Browse Source

added signal module

pull/3613/head
amishutin 2 years ago
parent
commit
105e514302
  1. 2
      modules/README.md
  2. 2
      modules/signal/CMakeLists.txt
  3. 4
      modules/signal/README.md
  4. 17
      modules/signal/include/opencv2/signal.hpp
  5. 32
      modules/signal/include/opencv2/signal/signal_resample.hpp
  6. 6
      modules/signal/perf/perf_main.cpp
  7. 15
      modules/signal/perf/perf_precomp.hpp
  8. 37
      modules/signal/perf/perf_resample.cpp
  9. 10
      modules/signal/src/precomp.hpp
  10. 375
      modules/signal/src/signal_resample.cpp
  11. 6
      modules/signal/test/test_main.cpp
  12. 10
      modules/signal/test/test_precomp.hpp
  13. 180
      modules/signal/test/test_signal.cpp

2
modules/README.md

@ -72,6 +72,8 @@ $ cmake -D OPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules -D BUILD_opencv_<r @@ -72,6 +72,8 @@ $ cmake -D OPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules -D BUILD_opencv_<r
- **saliency**: Saliency API -- Where humans would look in a scene. Has routines for static, motion and "objectness" saliency.
- **signal**: Signal processing algorithms
- **sfm**: Structure from Motion -- This module contains algorithms to perform 3d reconstruction from 2d images. The core of the module is a light version of Libmv.
- **shape**: Shape Distance and Matching

2
modules/signal/CMakeLists.txt

@ -0,0 +1,2 @@ @@ -0,0 +1,2 @@
set(the_description "Signal processing algorithms")
ocv_define_module(signal opencv_core WRAP python)

4
modules/signal/README.md

@ -0,0 +1,4 @@ @@ -0,0 +1,4 @@
Signal Processing algorithms
================================================
Signal resampling done with cubic interpolation and low-pass filtering

17
modules/signal/include/opencv2/signal.hpp

@ -0,0 +1,17 @@ @@ -0,0 +1,17 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#ifndef OPENCV_SIGNAL_HPP
#define OPENCV_SIGNAL_HPP
/**
* @defgroup signal Signal Processing
* @{
* This module includes signal processing algorithms.
* @}
*/
#include "opencv2/core.hpp"
#include "opencv2/signal/signal_resample.hpp"
#endif

32
modules/signal/include/opencv2/signal/signal_resample.hpp

@ -0,0 +1,32 @@ @@ -0,0 +1,32 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#ifndef OPENCV_SIGNAL_SIGNAL_RESAMPLE_HPP
#define OPENCV_SIGNAL_SIGNAL_RESAMPLE_HPP
#include <opencv2/core.hpp>
namespace cv {
namespace signal {
//! @addtogroup signal
//! @{
/** @brief Signal resampling
*
* @param[in] inputSignal Array with input signal.
* @param[out] outSignal Array with output signal
* @param[in] inFreq Input signal frequency.
* @param[in] outFreq Output signal frequency.
* Signal resampling implemented a cubic interpolation function and a filtering function based on Kaiser window and Bessel function, used to construct a FIR filter.
* Result is similar to `scipy.signal.resample`.
Detail: https://en.wikipedia.org/wiki/Sample-rate_conversion
*/
CV_EXPORTS_W void resampleSignal(InputArray inputSignal, OutputArray outSignal, const int inFreq, const int outFreq);
//! @}
}
}
#endif

6
modules/signal/perf/perf_main.cpp

@ -0,0 +1,6 @@ @@ -0,0 +1,6 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "perf_precomp.hpp"
CV_PERF_TEST_MAIN(signal)

15
modules/signal/perf/perf_precomp.hpp

@ -0,0 +1,15 @@ @@ -0,0 +1,15 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
#include "opencv2/ts.hpp"
#include "opencv2/signal.hpp"
namespace opencv_test {
using namespace perf;
using namespace cv::signal;
}
#endif

37
modules/signal/perf/perf_resample.cpp

@ -0,0 +1,37 @@ @@ -0,0 +1,37 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace perf;
namespace opencv_test { namespace {
typedef TestBaseWithParam< tuple<uint32_t, uint32_t, uint32_t> > TestResampleFunc;
PERF_TEST_P( TestResampleFunc, resample_sin_signal,
testing::Combine(
testing::Values(1234U, 12345U, 123456U, 1234567U, 12345678U),
testing::Values(16000U, 32000U, 44100U, 48000U),
testing::Values(48000U, 44100U, 32000U, 16000U))
)
{
uint32_t sample_signal_size = GET_PARAM(0);
uint32_t inFreq = GET_PARAM(1);
uint32_t outFreq = GET_PARAM(2);
Mat1f sample_signal(Size(sample_signal_size,1U));
Mat1f outSignal(Size(1U, 1U));
for (uint32_t i = 0U; i < (uint32_t)sample_signal.cols; ++i)
{
sample_signal.at<float>(0, i) = sinf(float(i));
}
declare.in(sample_signal).out(outSignal);
TEST_CYCLE() resampleSignal(sample_signal, outSignal, inFreq, outFreq);
SANITY_CHECK_NOTHING();
}
}}

10
modules/signal/src/precomp.hpp

@ -0,0 +1,10 @@ @@ -0,0 +1,10 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#ifndef __OPENCV_SIGNAL_PRECOMP__
#define __OPENCV_SIGNAL_PRECOMP__
#include <opencv2/core.hpp>
#endif

375
modules/signal/src/signal_resample.cpp

@ -0,0 +1,375 @@ @@ -0,0 +1,375 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
#include <opencv2/signal/signal_resample.hpp>
#include <opencv2/core/mat.hpp>
#include <opencv2/core/hal/intrin.hpp>
#include <opencv2/core/utils/trace.hpp>
#include <algorithm>
#include <cmath>
#include <vector>
namespace cv {
namespace signal {
#if (CV_SIMD || CV_SIMD_SCALABLE)
#define v_float32_width (uint32_t)VTraits<v_float32>::vlanes()
const uint32_t v_float32_max_width = (uint32_t)VTraits<v_float32>::max_nlanes;
#endif
// Modified Bessel function 1st kind 0th order
static float Bessel(float x)
{
int k = 12; // approximation parameter
float defmul = x * x * 0.25f;
float mul = defmul;
float acc = 0.f;
for(int i = 0 ; i < k; ++i)
{
mul = powf(defmul, static_cast<float>(i));
mul = mul / powf(tgammaf(static_cast<float>(i + 1)), 2.f); // tgamma(i+1) equals i!
acc +=mul;
}
return acc;
}
static void init_filter(float beta, int ntabs, float* tabs)
{
float fc = 0.25f;
// build sinc filter
for (int i = 0; i < ntabs; ++i)
{
tabs[i] = 2 * fc * (i - (ntabs - 1) / 2);
}
std::vector<float> tmparr(ntabs);
for (int i = 0 ; i < ntabs; ++i)
{
if (tabs[i] == 0.f)
{
tmparr[i] = 1.f;
continue;
}
tmparr[i] = (float)(CV_PI * tabs[i]);
}
float mult = 2.f / (float)(ntabs - 1);
// multiply by Kaiser window
for (int i = 0; i < ntabs; ++i)
{
tabs[i] = std::sin(tmparr[i]) / tmparr[i];
tabs[i] *= Bessel(beta * sqrtf((float)1 - powf((i * mult - 1), 2))) / Bessel(beta);
}
float sum = 0.f;
for (int i = 0 ; i < ntabs; ++i)
{
sum += tabs[i];
}
sum = 1.f/sum;
// normalize tabs to get unity gain
for (int i = 0; i < ntabs; ++i)
{
tabs[i] *= sum;
}
}
/////////////// cubic Hermite spline (tail of execIntrinLoop or scalar version) ///////////////
static float scal_cubicHermite(float A, float B, float C, float D, float t)
{
float a = (-A + (3.0f * B) - (3.0f * C) + D) * 0.5f;
float b = A + C + C - (5.0f * B + D) * 0.5f;
float c = (-A + C) * 0.5f;
return a * t * t * t + b * t * t + c * t + B;
}
/////////////// cubic Hermite spline (OpenCV's Universal Intrinsics) ///////////////
#if (CV_SIMD || CV_SIMD_SCALABLE)
static inline v_float32 simd_cubicHermite(const v_float32 &v_A, const v_float32 &v_B, const v_float32 &v_C,
const v_float32 &v_D, const v_float32 &v_t)
{
v_float32 v_zero = vx_setzero_f32();
v_float32 v_three= vx_setall_f32(3.0f);
v_float32 v_half = vx_setall_f32(0.5f);
v_float32 v_five = vx_setall_f32(5.0f);
v_float32 v_inv_A = v_sub(v_zero, v_A);
v_float32 v_a = v_mul(v_sub(v_fma(v_three, v_B, v_add(v_inv_A, v_D)), v_mul(v_three, v_C)), v_half);
v_float32 v_b = v_sub(v_add(v_A, v_C, v_C), v_mul(v_fma(v_five, v_B, v_D), v_half));
v_float32 v_c = v_mul(v_add(v_inv_A, v_C), v_half);
return v_add(v_mul(v_a, v_t, v_t, v_t), v_mul(v_b, v_t, v_t), v_fma(v_c, v_t, v_B));
}
#endif
static void cubicInterpolate(const Mat1f &src, uint32_t dstlen, Mat1f &dst, uint32_t srclen)
{
Mat1f tmp(Size(srclen + 3U, 1U));
tmp.at<float>(0) = src.at<float>(0);
#if (CV_SIMD || CV_SIMD_SCALABLE)
v_float32 v_reg = vx_setall_f32(src.at<float>(srclen - 1U));
vx_store(tmp.ptr<float>(0) + (srclen - 1U), v_reg);
#else // scalar version
tmp.at<float>(srclen + 1U) = src.at<float>(srclen - 1U);
tmp.at<float>(srclen + 2U) = src.at<float>(srclen - 1U);
#endif
uint32_t i = 0U;
#if (CV_SIMD || CV_SIMD_SCALABLE)
uint32_t len_sub_vfloatStep = (uint32_t)std::max((int64_t)srclen - (int64_t)v_float32_width, (int64_t)0);
for (; i < len_sub_vfloatStep; i+= v_float32_width)
{
v_float32 v_copy = vx_load(src.ptr<float>(0) + i);
vx_store(tmp.ptr<float>(0) + (i + 1U), v_copy);
}
#endif
// if the tail exists or scalar version
for (; i < srclen; ++i)
{
tmp.at<float>(i + 1U) = src.at<float>(i);
}
i = 0U;
#if (CV_SIMD || CV_SIMD_SCALABLE)
int ptr_x_int[v_float32_max_width];
uint32_t j;
v_float32 v_dstlen_sub_1 = vx_setall_f32((float)(dstlen - 1U));
v_float32 v_one = vx_setall_f32(1.0f);
v_float32 v_x_start = v_div(v_one, v_dstlen_sub_1);
v_float32 v_u = vx_setall_f32((float)srclen);
v_float32 v_half = vx_setall_f32(0.5f);
len_sub_vfloatStep = (uint32_t)std::max((int64_t)dstlen - (int64_t)v_float32_width, (int64_t)0);
for (; i < v_float32_width; ++i)
{
ptr_x_int[i] = (int)i;
}
float ptr_for_cubicHermite[v_float32_max_width];
v_float32 v_sequence = v_cvt_f32(vx_load(ptr_x_int));
for (i = 0U; i < len_sub_vfloatStep; i+= v_float32_width)
{
v_float32 v_reg_i = v_add(vx_setall_f32((float)i), v_sequence);
v_float32 v_x = v_sub(v_mul(v_x_start, v_reg_i, v_u), v_half);
v_int32 v_x_int = v_trunc(v_x);
v_float32 v_x_fract = v_sub(v_x, v_cvt_f32(v_floor(v_x)));
vx_store(ptr_x_int, v_x_int);
for(j = 0U; j < v_float32_width; ++j)
ptr_for_cubicHermite[j] = *(tmp.ptr<float>(0) + (ptr_x_int[j] - 1));
v_float32 v_x_int_add_A = vx_load(ptr_for_cubicHermite);
for(j = 0U; j < v_float32_width; ++j)
ptr_for_cubicHermite[j] = *(tmp.ptr<float>(0) + (ptr_x_int[j]));
v_float32 v_x_int_add_B = vx_load(ptr_for_cubicHermite);
for(j = 0U; j < v_float32_width; ++j)
ptr_for_cubicHermite[j] = *(tmp.ptr<float>(0) + (ptr_x_int[j] + 1));
v_float32 v_x_int_add_C = vx_load(ptr_for_cubicHermite);
for(j = 0U; j < v_float32_width; ++j)
ptr_for_cubicHermite[j] = *(tmp.ptr<float>(0) + (ptr_x_int[j] + 2));
v_float32 v_x_int_add_D = vx_load(ptr_for_cubicHermite);
vx_store(dst.ptr<float>(0) + i, simd_cubicHermite(v_x_int_add_A, v_x_int_add_B, v_x_int_add_C, v_x_int_add_D, v_x_fract));
}
#endif
// if the tail exists or scalar version
float *ptr = tmp.ptr<float>(0) + 1U;
float lenScale = 1.0f / (float)(dstlen - 1U);
float U, X, xfract;
int xint;
for(; i < dstlen; ++i)
{
U = (float)i * lenScale;
X = (U * (float)srclen) - 0.5f;
xfract = X - floor(X);
xint = (int)X;
dst.at<float>(i) = scal_cubicHermite(ptr[xint - 1], ptr[xint], ptr[xint + 1], ptr[xint + 2], xfract);
}
}
static void fir_f32(const float *pSrc, float *pDst,
const float *pCoeffs, float *pBuffer,
uint32_t numTaps, uint32_t blockSize)
{
uint32_t copyLen = std::min(blockSize, numTaps);
/////////////// delay line to the left ///////////////
uint32_t i = numTaps - 1U, k = 0U, j = 0U;
uint32_t value_i;
const float* ptr = pSrc + 1U - numTaps;
#if (CV_SIMD || CV_SIMD_SCALABLE)
v_float32 v_pDst;
value_i = (uint32_t)std::max((int64_t)(numTaps + numTaps - 2U) - (int64_t)v_float32_width, (int64_t)0);
uint32_t value_k = (uint32_t)std::max((int64_t)copyLen - (int64_t)v_float32_width, (int64_t)0);
uint32_t value_j = (uint32_t)std::max((int64_t)(numTaps) - (int64_t)v_float32_width, (int64_t)0);
for (; i < value_i && k < value_k; i += v_float32_width, k += v_float32_width)
{
v_float32 pSrc_data = vx_load(ptr + i); //vx_load(pSrc + (i + 1U - numTaps));
vx_store(pBuffer + i, pSrc_data);
}
#endif
// if the tail exists or scalar version
value_i = numTaps + numTaps - 2U;
for (; i < value_i && k < copyLen; ++i, ++k)
{
*(pBuffer + i) = *(ptr + i); // pBuffer[i] = pSrc[i + 1U - numTaps]
}
/////////////// process delay line ///////////////
i = 0U; k = 0U;
value_i = numTaps - 1U;
float *ptr_Buf;
for(; i < value_i && k < copyLen; ++i, ++k)
{
ptr_Buf = pBuffer + i;
j = 0U;
#if (CV_SIMD || CV_SIMD_SCALABLE)
v_pDst = vx_setzero_f32();
for (; j < value_j; j += v_float32_width)
{
v_float32 v_pBuffer = vx_load(ptr_Buf + j); //vx_load(pBuffer[i + j])
v_float32 v_pCoeffs = vx_load(pCoeffs + j); //vx_load(pCoeffs[j])
v_pDst = v_fma(v_pBuffer, v_pCoeffs, v_pDst); // v_pDst = v_pBuffer * v_pCoeffs + v_pDst
}
pDst[i] = v_reduce_sum(v_pDst);
#endif
// if the tail exists or scalar version
for (; j < numTaps; ++j)
pDst[i] += pCoeffs[j] * *(ptr_Buf + j); // pDst[i] += pCoeffs[j] * pBuffer[i + j];
}
/////////////// process main block ///////////////
i = numTaps - 1U;
for(; i < blockSize; ++i)
{
const float *ptr_Src = pSrc + (i + 1U - numTaps);
j = 0U;
#if (CV_SIMD || CV_SIMD_SCALABLE)
v_pDst = vx_setzero_f32();
for (; j < value_j; j += v_float32_width)
{
v_float32 v_pSrc = vx_load(ptr_Src + j); // vx_load(pSrc[i + j - (numTaps - 1)])
v_float32 v_pCoeffs = vx_load(pCoeffs + j); //vx_load(pCoeffs[j])
v_pDst = v_fma(v_pSrc, v_pCoeffs, v_pDst);
}
pDst[i] = v_reduce_sum(v_pDst);
#endif
// if the tail exists or scalar version
for (; j < numTaps; ++j)
pDst[i] += pCoeffs[j] * *(ptr_Src + j); // pDst[i] += pCoeffs[j] * pSrc[i + j + 1U - numTaps];
}
/////////////// move delay line left by copyLen elements ///////////////
#if (CV_SIMD || CV_SIMD_SCALABLE)
value_i = (uint32_t)std::max((int64_t)(numTaps - 1U) - (int64_t)v_float32_width, (int64_t)0);
ptr_Buf = pBuffer + copyLen;
for(i = 0U; i < value_i; i += v_float32_width)
{
v_float32 v_pBuffer = vx_load(ptr_Buf + i); //vx_load(pBuffer[copyLen + i])
vx_store(pBuffer + i, v_pBuffer);
}
#endif
// if the tail exists or scalar version
value_i = numTaps - 1U;
for (; i < value_i; ++i)
{
pBuffer[i] = pBuffer[i + copyLen];
}
/////////////// copy new elements ///////////////
/////////////// post-process delay line ///////////////
int l = (int)(numTaps - 2U); k = 0U;
#if (CV_SIMD || CV_SIMD_SCALABLE)
int value_l = (int)v_float32_width;
const float* ptr_part = pSrc + (blockSize + 1U - numTaps - v_float32_width);
for(; l >= value_l && k < value_k; l -= value_l, k += v_float32_width)
{
v_float32 v_pSrc = vx_load(ptr_part + l); // vx_load(pSrc[blockSize - (numTaps - 1) + l - v_float32_width])
vx_store(pBuffer + (l - value_l), v_pSrc);
}
#endif
const float* ptr_Src = pSrc + (blockSize + 1U - numTaps);
for(; l >= 0 && k < copyLen; --l, ++k)
{
pBuffer[l] = *(ptr_Src + l); // pBuffer[l] = pSrc[blockSize + 1U - numTaps + l];
}
}
void resampleSignal(InputArray inputSignal, OutputArray outputSignal,
const int inFreq, const int outFreq)
{
CV_TRACE_FUNCTION();
CV_Assert(!inputSignal.empty());
CV_CheckGE(inFreq, 1000, "");
CV_CheckGE(outFreq, 1000, "");
if (inFreq == outFreq)
{
inputSignal.copyTo(outputSignal);
return;
}
uint32_t filtLen = 33U;
float beta = 3.395f;
std::vector<float> filt_window(filtLen, 0.f);
init_filter(beta, filtLen, filt_window.data());
float ratio = (float)outFreq / float(inFreq);
Mat1f inMat = inputSignal.getMat();
Mat1f outMat = Mat1f(Size(cvFloor(inMat.cols * ratio), 1));
cubicInterpolate(inMat, outMat.cols, outMat, inMat.cols);
if (inFreq < 2 * outFreq)
{
std::vector<float> dlyl(filtLen * 2 - 1, 0.f);
std::vector<float> ptmp(outMat.cols + 2 * filtLen, 0.);
for (auto i = filtLen; i < outMat.cols + filtLen; ++i)
{
ptmp[i] = outMat.at<float>(i - filtLen);
}
std::vector<float> ptmp2(outMat.cols + 2 * filtLen, 0.f);
fir_f32(ptmp.data(), ptmp2.data(), filt_window.data(), dlyl.data(), filtLen, (uint32_t)(ptmp.size()));
for (auto i = filtLen; i < outMat.cols + filtLen; ++i)
{
outMat.at<float>(i - filtLen) = ptmp2[i + cvFloor((float)filtLen / 2.f)];
}
}
outputSignal.assign(std::move(outMat));
}
}
}

6
modules/signal/test/test_main.cpp

@ -0,0 +1,6 @@ @@ -0,0 +1,6 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
CV_TEST_MAIN("")

10
modules/signal/test/test_precomp.hpp

@ -0,0 +1,10 @@ @@ -0,0 +1,10 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_TEST_PRECOMP_HPP__
#define __OPENCV_TEST_PRECOMP_HPP__
#include "opencv2/ts.hpp"
#include "opencv2/signal.hpp"
#endif

180
modules/signal/test/test_signal.cpp

@ -0,0 +1,180 @@ @@ -0,0 +1,180 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include "opencv2/core/mat.hpp"
#include "opencv2/signal.hpp"
#include <vector>
#include <numeric>
#include <cmath>
#include <string>
#include <random>
#include <ctime>
#include <algorithm>
namespace opencv_test { namespace {
using namespace cv;
using namespace cv::signal;
float MSE(const Mat1f &outSignal, const Mat1f &refSignal)
{
float mse = 0.f;
for (int i = 0; i < refSignal.cols; ++i)
{
mse += powf(outSignal.at<float>(0,i) - refSignal.at<float>(0,i), 2.f);
}
mse /= refSignal.cols;
return mse;
}
// RRMSE = sqrt( MSE / SUM(sqr(refSignal(i))) ) * 100%
float RRMSE(const Mat1f &outSignal, const Mat1f &refSignal)
{
float rrmse = 0.f;
float div = 0.f;
rrmse = MSE(outSignal, refSignal);
for (int i = 0; i < refSignal.cols; ++i)
{
div += powf(refSignal.at<float>(0,i), 2.f);
}
rrmse /= div;
rrmse = sqrt(rrmse) * 100;
return rrmse;
}
TEST(ResampleTest, simple_resample_test_up)
{
Mat1f sample_signal(Size(1000U,1U));
Mat1f outSignal;
std::iota(sample_signal.begin(), sample_signal.end(), 1.f);
resampleSignal(sample_signal, outSignal, 16000U, 32000U);
vector<float> ref(outSignal.cols, 0.f);
for (uint32_t i = 0U; i < 2000U; ++i)
{
ref[i] = static_cast<float>(i) / 2.f;
}
EXPECT_NEAR(cvtest::norm(ref, NORM_L2) / cvtest::norm(outSignal, NORM_L2), 1.0f, 0.05f)
<< "\nL2_norm(refSignal) = " << cvtest::norm(ref, NORM_L2)
<< "\nL2_norm(outSignal) = " << cvtest::norm(outSignal, NORM_L2);
}
TEST(ResampleTest, resample_sin_signal_up_2)
{
Mat1f sample_signal(Size(1000U,1U));
Mat1f outSignal;
for (uint32_t i = 0U; i < (uint32_t)sample_signal.cols; ++i)
{
sample_signal.at<float>(0, i) = sinf(float(i));
}
resampleSignal(sample_signal, outSignal, 16000U, 32000U);
vector<float> ref(outSignal.cols, 0.f);
for (uint32_t i = 0U; i < 2000U; ++i)
{
ref[i] = sin(static_cast<float>(i) / 2.f);
}
EXPECT_NEAR(cvtest::norm(ref, NORM_L2) / cvtest::norm(outSignal, NORM_L2), 1.0f, 0.05f)
<< "\nL2_norm(refSignal) = " << cvtest::norm(ref, NORM_L2)
<< "\nL2_norm(outSignal) = " << cvtest::norm(outSignal, NORM_L2);
}
TEST(ResampleTest, simple_resample_test_dn)
{
Mat1f sample_signal(Size(1000U,1U));
Mat1f outSignal;
std::iota(sample_signal.begin(), sample_signal.end(), 1.f);
resampleSignal(sample_signal, outSignal, 32000U, 16000U);
vector<float> ref(outSignal.cols, 0.f);
for (uint32_t i = 0U; i < 500U; ++i)
{
ref[i] = static_cast<float>(i) * 2.f;
}
EXPECT_NEAR(cvtest::norm(ref, NORM_L2) / cvtest::norm(outSignal, NORM_L2), 1.0f, 0.05f)
<< "\nL2_norm(refSignal) = " << cvtest::norm(ref, NORM_L2)
<< "\nL2_norm(outSignal) = " << cvtest::norm(outSignal, NORM_L2);
}
TEST(ResampleTest, resample_sin_signal_dn_2)
{
Mat1f sample_signal(Size(1000U,1U));
Mat1f outSignal;
for (uint32_t i = 0U; i < (uint32_t)sample_signal.cols; ++i)
{
sample_signal.at<float>(0, i) = sinf(float(i));
}
resampleSignal(sample_signal, outSignal, 32000U, 16000U);
std::vector<float> ref(outSignal.cols, 0.f);
for (uint32_t i = 0U; i < 500U; ++i)
{
ref[i] = sin(static_cast<float>(i) * 2.f);
}
EXPECT_NEAR(cvtest::norm(ref, NORM_L2) / cvtest::norm(outSignal, NORM_L2), 1.0f, 0.05f)
<< "\nL2_norm(refSignal) = " << cvtest::norm(ref, NORM_L2)
<< "\nL2_norm(outSignal) = " << cvtest::norm(outSignal, NORM_L2);
}
// produce 1s of signal @ freq hz
void fillSignal(uint32_t freq, Mat1f &inSignal)
{
static std::default_random_engine e((unsigned int)(time(NULL)));
static std::uniform_real_distribution<> dis(0, 1); // range [0, 1)
static auto a = dis(e), b = dis(e), c = dis(e);
uint32_t idx = 0;
std::generate(inSignal.begin(), inSignal.end(), [&]()
{
float ret = static_cast<float>(sin(idx/(float)freq + a) + 3 * sin(CV_PI / 4 * (idx/(float)freq + b))
+ 5 * sin(CV_PI/12 * idx/(float)freq + c) + 20*cos(idx/(float)freq*4000));
idx++;
return ret;
});
}
class ResampleTestClass : public testing::TestWithParam<std::tuple<int, int>>
{
};
TEST_P(ResampleTestClass, func_test) {
auto params1 = GetParam();
uint32_t inFreq = std::get<0>(params1);
uint32_t outFreq = std::get<1>(params1);
// 1 second @ inFreq hz
Mat1f inSignal(Size(inFreq, 1U));
Mat1f outSignal;
// generating testing function as a sum of different sinusoids
fillSignal(inFreq, inSignal);
resampleSignal(inSignal, outSignal, inFreq, outFreq);
// reference signal
// 1 second @ outFreq hz
Mat1f refSignal(Size(outFreq, 1U));
fillSignal(outFreq, refSignal);
// calculating maxDiff
float maxDiff = 0.f;
// exclude 2 elements and last 2 elements from testing
for (uint32_t i = 2; i < (uint32_t)refSignal.cols - 2; ++i)
{
if(maxDiff < abs(refSignal.at<float>(0,i) - outSignal.at<float>(0,i)))
{
maxDiff = abs(refSignal.at<float>(0,i) - outSignal.at<float>(0,i));
}
}
auto max = std::max_element(outSignal.begin(), outSignal.end());
float maxDiffRel = maxDiff / (*max);
EXPECT_LE(maxDiffRel, 0.35f);
// calculating relative error of L2 norms
EXPECT_NEAR(abs(cvtest::norm(outSignal, NORM_L2) - cvtest::norm(refSignal, NORM_L2)) /
cvtest::norm(refSignal, NORM_L2), 0.0f, 0.05f);
// calculating relative mean squared error
float rrmse = RRMSE(outSignal, refSignal);
// 1% error
EXPECT_LE(rrmse, 1.f);
}
INSTANTIATE_TEST_CASE_P(RefSignalTestingCase,
ResampleTestClass,
::testing::Combine(testing::Values(16000, 32000, 44100, 48000),
testing::Values(16000, 32000, 44100, 48000)));
}} // namespace
Loading…
Cancel
Save