py::buffer_info buf1 = input1.request(), buf2 = input2.request(); |
|
|
|
if (buf1.ndim != 1 || buf2.ndim != 1) |
|
throw std::runtime_error("Number of dimensions must be one"); |
|
|
|
if (buf1.size != buf2.size) |
|
throw std::runtime_error("Input shapes must match"); |
|
|
|
/* No pointer is passed, so NumPy will allocate the buffer */ |
|
auto result = py::array_t<double>(buf1.size); |
|
|
|
py::buffer_info buf3 = result.request(); |
|
|
|
double *ptr1 = (double *) buf1.ptr, |
|
*ptr2 = (double *) buf2.ptr, |
|
*ptr3 = (double *) buf3.ptr; |
|
|
|
for (size_t idx = 0; idx < buf1.shape[0]; idx++) |
|
ptr3[idx] = ptr1[idx] + ptr2[idx]; |
|
|
|
return result; |
|
} |
|
|
|
PYBIND11_MODULE(test, m) { |
|
m.def("add_arrays", &add_arrays, "Add two NumPy arrays"); |
|
} |
|
|
|
.. seealso:: |
|
|
|
The file :file:`tests/test_numpy_vectorize.cpp` contains a complete |
|
example that demonstrates using :func:`vectorize` in more detail. |
|
|
|
Direct access |
|
============= |
|
|
|
For performance reasons, particularly when dealing with very large arrays, it |
|
is often desirable to directly access array elements without internal checking |
|
of dimensions and bounds on every access when indices are known to be already |
|
valid. To avoid such checks, the ``array`` class and ``array_t<T>`` template |
|
class offer an unchecked proxy object that can be used for this unchecked |
|
access through the ``unchecked<N>`` and ``mutable_unchecked<N>`` methods, |
|
where ``N`` gives the required dimensionality of the array: |
|
|
|
.. code-block:: cpp |
|
|
|
m.def("sum_3d", [](py::array_t<double> x) { |
|
auto r = x.unchecked<3>(); // x must have ndim = 3; can be non-writeable |
|
double sum = 0; |
|
for (ssize_t i = 0; i < r.shape(0); i++) |
|
for (ssize_t j = 0; j < r.shape(1); j++) |
|
for (ssize_t k = 0; k < r.shape(2); k++) |
|
sum += r(i, j, k); |
|
return sum; |
|
}); |
|
m.def("increment_3d", [](py::array_t<double> x) { |
|
auto r = x.mutable_unchecked<3>(); // Will throw if ndim != 3 or flags.writeable is false |
|
for (ssize_t i = 0; i < r.shape(0); i++) |
|
for (ssize_t j = 0; j < r.shape(1); j++) |
|
for (ssize_t k = 0; k < r.shape(2); k++) |
|
r(i, j, k) += 1.0; |
|
}, py::arg().noconvert()); |
|
|
|
To obtain the proxy from an ``array`` object, you must specify both the data |
|
type and number of dimensions as template arguments, such as ``auto r = |
|
myarray.mutable_unchecked<float, 2>()``. |
|
|
|
If the number of dimensions is not known at compile time, you can omit the |
|
dimensions template parameter (i.e. calling ``arr_t.unchecked()`` or |
|
``arr.unchecked<T>()``. This will give you a proxy object that works in the |
|
same way, but results in less optimizable code and thus a small efficiency |
|
loss in tight loops. |
|
|
|
Note that the returned proxy object directly references the array's data, and |
|
only reads its shape, strides, and writeable flag when constructed. You must |
|
take care to ensure that the referenced array is not destroyed or reshaped for |
|
the duration of the returned object, typically by limiting the scope of the |
|
returned instance. |
|
|
|
The returned proxy object supports some of the same methods as ``py::array`` so |
|
that it can be used as a drop-in replacement for some existing, index-checked |
|
uses of ``py::array``: |
|
|
|
- ``r.ndim()`` returns the number of dimensions |
|
|
|
- ``r.data(1, 2, ...)`` and ``r.mutable_data(1, 2, ...)``` returns a pointer to |
|
the ``const T`` or ``T`` data, respectively, at the given indices. The |
|
latter is only available to proxies obtained via ``a.mutable_unchecked()``. |
|
|
|
- ``itemsize()`` returns the size of an item in bytes, i.e. ``sizeof(T)``. |
|
|
|
- ``ndim()`` returns the number of dimensions. |
|
|
|
- ``shape(n)`` returns the size of dimension ``n`` |
|
|
|
- ``size()`` returns the total number of elements (i.e. the product of the shapes). |
|
|
|
- ``nbytes()`` returns the number of bytes used by the referenced elements |
|
(i.e. ``itemsize()`` times ``size()``). |
|
|
|
.. seealso:: |
|
|
|
The file :file:`tests/test_numpy_array.cpp` contains additional examples |
|
demonstrating the use of this feature. |
|
|
|
Ellipsis |
|
======== |
|
|
|
Python 3 provides a convenient ``...`` ellipsis notation that is often used to |
|
slice multidimensional arrays. For instance, the following snippet extracts the |
|
middle dimensions of a tensor with the first and last index set to zero. |
|
|
|
.. code-block:: python |
|
|
|
a = # a NumPy array |
|
b = a[0, ..., 0] |
|
|
|
The function ``py::ellipsis()`` function can be used to perform the same |
|
operation on the C++ side: |
|
|
|
.. code-block:: cpp |
|
|
|
py::array a = /* A NumPy array */; |
|
py::array b = a[py::make_tuple(0, py::ellipsis(), 0)];
|
|
|