You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

346 lines
10 KiB

/*
* SC031GS driver.
*
* Copyright 2022-2023 Espressif Systems (Shanghai) PTE LTD
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "sccb.h"
#include "xclk.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "sc031gs.h"
#include "sc031gs_settings.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char* TAG = "sc031gs";
#endif
#define SC031GS_PID_LOW_REG 0x3107
#define SC031GS_PID_HIGH_REG 0x3108
#define SC031GS_MAX_FRAME_WIDTH (640)
#define SC031GS_MAX_FRAME_HIGH (480)
#define SC031GS_GAIN_CTRL_COARSE_REG 0x3e08
#define SC031GS_GAIN_CTRL_FINE_REG 0x3e09
#define SC031GS_PIDH_MAGIC 0x00 // High byte of sensor ID
#define SC031GS_PIDL_MAGIC 0x31 // Low byte of sensor ID
static int get_reg(sensor_t *sensor, int reg, int mask)
{
int ret = SCCB_Read16(sensor->slv_addr, reg & 0xFFFF);
if(ret > 0){
ret &= mask;
}
return ret;
}
static int set_reg(sensor_t *sensor, int reg, int mask, int value)
{
int ret = 0;
ret = SCCB_Read16(sensor->slv_addr, reg & 0xFFFF);
if(ret < 0){
return ret;
}
value = (ret & ~mask) | (value & mask);
ret = SCCB_Write16(sensor->slv_addr, reg & 0xFFFF, value);
return ret;
}
static int set_reg_bits(sensor_t *sensor, uint16_t reg, uint8_t offset, uint8_t length, uint8_t value)
{
int ret = 0;
ret = SCCB_Read16(sensor->slv_addr, reg);
if(ret < 0){
return ret;
}
uint8_t mask = ((1 << length) - 1) << offset;
value = (ret & ~mask) | ((value << offset) & mask);
ret = SCCB_Write16(sensor->slv_addr, reg, value);
return ret;
}
static int write_regs(uint8_t slv_addr, const struct sc031gs_regval *regs)
{
int i = 0, ret = 0;
while (!ret && regs[i].addr != REG_NULL) {
if (regs[i].addr == REG_DELAY) {
vTaskDelay(regs[i].val / portTICK_PERIOD_MS);
} else {
ret = SCCB_Write16(slv_addr, regs[i].addr, regs[i].val);
}
i++;
}
return ret;
}
#define WRITE_REGS_OR_RETURN(regs) ret = write_regs(slv_addr, regs); if(ret){return ret;}
#define WRITE_REG_OR_RETURN(reg, val) ret = set_reg(sensor, reg, 0xFF, val); if(ret){return ret;}
#define SET_REG_BITS_OR_RETURN(reg, offset, length, val) ret = set_reg_bits(sensor, reg, offset, length, val); if(ret){return ret;}
static int set_hmirror(sensor_t *sensor, int enable)
{
int ret = 0;
if(enable) {
SET_REG_BITS_OR_RETURN(0x3221, 1, 2, 0x3); // mirror on
} else {
SET_REG_BITS_OR_RETURN(0x3221, 1, 2, 0x0); // mirror off
}
return ret;
}
static int set_vflip(sensor_t *sensor, int enable)
{
int ret = 0;
if(enable) {
SET_REG_BITS_OR_RETURN(0x3221, 5, 2, 0x3); // flip on
} else {
SET_REG_BITS_OR_RETURN(0x3221, 5, 2, 0x0); // flip off
}
return ret;
}
static int set_colorbar(sensor_t *sensor, int enable)
{
int ret = 0;
SET_REG_BITS_OR_RETURN(0x4501, 3, 1, enable & 0x01); // enable test pattern mode
SET_REG_BITS_OR_RETURN(0x3902, 6, 1, 1); // enable auto BLC, disable auto BLC if set to 0
SET_REG_BITS_OR_RETURN(0x3e06, 0, 2, 3); // digital gain: 00->1x, 01->2x, 03->4x.
return ret;
}
static int set_special_effect(sensor_t *sensor, int sleep_mode_enable) // For sc03ags sensor, This API used for sensor sleep mode control.
{
// Add some others special control in this API, use switch to control different funcs, such as ctrl_id.
int ret = 0;
SET_REG_BITS_OR_RETURN(0x0100, 0, 1, !(sleep_mode_enable & 0x01)); // 0: enable sleep mode. In sleep mode, the registers can be accessed.
return ret;
}
int set_bpc(sensor_t *sensor, int enable) // // For sc03ags sensor, This API used to control BLC
{
int ret = 0;
SET_REG_BITS_OR_RETURN(0x3900, 0, 1, enable & 0x01);
SET_REG_BITS_OR_RETURN(0x3902, 6, 1, enable & 0x01);
return ret;
}
static int set_agc_gain(sensor_t *sensor, int gain)
{
// sc031gs doesn't support AGC, use this func to control.
int ret = 0;
uint32_t coarse_gain, fine_gain, fine_again_reg_v, coarse_gain_reg_v;
if (gain < 0x20) {
WRITE_REG_OR_RETURN(0x3314, 0x3a);
WRITE_REG_OR_RETURN(0x3317, 0x20);
} else {
WRITE_REG_OR_RETURN(0x3314, 0x44);
WRITE_REG_OR_RETURN(0x3317, 0x0f);
}
if (gain < 0x20) { /*1x ~ 2x*/
fine_gain = gain - 16;
coarse_gain = 0x03;
fine_again_reg_v = ((0x01 << 4) & 0x10) |
(fine_gain & 0x0f);
coarse_gain_reg_v = coarse_gain & 0x1F;
} else if (gain < 0x40) { /*2x ~ 4x*/
fine_gain = (gain >> 1) - 16;
coarse_gain = 0x7;
fine_again_reg_v = ((0x01 << 4) & 0x10) |
(fine_gain & 0x0f);
coarse_gain_reg_v = coarse_gain & 0x1F;
} else if (gain < 0x80) { /*4x ~ 8x*/
fine_gain = (gain >> 2) - 16;
coarse_gain = 0xf;
fine_again_reg_v = ((0x01 << 4) & 0x10) |
(fine_gain & 0x0f);
coarse_gain_reg_v = coarse_gain & 0x1F;
} else { /*8x ~ 16x*/
fine_gain = (gain >> 3) - 16;
coarse_gain = 0x1f;
fine_again_reg_v = ((0x01 << 4) & 0x10) |
(fine_gain & 0x0f);
coarse_gain_reg_v = coarse_gain & 0x1F;
}
WRITE_REG_OR_RETURN(SC031GS_GAIN_CTRL_COARSE_REG, coarse_gain_reg_v);
WRITE_REG_OR_RETURN(SC031GS_GAIN_CTRL_FINE_REG, fine_again_reg_v);
return ret;
}
static int set_aec_value(sensor_t *sensor, int value)
{
// For now, HDR is disabled, the sensor work in normal mode.
int ret = 0;
WRITE_REG_OR_RETURN(0x3e01, value & 0xFF); // AE target high
WRITE_REG_OR_RETURN(0x3e02, (value >> 8) & 0xFF); // AE target low
return ret;
}
static int reset(sensor_t *sensor)
{
int ret = write_regs(sensor->slv_addr, sc031gs_default_init_regs);
if (ret) {
ESP_LOGE(TAG, "reset fail");
}
// printf("reg 0x3d04=%02x\r\n", get_reg(sensor, 0x3d04, 0xff));
// set_colorbar(sensor, 1);
return ret;
}
static int set_output_window(sensor_t *sensor, int offset_x, int offset_y, int w, int h)
{
int ret = 0;
//sc:H_start={0x3212[1:0],0x3213},H_length={0x3208[1:0],0x3209},
// printf("%d, %d, %d, %d\r\n", ((offset_x>>8) & 0x03), offset_x & 0xff, ((w>>8) & 0x03), w & 0xff);
WRITE_REG_OR_RETURN(SC031GS_OUTPUT_WINDOW_START_X_H_REG, 0x0); // For now, we use x_start is 0x04
WRITE_REG_OR_RETURN(SC031GS_OUTPUT_WINDOW_START_X_L_REG, 0x04);
WRITE_REG_OR_RETURN(SC031GS_OUTPUT_WINDOW_WIDTH_H_REG, ((w>>8) & 0x03));
WRITE_REG_OR_RETURN(SC031GS_OUTPUT_WINDOW_WIDTH_L_REG, w & 0xff);
//sc:V_start={0x3210[1:0],0x3211},V_length={0x320a[1:0],0x320b},
// printf("%d, %d, %d, %d\r\n", ((offset_y>>8) & 0x03), offset_y & 0xff, ((h>>8) & 0x03), h & 0xff);
WRITE_REG_OR_RETURN(SC031GS_OUTPUT_WINDOW_START_Y_H_REG, 0x0); // For now, we use y_start is 0x08
WRITE_REG_OR_RETURN(SC031GS_OUTPUT_WINDOW_START_Y_L_REG, 0x08);
WRITE_REG_OR_RETURN(SC031GS_OUTPUT_WINDOW_HIGH_H_REG, ((h>>8) & 0x03));
WRITE_REG_OR_RETURN(SC031GS_OUTPUT_WINDOW_HIGH_L_REG, h & 0xff);
vTaskDelay(10 / portTICK_PERIOD_MS);
return ret;
}
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
uint16_t w = resolution[framesize].width;
uint16_t h = resolution[framesize].height;
if(w > SC031GS_MAX_FRAME_WIDTH || h > SC031GS_MAX_FRAME_HIGH) {
goto err;
}
if(w != 200 || h != 200) {
ESP_LOGE(TAG, "Only support 200*200 for now, contact us if you want to use other resolutions");
goto err;
}
uint16_t offset_x = (640-w) /2 + 4;
uint16_t offset_y = (480-h) /2 + 4;
if(set_output_window(sensor, offset_x, offset_y, w, h)) {
goto err;
}
sensor->status.framesize = framesize;
return 0;
err:
ESP_LOGE(TAG, "frame size err");
return -1;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret=0;
sensor->pixformat = pixformat;
switch (pixformat) {
case PIXFORMAT_GRAYSCALE:
break;
default:
ESP_LOGE(TAG, "Only support GRAYSCALE(Y8)");
return -1;
}
return ret;
}
static int init_status(sensor_t *sensor)
{
return 0;
}
static int set_dummy(sensor_t *sensor, int val){ return -1; }
static int set_xclk(sensor_t *sensor, int timer, int xclk)
{
int ret = 0;
sensor->xclk_freq_hz = xclk * 1000000U;
ret = xclk_timer_conf(timer, sensor->xclk_freq_hz);
return ret;
}
int sc031gs_detect(int slv_addr, sensor_id_t *id)
{
if (SC031GS_SCCB_ADDR == slv_addr) {
uint8_t MIDL = SCCB_Read16(slv_addr, SC031GS_PID_HIGH_REG);
uint8_t MIDH = SCCB_Read16(slv_addr, SC031GS_PID_LOW_REG);
uint16_t PID = MIDH << 8 | MIDL;
if (SC031GS_PID == PID) {
id->PID = PID;
return PID;
} else {
ESP_LOGI(TAG, "Mismatch PID=0x%x", PID);
}
}
return 0;
}
int sc031gs_init(sensor_t *sensor)
{
// Set function pointers
sensor->reset = reset;
sensor->init_status = init_status;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_colorbar = set_colorbar;
sensor->set_hmirror = set_hmirror;
sensor->set_vflip = set_vflip;
sensor->set_agc_gain = set_agc_gain;
sensor->set_aec_value = set_aec_value;
sensor->set_special_effect = set_special_effect;
//not supported
sensor->set_awb_gain = set_dummy;
sensor->set_contrast = set_dummy;
sensor->set_sharpness = set_dummy;
sensor->set_saturation= set_dummy;
sensor->set_denoise = set_dummy;
sensor->set_quality = set_dummy;
sensor->set_special_effect = set_dummy;
sensor->set_wb_mode = set_dummy;
sensor->set_ae_level = set_dummy;
sensor->get_reg = get_reg;
sensor->set_reg = set_reg;
sensor->set_xclk = set_xclk;
ESP_LOGD(TAG, "sc031gs Attached");
return 0;
}