mirror of https://github.com/pybind/pybind11
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
447 lines
20 KiB
447 lines
20 KiB
/* |
|
tests/eigen.cpp -- automatic conversion of Eigen types |
|
|
|
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> |
|
|
|
All rights reserved. Use of this source code is governed by a |
|
BSD-style license that can be found in the LICENSE file. |
|
*/ |
|
|
|
#include <pybind11/eigen/matrix.h> |
|
#include <pybind11/stl.h> |
|
|
|
#include "constructor_stats.h" |
|
#include "pybind11_tests.h" |
|
|
|
PYBIND11_WARNING_DISABLE_MSVC(4996) |
|
|
|
#include <Eigen/Cholesky> |
|
|
|
using MatrixXdR = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>; |
|
|
|
// Sets/resets a testing reference matrix to have values of 10*r + c, where r and c are the |
|
// (1-based) row/column number. |
|
template <typename M> |
|
void reset_ref(M &x) { |
|
for (int i = 0; i < x.rows(); i++) { |
|
for (int j = 0; j < x.cols(); j++) { |
|
x(i, j) = 11 + 10 * i + j; |
|
} |
|
} |
|
} |
|
|
|
// Returns a static, column-major matrix |
|
Eigen::MatrixXd &get_cm() { |
|
static Eigen::MatrixXd *x; |
|
if (!x) { |
|
x = new Eigen::MatrixXd(3, 3); |
|
reset_ref(*x); |
|
} |
|
return *x; |
|
} |
|
// Likewise, but row-major |
|
MatrixXdR &get_rm() { |
|
static MatrixXdR *x; |
|
if (!x) { |
|
x = new MatrixXdR(3, 3); |
|
reset_ref(*x); |
|
} |
|
return *x; |
|
} |
|
// Resets the values of the static matrices returned by get_cm()/get_rm() |
|
void reset_refs() { |
|
reset_ref(get_cm()); |
|
reset_ref(get_rm()); |
|
} |
|
|
|
// Returns element 2,1 from a matrix (used to test copy/nocopy) |
|
double get_elem(const Eigen::Ref<const Eigen::MatrixXd> &m) { return m(2, 1); } |
|
|
|
// Returns a matrix with 10*r + 100*c added to each matrix element (to help test that the matrix |
|
// reference is referencing rows/columns correctly). |
|
template <typename MatrixArgType> |
|
Eigen::MatrixXd adjust_matrix(MatrixArgType m) { |
|
Eigen::MatrixXd ret(m); |
|
for (int c = 0; c < m.cols(); c++) { |
|
for (int r = 0; r < m.rows(); r++) { |
|
ret(r, c) += 10 * r + 100 * c; // NOLINT(clang-analyzer-core.uninitialized.Assign) |
|
} |
|
} |
|
return ret; |
|
} |
|
|
|
struct CustomOperatorNew { |
|
CustomOperatorNew() = default; |
|
|
|
Eigen::Matrix4d a = Eigen::Matrix4d::Zero(); |
|
Eigen::Matrix4d b = Eigen::Matrix4d::Identity(); |
|
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
|
}; |
|
|
|
TEST_SUBMODULE(eigen_matrix, m) { |
|
using FixedMatrixR = Eigen::Matrix<float, 5, 6, Eigen::RowMajor>; |
|
using FixedMatrixC = Eigen::Matrix<float, 5, 6>; |
|
using DenseMatrixR = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>; |
|
using DenseMatrixC = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>; |
|
using FourRowMatrixC = Eigen::Matrix<float, 4, Eigen::Dynamic>; |
|
using FourColMatrixC = Eigen::Matrix<float, Eigen::Dynamic, 4>; |
|
using FourRowMatrixR = Eigen::Matrix<float, 4, Eigen::Dynamic>; |
|
using FourColMatrixR = Eigen::Matrix<float, Eigen::Dynamic, 4>; |
|
using SparseMatrixR = Eigen::SparseMatrix<float, Eigen::RowMajor>; |
|
using SparseMatrixC = Eigen::SparseMatrix<float>; |
|
|
|
// various tests |
|
m.def("double_col", [](const Eigen::VectorXf &x) -> Eigen::VectorXf { return 2.0f * x; }); |
|
m.def("double_row", |
|
[](const Eigen::RowVectorXf &x) -> Eigen::RowVectorXf { return 2.0f * x; }); |
|
m.def("double_complex", |
|
[](const Eigen::VectorXcf &x) -> Eigen::VectorXcf { return 2.0f * x; }); |
|
m.def("double_threec", [](py::EigenDRef<Eigen::Vector3f> x) { x *= 2; }); |
|
m.def("double_threer", [](py::EigenDRef<Eigen::RowVector3f> x) { x *= 2; }); |
|
m.def("double_mat_cm", [](const Eigen::MatrixXf &x) -> Eigen::MatrixXf { return 2.0f * x; }); |
|
m.def("double_mat_rm", [](const DenseMatrixR &x) -> DenseMatrixR { return 2.0f * x; }); |
|
|
|
// test_eigen_ref_to_python |
|
// Different ways of passing via Eigen::Ref; the first and second are the Eigen-recommended |
|
m.def("cholesky1", |
|
[](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); }); |
|
m.def("cholesky2", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd { |
|
return x.llt().matrixL(); |
|
}); |
|
m.def("cholesky3", |
|
[](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); }); |
|
m.def("cholesky4", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd { |
|
return x.llt().matrixL(); |
|
}); |
|
|
|
// test_eigen_ref_mutators |
|
// Mutators: these add some value to the given element using Eigen, but Eigen should be mapping |
|
// into the numpy array data and so the result should show up there. There are three versions: |
|
// one that works on a contiguous-row matrix (numpy's default), one for a contiguous-column |
|
// matrix, and one for any matrix. |
|
auto add_rm = [](Eigen::Ref<MatrixXdR> x, int r, int c, double v) { x(r, c) += v; }; |
|
auto add_cm = [](Eigen::Ref<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; }; |
|
|
|
// Mutators (Eigen maps into numpy variables): |
|
m.def("add_rm", add_rm); // Only takes row-contiguous |
|
m.def("add_cm", add_cm); // Only takes column-contiguous |
|
// Overloaded versions that will accept either row or column contiguous: |
|
m.def("add1", add_rm); |
|
m.def("add1", add_cm); |
|
m.def("add2", add_cm); |
|
m.def("add2", add_rm); |
|
// This one accepts a matrix of any stride: |
|
m.def("add_any", |
|
[](py::EigenDRef<Eigen::MatrixXd> x, int r, int c, double v) { x(r, c) += v; }); |
|
|
|
// Return mutable references (numpy maps into eigen variables) |
|
m.def("get_cm_ref", []() { return Eigen::Ref<Eigen::MatrixXd>(get_cm()); }); |
|
m.def("get_rm_ref", []() { return Eigen::Ref<MatrixXdR>(get_rm()); }); |
|
// The same references, but non-mutable (numpy maps into eigen variables, but is !writeable) |
|
m.def("get_cm_const_ref", []() { return Eigen::Ref<const Eigen::MatrixXd>(get_cm()); }); |
|
m.def("get_rm_const_ref", []() { return Eigen::Ref<const MatrixXdR>(get_rm()); }); |
|
|
|
m.def("reset_refs", reset_refs); // Restores get_{cm,rm}_ref to original values |
|
|
|
// Increments and returns ref to (same) matrix |
|
m.def( |
|
"incr_matrix", |
|
[](Eigen::Ref<Eigen::MatrixXd> m, double v) { |
|
m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v); |
|
return m; |
|
}, |
|
py::return_value_policy::reference); |
|
|
|
// Same, but accepts a matrix of any strides |
|
m.def( |
|
"incr_matrix_any", |
|
[](py::EigenDRef<Eigen::MatrixXd> m, double v) { |
|
m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v); |
|
return m; |
|
}, |
|
py::return_value_policy::reference); |
|
|
|
// Returns an eigen slice of even rows |
|
m.def( |
|
"even_rows", |
|
[](py::EigenDRef<Eigen::MatrixXd> m) { |
|
return py::EigenDMap<Eigen::MatrixXd>( |
|
m.data(), |
|
(m.rows() + 1) / 2, |
|
m.cols(), |
|
py::EigenDStride(m.outerStride(), 2 * m.innerStride())); |
|
}, |
|
py::return_value_policy::reference); |
|
|
|
// Returns an eigen slice of even columns |
|
m.def( |
|
"even_cols", |
|
[](py::EigenDRef<Eigen::MatrixXd> m) { |
|
return py::EigenDMap<Eigen::MatrixXd>( |
|
m.data(), |
|
m.rows(), |
|
(m.cols() + 1) / 2, |
|
py::EigenDStride(2 * m.outerStride(), m.innerStride())); |
|
}, |
|
py::return_value_policy::reference); |
|
|
|
// Returns diagonals: a vector-like object with an inner stride != 1 |
|
m.def("diagonal", [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal(); }); |
|
m.def("diagonal_1", |
|
[](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal<1>(); }); |
|
m.def("diagonal_n", |
|
[](const Eigen::Ref<const Eigen::MatrixXd> &x, int index) { return x.diagonal(index); }); |
|
|
|
// Return a block of a matrix (gives non-standard strides) |
|
m.def("block", |
|
[m](const py::object &x_obj, |
|
int start_row, |
|
int start_col, |
|
int block_rows, |
|
int block_cols) { |
|
return m.attr("_block")(x_obj, x_obj, start_row, start_col, block_rows, block_cols); |
|
}); |
|
|
|
m.def( |
|
"_block", |
|
[](const py::object &x_obj, |
|
const Eigen::Ref<const Eigen::MatrixXd> &x, |
|
int start_row, |
|
int start_col, |
|
int block_rows, |
|
int block_cols) { |
|
// See PR #4217 for background. This test is a bit over the top, but might be useful |
|
// as a concrete example to point to when explaining the dangling reference trap. |
|
auto i0 = py::make_tuple(0, 0); |
|
auto x0_orig = x_obj[*i0].cast<double>(); |
|
if (x(0, 0) != x0_orig) { |
|
throw std::runtime_error( |
|
"Something in the type_caster for Eigen::Ref is terribly wrong."); |
|
} |
|
double x0_mod = x0_orig + 1; |
|
x_obj[*i0] = x0_mod; |
|
auto copy_detected = (x(0, 0) != x0_mod); |
|
x_obj[*i0] = x0_orig; |
|
if (copy_detected) { |
|
throw std::runtime_error("type_caster for Eigen::Ref made a copy."); |
|
} |
|
return x.block(start_row, start_col, block_rows, block_cols); |
|
}, |
|
py::keep_alive<0, 1>()); |
|
|
|
// test_eigen_return_references, test_eigen_keepalive |
|
// return value referencing/copying tests: |
|
class ReturnTester { |
|
Eigen::MatrixXd mat = create(); |
|
|
|
public: |
|
ReturnTester() { print_created(this); } |
|
~ReturnTester() { print_destroyed(this); } |
|
static Eigen::MatrixXd create() { return Eigen::MatrixXd::Ones(10, 10); } |
|
// NOLINTNEXTLINE(readability-const-return-type) |
|
static const Eigen::MatrixXd createConst() { return Eigen::MatrixXd::Ones(10, 10); } |
|
Eigen::MatrixXd &get() { return mat; } |
|
Eigen::MatrixXd *getPtr() { return &mat; } |
|
const Eigen::MatrixXd &view() { return mat; } |
|
const Eigen::MatrixXd *viewPtr() { return &mat; } |
|
Eigen::Ref<Eigen::MatrixXd> ref() { return mat; } |
|
Eigen::Ref<const Eigen::MatrixXd> refConst() { return mat; } |
|
Eigen::Block<Eigen::MatrixXd> block(int r, int c, int nrow, int ncol) { |
|
return mat.block(r, c, nrow, ncol); |
|
} |
|
Eigen::Block<const Eigen::MatrixXd> blockConst(int r, int c, int nrow, int ncol) const { |
|
return mat.block(r, c, nrow, ncol); |
|
} |
|
py::EigenDMap<Eigen::Matrix2d> corners() { |
|
return py::EigenDMap<Eigen::Matrix2d>( |
|
mat.data(), |
|
py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1), |
|
mat.innerStride() * (mat.innerSize() - 1))); |
|
} |
|
py::EigenDMap<const Eigen::Matrix2d> cornersConst() const { |
|
return py::EigenDMap<const Eigen::Matrix2d>( |
|
mat.data(), |
|
py::EigenDStride(mat.outerStride() * (mat.outerSize() - 1), |
|
mat.innerStride() * (mat.innerSize() - 1))); |
|
} |
|
}; |
|
using rvp = py::return_value_policy; |
|
py::class_<ReturnTester>(m, "ReturnTester") |
|
.def(py::init<>()) |
|
.def_static("create", &ReturnTester::create) |
|
.def_static("create_const", &ReturnTester::createConst) |
|
.def("get", &ReturnTester::get, rvp::reference_internal) |
|
.def("get_ptr", &ReturnTester::getPtr, rvp::reference_internal) |
|
.def("view", &ReturnTester::view, rvp::reference_internal) |
|
.def("view_ptr", &ReturnTester::view, rvp::reference_internal) |
|
.def("copy_get", &ReturnTester::get) // Default rvp: copy |
|
.def("copy_view", &ReturnTester::view) // " |
|
.def("ref", &ReturnTester::ref) // Default for Ref is to reference |
|
.def("ref_const", &ReturnTester::refConst) // Likewise, but const |
|
.def("ref_safe", &ReturnTester::ref, rvp::reference_internal) |
|
.def("ref_const_safe", &ReturnTester::refConst, rvp::reference_internal) |
|
.def("copy_ref", &ReturnTester::ref, rvp::copy) |
|
.def("copy_ref_const", &ReturnTester::refConst, rvp::copy) |
|
.def("block", &ReturnTester::block) |
|
.def("block_safe", &ReturnTester::block, rvp::reference_internal) |
|
.def("block_const", &ReturnTester::blockConst, rvp::reference_internal) |
|
.def("copy_block", &ReturnTester::block, rvp::copy) |
|
.def("corners", &ReturnTester::corners, rvp::reference_internal) |
|
.def("corners_const", &ReturnTester::cornersConst, rvp::reference_internal); |
|
|
|
// test_special_matrix_objects |
|
// Returns a DiagonalMatrix with diagonal (1,2,3,...) |
|
m.def("incr_diag", [](int k) { |
|
Eigen::DiagonalMatrix<int, Eigen::Dynamic> m(k); |
|
for (int i = 0; i < k; i++) { |
|
m.diagonal()[i] = i + 1; |
|
} |
|
return m; |
|
}); |
|
|
|
// Returns a SelfAdjointView referencing the lower triangle of m |
|
m.def("symmetric_lower", |
|
[](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Lower>(); }); |
|
// Returns a SelfAdjointView referencing the lower triangle of m |
|
m.def("symmetric_upper", |
|
[](const Eigen::MatrixXi &m) { return m.selfadjointView<Eigen::Upper>(); }); |
|
|
|
// Test matrix for various functions below. |
|
Eigen::MatrixXf mat(5, 6); |
|
mat << 0, 3, 0, 0, 0, 11, 22, 0, 0, 0, 17, 11, 7, 5, 0, 1, 0, 11, 0, 0, 0, 0, 0, 11, 0, 0, 14, |
|
0, 8, 11; |
|
|
|
// test_fixed, and various other tests |
|
m.def("fixed_r", [mat]() -> FixedMatrixR { return FixedMatrixR(mat); }); |
|
// Our Eigen does a hack which respects constness through the numpy writeable flag. |
|
// Therefore, the const return actually affects this type despite being an rvalue. |
|
// NOLINTNEXTLINE(readability-const-return-type) |
|
m.def("fixed_r_const", [mat]() -> const FixedMatrixR { return FixedMatrixR(mat); }); |
|
m.def("fixed_c", [mat]() -> FixedMatrixC { return FixedMatrixC(mat); }); |
|
m.def("fixed_copy_r", [](const FixedMatrixR &m) -> FixedMatrixR { return m; }); |
|
m.def("fixed_copy_c", [](const FixedMatrixC &m) -> FixedMatrixC { return m; }); |
|
// test_mutator_descriptors |
|
m.def("fixed_mutator_r", [](const Eigen::Ref<FixedMatrixR> &) {}); |
|
m.def("fixed_mutator_c", [](const Eigen::Ref<FixedMatrixC> &) {}); |
|
m.def("fixed_mutator_a", [](const py::EigenDRef<FixedMatrixC> &) {}); |
|
// test_dense |
|
m.def("dense_r", [mat]() -> DenseMatrixR { return DenseMatrixR(mat); }); |
|
m.def("dense_c", [mat]() -> DenseMatrixC { return DenseMatrixC(mat); }); |
|
m.def("dense_copy_r", [](const DenseMatrixR &m) -> DenseMatrixR { return m; }); |
|
m.def("dense_copy_c", [](const DenseMatrixC &m) -> DenseMatrixC { return m; }); |
|
// test_defaults |
|
bool have_numpy = true; |
|
try { |
|
py::module_::import("numpy"); |
|
} catch (const py::error_already_set &) { |
|
have_numpy = false; |
|
} |
|
if (have_numpy) { |
|
py::module_::import("numpy"); |
|
Eigen::Matrix<double, 3, 3> defaultMatrix = Eigen::Matrix3d::Identity(); |
|
m.def("defaults_mat", [](const Eigen::Matrix3d &) {}, py::arg("mat") = defaultMatrix); |
|
|
|
Eigen::VectorXd defaultVector = Eigen::VectorXd::Ones(32); |
|
m.def("defaults_vec", [](const Eigen::VectorXd &) {}, py::arg("vec") = defaultMatrix); |
|
} |
|
// test_sparse, test_sparse_signature |
|
m.def("sparse_r", [mat]() -> SparseMatrixR { |
|
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.UndefReturn) |
|
return Eigen::SparseView<Eigen::MatrixXf>(mat); |
|
}); |
|
m.def("sparse_c", |
|
[mat]() -> SparseMatrixC { return Eigen::SparseView<Eigen::MatrixXf>(mat); }); |
|
m.def("sparse_copy_r", [](const SparseMatrixR &m) -> SparseMatrixR { return m; }); |
|
m.def("sparse_copy_c", [](const SparseMatrixC &m) -> SparseMatrixC { return m; }); |
|
// test_partially_fixed |
|
m.def("partial_copy_four_rm_r", [](const FourRowMatrixR &m) -> FourRowMatrixR { return m; }); |
|
m.def("partial_copy_four_rm_c", [](const FourColMatrixR &m) -> FourColMatrixR { return m; }); |
|
m.def("partial_copy_four_cm_r", [](const FourRowMatrixC &m) -> FourRowMatrixC { return m; }); |
|
m.def("partial_copy_four_cm_c", [](const FourColMatrixC &m) -> FourColMatrixC { return m; }); |
|
|
|
// test_cpp_casting |
|
// Test that we can cast a numpy object to a Eigen::MatrixXd explicitly |
|
m.def("cpp_copy", [](py::handle m) { return m.cast<Eigen::MatrixXd>()(1, 0); }); |
|
m.def("cpp_ref_c", [](py::handle m) { return m.cast<Eigen::Ref<Eigen::MatrixXd>>()(1, 0); }); |
|
m.def("cpp_ref_r", [](py::handle m) { return m.cast<Eigen::Ref<MatrixXdR>>()(1, 0); }); |
|
m.def("cpp_ref_any", |
|
[](py::handle m) { return m.cast<py::EigenDRef<Eigen::MatrixXd>>()(1, 0); }); |
|
|
|
// [workaround(intel)] ICC 20/21 breaks with py::arg().stuff, using py::arg{}.stuff works. |
|
|
|
// test_nocopy_wrapper |
|
// Test that we can prevent copying into an argument that would normally copy: First a version |
|
// that would allow copying (if types or strides don't match) for comparison: |
|
m.def("get_elem", &get_elem); |
|
// Now this alternative that calls the tells pybind to fail rather than copy: |
|
m.def( |
|
"get_elem_nocopy", |
|
[](const Eigen::Ref<const Eigen::MatrixXd> &m) -> double { return get_elem(m); }, |
|
py::arg{}.noconvert()); |
|
// Also test a row-major-only no-copy const ref: |
|
m.def( |
|
"get_elem_rm_nocopy", |
|
[](Eigen::Ref<const Eigen::Matrix<long, -1, -1, Eigen::RowMajor>> &m) -> long { |
|
return m(2, 1); |
|
}, |
|
py::arg{}.noconvert()); |
|
|
|
// test_issue738, test_zero_length |
|
// Issue #738: 1×N or N×1 2D matrices were neither accepted nor properly copied with an |
|
// incompatible stride value on the length-1 dimension--but that should be allowed (without |
|
// requiring a copy!) because the stride value can be safely ignored on a size-1 dimension. |
|
// Similarly, 0×N or N×0 matrices were not accepted--again, these should be allowed since |
|
// they contain no data. This particularly affects numpy ≥ 1.23, which sets the strides to |
|
// 0 if any dimension size is 0. |
|
m.def("iss738_f1", |
|
&adjust_matrix<const Eigen::Ref<const Eigen::MatrixXd> &>, |
|
py::arg{}.noconvert()); |
|
m.def("iss738_f2", |
|
&adjust_matrix<const Eigen::Ref<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>> &>, |
|
py::arg{}.noconvert()); |
|
|
|
// test_issue1105 |
|
// Issue #1105: when converting from a numpy two-dimensional (Nx1) or (1xN) value into a dense |
|
// eigen Vector or RowVector, the argument would fail to load because the numpy copy would |
|
// fail: numpy won't broadcast a Nx1 into a 1-dimensional vector. |
|
m.def("iss1105_col", [](const Eigen::VectorXd &) { return true; }); |
|
m.def("iss1105_row", [](const Eigen::RowVectorXd &) { return true; }); |
|
|
|
// test_named_arguments |
|
// Make sure named arguments are working properly: |
|
m.def( |
|
"matrix_multiply", |
|
[](const py::EigenDRef<const Eigen::MatrixXd> &A, |
|
const py::EigenDRef<const Eigen::MatrixXd> &B) -> Eigen::MatrixXd { |
|
if (A.cols() != B.rows()) { |
|
throw std::domain_error("Nonconformable matrices!"); |
|
} |
|
return A * B; |
|
}, |
|
py::arg("A"), |
|
py::arg("B")); |
|
|
|
// test_custom_operator_new |
|
py::class_<CustomOperatorNew>(m, "CustomOperatorNew") |
|
.def(py::init<>()) |
|
.def_readonly("a", &CustomOperatorNew::a) |
|
.def_readonly("b", &CustomOperatorNew::b); |
|
|
|
// test_eigen_ref_life_support |
|
// In case of a failure (the caster's temp array does not live long enough), creating |
|
// a new array (np.ones(10)) increases the chances that the temp array will be garbage |
|
// collected and/or that its memory will be overridden with different values. |
|
m.def("get_elem_direct", [](const Eigen::Ref<const Eigen::VectorXd> &v) { |
|
py::module_::import("numpy").attr("ones")(10); |
|
return v(5); |
|
}); |
|
m.def("get_elem_indirect", [](std::vector<Eigen::Ref<const Eigen::VectorXd>> v) { |
|
py::module_::import("numpy").attr("ones")(10); |
|
return v[0](5); |
|
}); |
|
m.def("round_trip_vector", [](const Eigen::VectorXf &x) -> Eigen::VectorXf { return x; }); |
|
m.def("round_trip_dense", [](const DenseMatrixR &m) -> DenseMatrixR { return m; }); |
|
m.def("round_trip_dense_ref", |
|
[](const Eigen::Ref<DenseMatrixR> &m) -> Eigen::Ref<DenseMatrixR> { return m; }); |
|
}
|
|
|