You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

479 lines
13 KiB

/*
* This file is part of the OpenMV project.
* Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
* This work is licensed under the MIT license, see the file LICENSE for details.
*
* OV2640 driver.
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sccb.h"
#include "ov2640.h"
#include "ov2640_regs.h"
#include "ov2640_settings.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
#include "esp32-hal-log.h"
#else
#include "esp_log.h"
static const char* TAG = "ov2640";
#endif
static volatile ov2640_bank_t reg_bank = BANK_MAX;
static int set_bank(sensor_t *sensor, ov2640_bank_t bank)
{
int res = 0;
if (bank != reg_bank) {
reg_bank = bank;
res = SCCB_Write(sensor->slv_addr, BANK_SEL, bank);
}
return res;
}
static int write_regs(sensor_t *sensor, const uint8_t (*regs)[2])
{
int i=0, res = 0;
while (regs[i][0]) {
if (regs[i][0] == BANK_SEL) {
res = set_bank(sensor, regs[i][1]);
} else {
res = SCCB_Write(sensor->slv_addr, regs[i][0], regs[i][1]);
}
if (res) {
return res;
}
i++;
}
return res;
}
static int write_reg(sensor_t *sensor, ov2640_bank_t bank, uint8_t reg, uint8_t value)
{
int ret = set_bank(sensor, bank);
if(!ret) {
ret = SCCB_Write(sensor->slv_addr, reg, value);
}
return ret;
}
static int set_reg_bits(sensor_t *sensor, uint8_t bank, uint8_t reg, uint8_t offset, uint8_t mask, uint8_t value)
{
int ret = 0;
uint8_t c_value, new_value;
ret = set_bank(sensor, bank);
if(ret) {
return ret;
}
c_value = SCCB_Read(sensor->slv_addr, reg);
new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
ret = SCCB_Write(sensor->slv_addr, reg, new_value);
return ret;
}
//Function is not needed currently
#if 0
static uint8_t get_reg_bits(sensor_t *sensor, uint8_t bank, uint8_t reg, uint8_t offset, uint8_t mask)
{
uint8_t ret = 0;
if(set_bank(sensor, bank)){
return ret;
}
ret = (SCCB_Read(sensor->slv_addr, reg) >> offset) & mask;
return ret;
}
#endif
static int write_reg_bits(sensor_t *sensor, uint8_t bank, uint8_t reg, uint8_t mask, int enable)
{
return set_reg_bits(sensor, bank, reg, 0, mask, enable?mask:0);
}
#define WRITE_REGS_OR_RETURN(regs) ret = write_regs(sensor, regs); if(ret){return ret;}
#define WRITE_REG_OR_RETURN(bank, reg, val) ret = write_reg(sensor, bank, reg, val); if(ret){return ret;}
#define SET_REG_BITS_OR_RETURN(bank, reg, offset, mask, val) ret = set_reg_bits(sensor, bank, reg, offset, mask, val); if(ret){return ret;}
static int reset(sensor_t *sensor)
{
int ret = 0;
WRITE_REG_OR_RETURN(BANK_SENSOR, COM7, COM7_SRST);
vTaskDelay(10 / portTICK_PERIOD_MS);
WRITE_REGS_OR_RETURN(ov2640_settings_cif);
return ret;
}
static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
{
int ret = 0;
sensor->pixformat = pixformat;
switch (pixformat) {
case PIXFORMAT_RGB565:
case PIXFORMAT_RGB888:
WRITE_REGS_OR_RETURN(ov2640_settings_rgb565);
break;
case PIXFORMAT_YUV422:
case PIXFORMAT_GRAYSCALE:
WRITE_REGS_OR_RETURN(ov2640_settings_yuv422);
break;
case PIXFORMAT_JPEG:
WRITE_REGS_OR_RETURN(ov2640_settings_jpeg3);
break;
default:
ret = -1;
break;
}
if(!ret) {
vTaskDelay(10 / portTICK_PERIOD_MS);
}
return ret;
}
//Functions are not needed currently
#if 0
//Set the sensor output window
int set_output_window(sensor_t *sensor, uint16_t x, uint16_t y, uint16_t width, uint16_t height)
{
int ret = 0;
uint16_t endx, endy;
uint8_t com1, reg32;
endy = y + height / 2;
com1 = read_reg(sensor, BANK_SENSOR, COM1);
WRITE_REG_OR_RETURN(BANK_SENSOR, COM1, (com1 & 0XF0) | (((endy & 0X03) << 2) | (y & 0X03)));
WRITE_REG_OR_RETURN(BANK_SENSOR, VSTART, y >> 2);
WRITE_REG_OR_RETURN(BANK_SENSOR, VSTOP, endy >> 2);
endx = x + width / 2;
reg32 = read_reg(sensor, BANK_SENSOR, REG32);
WRITE_REG_OR_RETURN(BANK_SENSOR, REG32, (reg32 & 0XC0) | (((endx & 0X07) << 3) | (x & 0X07)));
WRITE_REG_OR_RETURN(BANK_SENSOR, HSTART, x >> 3);
WRITE_REG_OR_RETURN(BANK_SENSOR, HSTOP, endx >> 3);
return ret;
}
// Set the image output size (final output resolution)
int set_output_size(sensor_t *sensor, uint16_t width, uint16_t height)
{
int ret = 0;
uint16_t h, w;
if(width % 4) {
return -1;
}
if(height % 4 ) {
return -2;
}
w = width / 4;
h = height / 4;
//WRITE_REG_OR_RETURN(BANK_DSP, RESET, RESET_DVP);
WRITE_REG_OR_RETURN(BANK_DSP, ZMOW, w & 0XFF);
WRITE_REG_OR_RETURN(BANK_DSP, ZMOH, h & 0XFF);
WRITE_REG_OR_RETURN(BANK_DSP, ZMHH, ((w >> 8) & 0X03) | ((h >> 6) & 0X04));
//WRITE_REG_OR_RETURN(BANK_DSP, RESET, 0X00);
return ret;
}
//Set the image window size >= output size
int set_window_size(sensor_t *sensor, uint16_t x, uint16_t y, uint16_t width, uint16_t height)
{
int ret = 0;
uint16_t w, h;
if(width % 4) {
return -1;
}
if(height % 4) {
return -2;
}
w = width / 4;
h = height / 4;
//WRITE_REG_OR_RETURN(BANK_DSP, RESET, RESET_DVP);
WRITE_REG_OR_RETURN(BANK_DSP, HSIZE, w & 0XFF);
WRITE_REG_OR_RETURN(BANK_DSP, VSIZE, h & 0XFF);
WRITE_REG_OR_RETURN(BANK_DSP, XOFFL, x & 0XFF);
WRITE_REG_OR_RETURN(BANK_DSP, YOFFL, y & 0XFF);
WRITE_REG_OR_RETURN(BANK_DSP, VHYX, ((h >> 1) & 0X80) | ((y >> 4) & 0X70) | ((w >> 5) & 0X08) | ((x >> 8) & 0X07));
WRITE_REG_OR_RETURN(BANK_DSP, TEST, (w >> 2) & 0X80);
//WRITE_REG_OR_RETURN(BANK_DSP, RESET, 0X00);
return ret;
}
//Set the sensor resolution (UXGA, SVGA, CIF)
int set_image_size(sensor_t *sensor, uint16_t width, uint16_t height)
{
int ret = 0;
//WRITE_REG_OR_RETURN(BANK_DSP, RESET, RESET_DVP);
WRITE_REG_OR_RETURN(BANK_DSP, HSIZE8, (width >> 3) & 0XFF);
WRITE_REG_OR_RETURN(BANK_DSP, VSIZE8, (height >> 3) & 0XFF);
WRITE_REG_OR_RETURN(BANK_DSP, SIZEL, ((width & 0X07) << 3) | ((width >> 4) & 0X80) | (height & 0X07));
//WRITE_REG_OR_RETURN(BANK_DSP, RESET, 0X00);
return ret;
}
#endif
static int set_framesize(sensor_t *sensor, framesize_t framesize)
{
int ret = 0;
uint16_t w = resolution[framesize][0];
uint16_t h = resolution[framesize][1];
const uint8_t (*regs)[2];
sensor->framesize = framesize;
if (framesize <= FRAMESIZE_CIF) {
regs = ov2640_settings_to_cif;
} else if (framesize <= FRAMESIZE_SVGA) {
regs = ov2640_settings_to_svga;
} else {
regs = ov2640_settings_to_uxga;
}
WRITE_REG_OR_RETURN(BANK_DSP, R_BYPASS, R_BYPASS_DSP_BYPAS);
WRITE_REGS_OR_RETURN(regs);
WRITE_REG_OR_RETURN(BANK_DSP, ZMOW, (w>>2)&0xFF); // OUTW[7:0] (real/4)
WRITE_REG_OR_RETURN(BANK_DSP, ZMOH, (h>>2)&0xFF); // OUTH[7:0] (real/4)
WRITE_REG_OR_RETURN(BANK_DSP, ZMHH, ((h>>8)&0x04)|((w>>10)&0x03)); // OUTH[8]/OUTW[9:8]
WRITE_REG_OR_RETURN(BANK_DSP, RESET, 0x00);
WRITE_REG_OR_RETURN(BANK_DSP, R_BYPASS, R_BYPASS_DSP_EN);
vTaskDelay(10 / portTICK_PERIOD_MS);
//required when changing resolution
set_pixformat(sensor, sensor->pixformat);
return ret;
}
static int set_contrast(sensor_t *sensor, int level)
{
int ret=0;
level += 3;
if (level <= 0 || level > NUM_CONTRAST_LEVELS) {
return -1;
}
for (int i=0; i<7; i++) {
WRITE_REG_OR_RETURN(BANK_DSP, contrast_regs[0][i], contrast_regs[level][i]);
}
return ret;
}
static int set_brightness(sensor_t *sensor, int level)
{
int ret=0;
level += 3;
if (level <= 0 || level > NUM_BRIGHTNESS_LEVELS) {
return -1;
}
for (int i=0; i<5; i++) {
WRITE_REG_OR_RETURN(BANK_DSP, brightness_regs[0][i], brightness_regs[level][i]);
}
return ret;
}
static int set_saturation(sensor_t *sensor, int level)
{
int ret=0;
level += 3;
if (level <= 0 || level > NUM_SATURATION_LEVELS) {
return -1;
}
for (int i=0; i<5; i++) {
WRITE_REG_OR_RETURN(BANK_DSP, saturation_regs[0][i], saturation_regs[level][i]);
}
return ret;
}
static int set_special_effect(sensor_t *sensor, int effect)
{
int ret=0;
effect++;
if (effect <= 0 || effect > NUM_SPECIAL_EFFECTS) {
return -1;
}
for (int i=0; i<5; i++) {
WRITE_REG_OR_RETURN(BANK_DSP, special_effects_regs[0][i], special_effects_regs[effect][i]);
}
return ret;
}
static int set_wb_mode(sensor_t *sensor, int mode)
{
int ret=0;
if (mode < 0 || mode > NUM_WB_MODES) {
return -1;
}
SET_REG_BITS_OR_RETURN(BANK_DSP, 0XC7, 6, 1, mode?1:0);
if(mode) {
for (int i=0; i<3; i++) {
WRITE_REG_OR_RETURN(BANK_DSP, wb_modes_regs[0][i], wb_modes_regs[mode][i]);
}
}
return ret;
}
static int set_ae_level(sensor_t *sensor, int level)
{
int ret=0;
level += 3;
if (level <= 0 || level > NUM_AE_LEVELS) {
return -1;
}
for (int i=0; i<3; i++) {
WRITE_REG_OR_RETURN(BANK_SENSOR, ae_levels_regs[0][i], ae_levels_regs[level][i]);
}
return ret;
}
static int set_agc_gain(sensor_t *sensor, int gain)
{
const uint8_t gain_tbl[31] = {
0x00, 0x10, 0x18, 0x30, 0x34, 0x38, 0x3C, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7A, 0x7C, 0x7E, 0xF0,
0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, 0xFF
};
if(gain < 0) {
gain = 0;
} else if(gain > 30) {
gain = 30;
}
return write_reg(sensor, BANK_SENSOR, GAIN, gain_tbl[gain]);
}
static int set_quality(sensor_t *sensor, int qs)
{
return write_reg(sensor, BANK_DSP, QS, qs);
}
static int set_colorbar(sensor_t *sensor, int enable)
{
return write_reg_bits(sensor, BANK_SENSOR, COM7, COM7_COLOR_BAR, enable);
}
static int set_gainceiling_sensor(sensor_t *sensor, gainceiling_t gainceiling)
{
return write_reg(sensor, BANK_SENSOR, COM9, COM9_AGC_SET(gainceiling));
}
static int set_agc_sensor(sensor_t *sensor, int enable)
{
return write_reg_bits(sensor, BANK_SENSOR, COM8, COM8_AGC_EN, enable);
}
static int set_aec_sensor(sensor_t *sensor, int enable)
{
return write_reg_bits(sensor, BANK_SENSOR, COM8, COM8_AEC_EN, enable);
}
static int set_hmirror_sensor(sensor_t *sensor, int enable)
{
return write_reg_bits(sensor, BANK_SENSOR, REG04, REG04_HFLIP_IMG, enable);
}
static int set_vflip_sensor(sensor_t *sensor, int enable)
{
return write_reg_bits(sensor, BANK_SENSOR, REG04, REG04_VFLIP_IMG, enable);
}
static int set_aec_dsp(sensor_t *sensor, int enable)
{
return set_reg_bits(sensor, BANK_DSP, CTRL0, 6, 1, enable?0:1);
}
static int set_raw_gma_dsp(sensor_t *sensor, int enable)
{
return set_reg_bits(sensor, BANK_DSP, CTRL1, 5, 1, enable?1:0);
}
static int set_awb_dsp(sensor_t *sensor, int enable)
{
return set_reg_bits(sensor, BANK_DSP, CTRL1, 3, 1, enable?1:0);
}
static int set_awb_gain_dsp(sensor_t *sensor, int enable)
{
return set_reg_bits(sensor, BANK_DSP, CTRL1, 2, 1, enable?1:0);
}
static int set_lenc_dsp(sensor_t *sensor, int enable)
{
return set_reg_bits(sensor, BANK_DSP, CTRL1, 1, 1, enable?1:0);
}
static int set_pre_dsp(sensor_t *sensor, int enable)
{
return set_reg_bits(sensor, BANK_DSP, CTRL1, 0, 1, enable?1:0);
}
static int set_dcw_dsp(sensor_t *sensor, int enable)
{
return set_reg_bits(sensor, BANK_DSP, CTRL2, 5, 1, enable?1:0);
}
static int set_bpc_dsp(sensor_t *sensor, int enable)
{
return set_reg_bits(sensor, BANK_DSP, CTRL3, 7, 1, enable?1:0);
}
static int set_wpc_dsp(sensor_t *sensor, int enable)
{
return set_reg_bits(sensor, BANK_DSP, CTRL3, 6, 1, enable?1:0);
}
static int set_aec_value(sensor_t *sensor, int value)
{
if(value < 0) {
value = 0;
} else if(value > 0xFFFF) {
value = 0xFFFF;
}
return set_reg_bits(sensor, BANK_SENSOR, REG04, 0, 3, value & 0x3)
|| write_reg(sensor, BANK_SENSOR, AEC, (value >> 2) & 0xFF)
|| set_reg_bits(sensor, BANK_SENSOR, REG45, 0, 0x3F, value >> 10);
}
int ov2640_init(sensor_t *sensor)
{
sensor->reset = reset;
sensor->set_pixformat = set_pixformat;
sensor->set_framesize = set_framesize;
sensor->set_contrast = set_contrast;
sensor->set_brightness= set_brightness;
sensor->set_saturation= set_saturation;
sensor->set_quality = set_quality;
sensor->set_colorbar = set_colorbar;
sensor->set_gainceiling = set_gainceiling_sensor;
sensor->set_gain_ctrl = set_agc_sensor;
sensor->set_exposure_ctrl = set_aec_sensor;
sensor->set_hmirror = set_hmirror_sensor;
sensor->set_vflip = set_vflip_sensor;
sensor->set_whitebal = set_awb_dsp;
sensor->set_aec2 = set_aec_dsp;
sensor->set_aec_value = set_aec_value;
sensor->set_special_effect = set_special_effect;
sensor->set_wb_mode = set_wb_mode;
sensor->set_ae_level = set_ae_level;
sensor->set_dcw = set_dcw_dsp;
sensor->set_bpc = set_bpc_dsp;
sensor->set_wpc = set_wpc_dsp;
sensor->set_awb_gain = set_awb_gain_dsp;
sensor->set_agc_gain = set_agc_gain;
sensor->set_raw_gma = set_raw_gma_dsp;
sensor->set_lenc = set_lenc_dsp;
sensor->set_pre = set_pre_dsp;
return 0;
}