You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
453 lines
11 KiB
453 lines
11 KiB
/* |
|
* |
|
* HM0360 driver. |
|
* |
|
*/ |
|
#include <stdint.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include "sccb.h" |
|
#include "xclk.h" |
|
#include "hm0360.h" |
|
#include "hm0360_regs.h" |
|
#include "hm0360_settings.h" |
|
#include "freertos/FreeRTOS.h" |
|
#include "freertos/task.h" |
|
|
|
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG) |
|
#include "esp32-hal-log.h" |
|
#else |
|
#include "esp_log.h" |
|
static const char *TAG = "HM0360"; |
|
#endif |
|
|
|
// #define REG_DEBUG_ON |
|
|
|
static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div); |
|
|
|
static int read_reg(uint8_t slv_addr, const uint16_t reg) |
|
{ |
|
int ret = SCCB_Read16(slv_addr, reg); |
|
#ifdef REG_DEBUG_ON |
|
if (ret < 0) { |
|
ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret); |
|
} |
|
#endif |
|
return ret; |
|
} |
|
|
|
static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask) |
|
{ |
|
return (read_reg(slv_addr, reg) & mask) == mask; |
|
} |
|
|
|
static int read_reg16(uint8_t slv_addr, const uint16_t reg) |
|
{ |
|
int ret = 0, ret2 = 0; |
|
|
|
ret = read_reg(slv_addr, reg); |
|
if (ret >= 0) { |
|
ret = (ret & 0xFF) << 8; |
|
ret2 = read_reg(slv_addr, reg + 1); |
|
if (ret2 < 0) { |
|
ret = ret2; |
|
} else { |
|
ret |= ret2 & 0xFF; |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value) |
|
{ |
|
int ret = 0; |
|
#ifndef REG_DEBUG_ON |
|
ret = SCCB_Write16(slv_addr, reg, value); |
|
#else |
|
int old_value = read_reg(slv_addr, reg); |
|
if (old_value < 0) { |
|
return old_value; |
|
} |
|
|
|
if ((uint8_t)old_value != value) { |
|
ESP_LOGD(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value); |
|
ret = SCCB_Write16(slv_addr, reg, value); |
|
} else { |
|
ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value); |
|
ret = SCCB_Write16(slv_addr, reg, value); // maybe not? |
|
} |
|
if (ret < 0) { |
|
ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret); |
|
} |
|
#endif |
|
return ret; |
|
} |
|
|
|
static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value) |
|
{ |
|
int ret = 0; |
|
uint8_t c_value, new_value; |
|
|
|
ret = read_reg(slv_addr, reg); |
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
c_value = ret; |
|
new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset); |
|
ret = write_reg(slv_addr, reg, new_value); |
|
return ret; |
|
} |
|
|
|
static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2]) |
|
{ |
|
int i = 0, ret = 0; |
|
|
|
while (!ret && regs[i][0] != REGLIST_TAIL) { |
|
if (regs[i][0] == REG_DLY) { |
|
vTaskDelay(regs[i][1] / portTICK_PERIOD_MS); |
|
} else { |
|
ret = write_reg(slv_addr, regs[i][0], regs[i][1]); |
|
} |
|
i++; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static int write_reg16(uint8_t slv_addr, const uint16_t reg, uint16_t value) |
|
{ |
|
if (write_reg(slv_addr, reg, value >> 8) || write_reg(slv_addr, reg + 1, value)) { |
|
return -1; |
|
} |
|
return 0; |
|
} |
|
|
|
static int write_addr_reg(uint8_t slv_addr, const uint16_t reg, uint16_t x_value, uint16_t y_value) |
|
{ |
|
if (write_reg16(slv_addr, reg, x_value) || write_reg16(slv_addr, reg + 2, y_value)) { |
|
return -1; |
|
} |
|
return 0; |
|
} |
|
|
|
#define write_reg_bits(slv_addr, reg, mask, enable) set_reg_bits(slv_addr, reg, 0, mask, (enable) ? (mask) : 0) |
|
|
|
static int reset(sensor_t *sensor) |
|
{ |
|
vTaskDelay(100 / portTICK_PERIOD_MS); |
|
int ret = 0; |
|
|
|
// Software Reset: clear all registers and reset them to their default values |
|
ret = write_reg(sensor->slv_addr, SW_RESET, 0x00); |
|
if (ret) { |
|
ESP_LOGE(TAG, "Software Reset FAILED!"); |
|
return ret; |
|
} |
|
|
|
vTaskDelay(100 / portTICK_PERIOD_MS); |
|
ret = write_regs(sensor->slv_addr, sensor_default_regs); |
|
if (ret == 0) { |
|
ESP_LOGD(TAG, "Camera defaults loaded"); |
|
vTaskDelay(100 / portTICK_PERIOD_MS); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat) |
|
{ |
|
int ret = 0; |
|
sensor->pixformat = pixformat; |
|
|
|
switch (pixformat) { |
|
case PIXFORMAT_GRAYSCALE: |
|
break; |
|
default: |
|
ESP_LOGE(TAG, "Only support GRAYSCALE"); |
|
return -1; |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static int set_framesize(sensor_t *sensor, framesize_t framesize) |
|
{ |
|
int ret = 0; |
|
|
|
sensor->status.framesize = framesize; |
|
ret = write_regs(sensor->slv_addr, sensor_default_regs); |
|
|
|
if (framesize == FRAMESIZE_QQVGA) { |
|
ESP_LOGI(TAG, "Set FRAMESIZE_QQVGA"); |
|
ret |= write_regs(sensor->slv_addr, sensor_framesize_QQVGA); |
|
ret |= set_reg_bits(sensor->slv_addr, 0x3024, 0, 0x01, 1); |
|
} else if (framesize == FRAMESIZE_QVGA) { |
|
ESP_LOGI(TAG, "Set FRAMESIZE_QVGA"); |
|
ret |= write_regs(sensor->slv_addr, sensor_framesize_QVGA); |
|
ret |= set_reg_bits(sensor->slv_addr, 0x3024, 0, 0x01, 1); |
|
} else if (framesize == FRAMESIZE_VGA) { |
|
ESP_LOGI(TAG, "Set FRAMESIZE_VGA"); |
|
ret |= set_reg_bits(sensor->slv_addr, 0x3024, 0, 0x01, 0); |
|
} else { |
|
ESP_LOGI(TAG, "Dont suppost this size, Set FRAMESIZE_VGA"); |
|
ret |= set_reg_bits(sensor->slv_addr, 0x3024, 0, 0x01, 0); |
|
} |
|
|
|
if (ret == 0) { |
|
_set_pll(sensor, 0, 0, 0, 0, 0, 0, 0, 0); |
|
ret |= write_reg(sensor->slv_addr, 0x0104, 0x01); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static int set_hmirror(sensor_t *sensor, int enable) |
|
{ |
|
if (set_reg_bits(sensor->slv_addr, 0x0101, 0, 0x01, enable)) { |
|
return -1; |
|
} |
|
|
|
ESP_LOGD(TAG, "Set h-mirror to: %d", enable); |
|
|
|
return 0; |
|
} |
|
|
|
static int set_vflip(sensor_t *sensor, int enable) |
|
{ |
|
if (set_reg_bits(sensor->slv_addr, 0x0101, 1, 0x01, enable)) { |
|
return -1; |
|
} |
|
|
|
ESP_LOGD(TAG, "Set v-flip to: %d", enable); |
|
|
|
return 0; |
|
} |
|
|
|
static int set_colorbar(sensor_t *sensor, int enable) |
|
{ |
|
if (set_reg_bits(sensor->slv_addr, 0x0601, 0, 0x01, enable)) { |
|
return -1; |
|
} |
|
|
|
ESP_LOGD(TAG, "Set color-bar to: %d", enable); |
|
|
|
return 0; |
|
} |
|
|
|
static int set_exposure_ctrl(sensor_t *sensor, int enable) |
|
{ |
|
if (set_reg_bits(sensor->slv_addr, 0x2000, 0, 0x01, enable)) { |
|
return -1; |
|
} |
|
|
|
ESP_LOGD(TAG, "Set exposure to: %d", enable); |
|
|
|
return 0; |
|
} |
|
|
|
static int set_brightness(sensor_t *sensor, int level) |
|
{ |
|
uint8_t ae_mean; |
|
|
|
switch (level) { |
|
case 0: |
|
ae_mean = 60; |
|
break; |
|
case 1: |
|
ae_mean = 80; |
|
break; |
|
case 2: |
|
ae_mean = 100; |
|
break; |
|
case 3: |
|
ae_mean = 127; |
|
break; |
|
default: |
|
ae_mean = 80; |
|
} |
|
|
|
return write_reg(sensor->slv_addr, AE_TARGET_MEAN, ae_mean); |
|
} |
|
|
|
static int get_reg(sensor_t *sensor, int reg, int mask) |
|
{ |
|
int ret = 0, ret2 = 0; |
|
|
|
if (mask > 0xFF) { |
|
ret = read_reg16(sensor->slv_addr, reg); |
|
if (ret >= 0 && mask > 0xFFFF) { |
|
ret2 = read_reg(sensor->slv_addr, reg + 2); |
|
if (ret2 >= 0) { |
|
ret = (ret << 8) | ret2; |
|
} else { |
|
ret = ret2; |
|
} |
|
} |
|
} else { |
|
ret = read_reg(sensor->slv_addr, reg); |
|
} |
|
|
|
if (ret > 0) { |
|
ret &= mask; |
|
} |
|
return ret; |
|
} |
|
|
|
static int set_reg(sensor_t *sensor, int reg, int mask, int value) |
|
{ |
|
int ret = 0, ret2 = 0; |
|
|
|
if (mask > 0xFF) { |
|
ret = read_reg16(sensor->slv_addr, reg); |
|
if (ret >= 0 && mask > 0xFFFF) { |
|
ret2 = read_reg(sensor->slv_addr, reg + 2); |
|
if (ret2 >= 0) { |
|
ret = (ret << 8) | ret2; |
|
} else { |
|
ret = ret2; |
|
} |
|
} |
|
} else { |
|
ret = read_reg(sensor->slv_addr, reg); |
|
} |
|
|
|
if (ret < 0) { |
|
return ret; |
|
} |
|
|
|
value = (ret & ~mask) | (value & mask); |
|
if (mask > 0xFFFF) { |
|
ret = write_reg16(sensor->slv_addr, reg, value >> 8); |
|
if (ret >= 0) { |
|
ret = write_reg(sensor->slv_addr, reg + 2, value & 0xFF); |
|
} |
|
} else if (mask > 0xFF) { |
|
ret = write_reg16(sensor->slv_addr, reg, value); |
|
} else { |
|
ret = write_reg(sensor->slv_addr, reg, value); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
static int set_xclk(sensor_t *sensor, int timer, int xclk) |
|
{ |
|
int ret = 0; |
|
sensor->xclk_freq_hz = xclk * 1000000U; |
|
ret = xclk_timer_conf(timer, sensor->xclk_freq_hz); |
|
if (ret == 0) { |
|
ESP_LOGD(TAG, "Set xclk to %d", xclk); |
|
} |
|
return ret; |
|
} |
|
|
|
static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div) |
|
{ |
|
uint8_t value = 0; |
|
uint8_t pll_cfg = 0; |
|
|
|
if (sensor->xclk_freq_hz <= 6000000) { |
|
value = 0x03; |
|
} else if (sensor->xclk_freq_hz <= 12000000) { |
|
value = 0x02; |
|
} else if (sensor->xclk_freq_hz <= 18000000) { |
|
value = 0x01; |
|
} else { // max is 48000000 |
|
value = 0x00; |
|
} |
|
|
|
pll_cfg = read_reg(sensor->slv_addr, PLL1CFG); |
|
return write_reg(sensor->slv_addr, PLL1CFG, (pll_cfg & 0xFC) | value); |
|
} |
|
|
|
static int set_dummy(sensor_t *sensor, int val) |
|
{ |
|
ESP_LOGW(TAG, "Unsupported"); |
|
return -1; |
|
} |
|
|
|
static int set_gainceiling_dummy(sensor_t *sensor, gainceiling_t val) |
|
{ |
|
ESP_LOGW(TAG, "Unsupported"); |
|
return -1; |
|
} |
|
|
|
static int init_status(sensor_t *sensor) |
|
{ |
|
(void) write_addr_reg; |
|
|
|
sensor->status.brightness = 0; |
|
sensor->status.contrast = 0; |
|
sensor->status.saturation = 0; |
|
sensor->status.sharpness = 0; |
|
sensor->status.denoise = 0; |
|
sensor->status.ae_level = 0; |
|
sensor->status.awb = 0; |
|
sensor->status.aec = 0; |
|
sensor->status.hmirror = check_reg_mask(sensor->slv_addr, 0x101, 0x01); |
|
sensor->status.vflip = check_reg_mask(sensor->slv_addr, 0x101, 0x02); |
|
sensor->status.lenc = 0; |
|
sensor->status.awb_gain = 0; |
|
sensor->status.agc_gain = 0; |
|
sensor->status.aec_value = 0; |
|
|
|
return 0; |
|
} |
|
|
|
int hm0360_detect(int slv_addr, sensor_id_t *id) |
|
{ |
|
if (HM1055_SCCB_ADDR == slv_addr) { |
|
uint8_t h = SCCB_Read16(slv_addr, MODEL_ID_H); |
|
uint8_t l = SCCB_Read16(slv_addr, MODEL_ID_L); |
|
uint16_t PID = (h << 8) | l; |
|
if (HM0360_PID == PID) { |
|
id->PID = PID; |
|
id->VER = SCCB_Read16(slv_addr, SILICON_REV); |
|
return PID; |
|
} else { |
|
ESP_LOGD(TAG, "Mismatch PID=0x%x", PID); |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
int hm0360_init(sensor_t *sensor) |
|
{ |
|
sensor->reset = reset; |
|
sensor->set_pixformat = set_pixformat; |
|
sensor->set_framesize = set_framesize; |
|
sensor->set_contrast = set_dummy; |
|
sensor->set_brightness = set_brightness; |
|
sensor->set_saturation = set_dummy; |
|
sensor->set_sharpness = set_dummy; |
|
sensor->set_gainceiling = set_gainceiling_dummy; |
|
sensor->set_quality = set_dummy; |
|
sensor->set_colorbar = set_colorbar; |
|
sensor->set_gain_ctrl = set_dummy; |
|
sensor->set_exposure_ctrl = set_exposure_ctrl; |
|
sensor->set_whitebal = set_dummy; |
|
sensor->set_hmirror = set_hmirror; |
|
sensor->set_vflip = set_vflip; |
|
sensor->init_status = init_status; |
|
sensor->set_aec2 = set_dummy; |
|
sensor->set_aec_value = set_dummy; |
|
sensor->set_special_effect = set_dummy; |
|
sensor->set_wb_mode = set_dummy; |
|
sensor->set_ae_level = set_dummy; |
|
sensor->set_dcw = set_dummy; |
|
sensor->set_bpc = set_dummy; |
|
sensor->set_wpc = set_dummy; |
|
sensor->set_agc_gain = set_dummy; |
|
sensor->set_raw_gma = set_dummy; |
|
sensor->set_lenc = set_dummy; |
|
sensor->set_denoise = set_dummy; |
|
|
|
sensor->get_reg = get_reg; |
|
sensor->set_reg = set_reg; |
|
sensor->set_res_raw = NULL; |
|
sensor->set_pll = _set_pll; |
|
sensor->set_xclk = set_xclk; |
|
return 0; |
|
}
|
|
|