mirror of https://github.com/pybind/pybind11
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
107 lines
4.4 KiB
107 lines
4.4 KiB
/* |
|
tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array |
|
arguments |
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> |
|
|
|
All rights reserved. Use of this source code is governed by a |
|
BSD-style license that can be found in the LICENSE file. |
|
*/ |
|
|
|
#include <pybind11/numpy.h> |
|
|
|
#include "pybind11_tests.h" |
|
|
|
#include <utility> |
|
|
|
double my_func(int x, float y, double z) { |
|
py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z)); |
|
return (float) x * y * z; |
|
} |
|
|
|
TEST_SUBMODULE(numpy_vectorize, m) { |
|
try { |
|
py::module_::import("numpy"); |
|
} catch (const py::error_already_set &) { |
|
return; |
|
} |
|
|
|
// test_vectorize, test_docs, test_array_collapse |
|
// Vectorize all arguments of a function (though non-vector arguments are also allowed) |
|
m.def("vectorized_func", py::vectorize(my_func)); |
|
|
|
// Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the |
|
// vectorization) |
|
m.def("vectorized_func2", [](py::array_t<int> x, py::array_t<float> y, float z) { |
|
return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(std::move(x), |
|
std::move(y)); |
|
}); |
|
|
|
// Vectorize a complex-valued function |
|
m.def("vectorized_func3", |
|
py::vectorize([](std::complex<double> c) { return c * std::complex<double>(2.f); })); |
|
|
|
// test_type_selection |
|
// NumPy function which only accepts specific data types |
|
// A lot of these no lints could be replaced with const refs, and probably should at some |
|
// point. |
|
m.def("selective_func", |
|
[](const py::array_t<int, py::array::c_style> &) { return "Int branch taken."; }); |
|
m.def("selective_func", |
|
[](const py::array_t<float, py::array::c_style> &) { return "Float branch taken."; }); |
|
m.def("selective_func", [](const py::array_t<std::complex<float>, py::array::c_style> &) { |
|
return "Complex float branch taken."; |
|
}); |
|
|
|
// test_passthrough_arguments |
|
// Passthrough test: references and non-pod types should be automatically passed through (in |
|
// the function definition below, only `b`, `d`, and `g` are vectorized): |
|
struct NonPODClass { |
|
explicit NonPODClass(int v) : value{v} {} |
|
int value; |
|
}; |
|
py::class_<NonPODClass>(m, "NonPODClass") |
|
.def(py::init<int>()) |
|
.def_readwrite("value", &NonPODClass::value); |
|
m.def("vec_passthrough", |
|
py::vectorize([](const double *a, |
|
double b, |
|
// Changing this broke things |
|
// NOLINTNEXTLINE(performance-unnecessary-value-param) |
|
py::array_t<double> c, |
|
const int &d, |
|
int &e, |
|
NonPODClass f, |
|
const double g) { return *a + b + c.at(0) + d + e + f.value + g; })); |
|
|
|
// test_method_vectorization |
|
struct VectorizeTestClass { |
|
explicit VectorizeTestClass(int v) : value{v} {}; |
|
float method(int x, float y) const { return y + (float) (x + value); } |
|
int value = 0; |
|
}; |
|
py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass"); |
|
vtc.def(py::init<int>()).def_readwrite("value", &VectorizeTestClass::value); |
|
|
|
// Automatic vectorizing of methods |
|
vtc.def("method", py::vectorize(&VectorizeTestClass::method)); |
|
|
|
// test_trivial_broadcasting |
|
// Internal optimization test for whether the input is trivially broadcastable: |
|
py::enum_<py::detail::broadcast_trivial>(m, "trivial") |
|
.value("f_trivial", py::detail::broadcast_trivial::f_trivial) |
|
.value("c_trivial", py::detail::broadcast_trivial::c_trivial) |
|
.value("non_trivial", py::detail::broadcast_trivial::non_trivial); |
|
m.def("vectorized_is_trivial", |
|
[](const py::array_t<int, py::array::forcecast> &arg1, |
|
const py::array_t<float, py::array::forcecast> &arg2, |
|
const py::array_t<double, py::array::forcecast> &arg3) { |
|
py::ssize_t ndim = 0; |
|
std::vector<py::ssize_t> shape; |
|
std::array<py::buffer_info, 3> buffers{ |
|
{arg1.request(), arg2.request(), arg3.request()}}; |
|
return py::detail::broadcast(buffers, ndim, shape); |
|
}); |
|
|
|
m.def("add_to", py::vectorize([](NonPODClass &x, int a) { x.value += a; })); |
|
}
|
|
|